Processing math: 100%

Identifier
Mp00283: Perfect matchings non-nesting-exceedence permutationPermutations
Mp00160: Permutations graph of inversionsGraphs
Mp00037: Graphs to partition of connected components Integer partitions
Images
[(1,2)] => [2,1] => ([(0,1)],2) => [2]
[(1,2),(3,4)] => [2,1,4,3] => ([(0,3),(1,2)],4) => [2,2]
[(1,3),(2,4)] => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4) => [4]
[(1,4),(2,3)] => [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [4]
[(1,2),(3,4),(5,6)] => [2,1,4,3,6,5] => ([(0,5),(1,4),(2,3)],6) => [2,2,2]
[(1,3),(2,4),(5,6)] => [3,4,1,2,6,5] => ([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => [4,2]
[(1,4),(2,3),(5,6)] => [3,4,2,1,6,5] => ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,2]
[(1,5),(2,3),(4,6)] => [3,5,2,6,1,4] => ([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6]
[(1,6),(2,3),(4,5)] => [3,5,2,6,4,1] => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [6]
[(1,6),(2,4),(3,5)] => [4,5,6,2,3,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [6]
[(1,5),(2,4),(3,6)] => [4,5,6,2,1,3] => ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6]
[(1,4),(2,5),(3,6)] => [4,5,6,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => [6]
[(1,3),(2,5),(4,6)] => [3,5,1,6,2,4] => ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) => [6]
[(1,2),(3,5),(4,6)] => [2,1,5,6,3,4] => ([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => [4,2]
[(1,2),(3,6),(4,5)] => [2,1,5,6,4,3] => ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,2]
[(1,3),(2,6),(4,5)] => [3,5,1,6,4,2] => ([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6]
[(1,4),(2,6),(3,5)] => [4,5,6,1,3,2] => ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6]
[(1,5),(2,6),(3,4)] => [4,5,6,3,1,2] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [6]
[(1,6),(2,5),(3,4)] => [4,5,6,3,2,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6]
[(1,2),(3,4),(5,6),(7,8)] => [2,1,4,3,6,5,8,7] => ([(0,7),(1,6),(2,5),(3,4)],8) => [2,2,2,2]
[(1,3),(2,4),(5,6),(7,8)] => [3,4,1,2,6,5,8,7] => ([(0,3),(1,2),(4,6),(4,7),(5,6),(5,7)],8) => [4,2,2]
[(1,4),(2,3),(5,6),(7,8)] => [3,4,2,1,6,5,8,7] => ([(0,3),(1,2),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [4,2,2]
[(1,5),(2,3),(4,6),(7,8)] => [3,5,2,6,1,4,8,7] => ([(0,1),(2,3),(2,7),(3,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,2]
[(1,6),(2,3),(4,5),(7,8)] => [3,5,2,6,4,1,8,7] => ([(0,1),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8) => [6,2]
[(1,7),(2,3),(4,5),(6,8)] => [3,5,2,7,4,8,1,6] => ([(0,5),(0,7),(1,2),(1,6),(2,7),(3,4),(3,5),(3,7),(4,6),(4,7),(5,7),(6,7)],8) => [8]
[(1,8),(2,3),(4,5),(6,7)] => [3,5,2,7,4,8,6,1] => ([(0,6),(0,7),(1,5),(1,7),(2,3),(2,4),(2,7),(3,5),(3,7),(4,6),(4,7),(5,7),(6,7)],8) => [8]
[(1,8),(2,4),(3,5),(6,7)] => [4,5,7,2,3,8,6,1] => ([(0,3),(0,7),(1,4),(1,5),(1,7),(2,4),(2,5),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [8]
[(1,7),(2,4),(3,5),(6,8)] => [4,5,7,2,3,8,1,6] => ([(0,1),(0,6),(1,7),(2,4),(2,5),(2,7),(3,4),(3,5),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [8]
[(1,6),(2,4),(3,5),(7,8)] => [4,5,6,2,3,1,8,7] => ([(0,1),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8) => [6,2]
[(1,5),(2,4),(3,6),(7,8)] => [4,5,6,2,1,3,8,7] => ([(0,1),(2,3),(2,4),(2,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,2]
[(1,4),(2,5),(3,6),(7,8)] => [4,5,6,1,2,3,8,7] => ([(0,1),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8) => [6,2]
[(1,3),(2,5),(4,6),(7,8)] => [3,5,1,6,2,4,8,7] => ([(0,1),(2,5),(2,7),(3,4),(3,7),(4,6),(5,6),(6,7)],8) => [6,2]
[(1,2),(3,5),(4,6),(7,8)] => [2,1,5,6,3,4,8,7] => ([(0,3),(1,2),(4,6),(4,7),(5,6),(5,7)],8) => [4,2,2]
[(1,2),(3,6),(4,5),(7,8)] => [2,1,5,6,4,3,8,7] => ([(0,3),(1,2),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [4,2,2]
[(1,3),(2,6),(4,5),(7,8)] => [3,5,1,6,4,2,8,7] => ([(0,1),(2,3),(2,7),(3,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,2]
[(1,4),(2,6),(3,5),(7,8)] => [4,5,6,1,3,2,8,7] => ([(0,1),(2,3),(2,4),(2,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,2]
[(1,5),(2,6),(3,4),(7,8)] => [4,5,6,3,1,2,8,7] => ([(0,1),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8) => [6,2]
[(1,6),(2,5),(3,4),(7,8)] => [4,5,6,3,2,1,8,7] => ([(0,1),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,2]
[(1,7),(2,5),(3,4),(6,8)] => [4,5,7,3,2,8,1,6] => ([(0,1),(0,7),(1,4),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [8]
[(1,8),(2,5),(3,4),(6,7)] => [4,5,7,3,2,8,6,1] => ([(0,3),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [8]
[(1,8),(2,6),(3,4),(5,7)] => [4,6,7,3,8,2,5,1] => ([(0,4),(0,6),(0,7),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,7),(5,6),(5,7),(6,7)],8) => [8]
[(1,7),(2,6),(3,4),(5,8)] => [4,6,7,3,8,2,1,5] => ([(0,2),(0,6),(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [8]
[(1,6),(2,7),(3,4),(5,8)] => [4,6,7,3,8,1,2,5] => ([(0,2),(0,5),(0,6),(1,5),(1,6),(1,7),(2,3),(2,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8) => [8]
[(1,5),(2,7),(3,4),(6,8)] => [4,5,7,3,1,8,2,6] => ([(0,1),(0,6),(1,4),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8) => [8]
[(1,4),(2,7),(3,5),(6,8)] => [4,5,7,1,3,8,2,6] => ([(0,1),(0,6),(1,7),(2,3),(2,4),(2,6),(3,5),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8) => [8]
[(1,3),(2,7),(4,5),(6,8)] => [3,5,1,7,4,8,2,6] => ([(0,3),(0,7),(1,2),(1,7),(2,4),(3,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [8]
[(1,2),(3,7),(4,5),(6,8)] => [2,1,5,7,4,8,3,6] => ([(0,1),(2,3),(2,7),(3,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,2]
[(1,2),(3,8),(4,5),(6,7)] => [2,1,5,7,4,8,6,3] => ([(0,1),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8) => [6,2]
[(1,3),(2,8),(4,5),(6,7)] => [3,5,1,7,4,8,6,2] => ([(0,5),(0,7),(1,2),(1,6),(2,7),(3,4),(3,5),(3,7),(4,6),(4,7),(5,7),(6,7)],8) => [8]
[(1,4),(2,8),(3,5),(6,7)] => [4,5,7,1,3,8,6,2] => ([(0,4),(0,7),(1,2),(1,3),(1,6),(2,5),(2,7),(3,5),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [8]
[(1,5),(2,8),(3,4),(6,7)] => [4,5,7,3,1,8,6,2] => ([(0,3),(0,7),(1,4),(1,6),(1,7),(2,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,6),(5,7),(6,7)],8) => [8]
[(1,6),(2,8),(3,4),(5,7)] => [4,6,7,3,8,1,5,2] => ([(0,4),(0,6),(0,7),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,7),(5,6),(5,7)],8) => [8]
[(1,7),(2,8),(3,4),(5,6)] => [4,6,7,3,8,5,1,2] => ([(0,5),(0,6),(0,7),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8) => [8]
[(1,8),(2,7),(3,4),(5,6)] => [4,6,7,3,8,5,2,1] => ([(0,5),(0,6),(0,7),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [8]
[(1,8),(2,7),(3,5),(4,6)] => [5,6,7,8,3,4,2,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [8]
[(1,7),(2,8),(3,5),(4,6)] => [5,6,7,8,3,4,1,2] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8) => [8]
[(1,6),(2,8),(3,5),(4,7)] => [5,6,7,8,3,1,4,2] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,7),(5,6),(6,7)],8) => [8]
[(1,5),(2,8),(3,6),(4,7)] => [5,6,7,8,1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8) => [8]
[(1,4),(2,8),(3,6),(5,7)] => [4,6,7,1,8,3,5,2] => ([(0,2),(0,6),(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8) => [8]
[(1,3),(2,8),(4,6),(5,7)] => [3,6,1,7,8,4,5,2] => ([(0,1),(0,6),(1,7),(2,4),(2,5),(2,7),(3,4),(3,5),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [8]
[(1,2),(3,8),(4,6),(5,7)] => [2,1,6,7,8,4,5,3] => ([(0,1),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8) => [6,2]
[(1,2),(3,7),(4,6),(5,8)] => [2,1,6,7,8,4,3,5] => ([(0,1),(2,3),(2,4),(2,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,2]
[(1,3),(2,7),(4,6),(5,8)] => [3,6,1,7,8,4,2,5] => ([(0,1),(0,6),(1,7),(2,3),(2,4),(2,6),(3,5),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8) => [8]
[(1,4),(2,7),(3,6),(5,8)] => [4,6,7,1,8,3,2,5] => ([(0,3),(0,6),(0,7),(1,2),(1,6),(1,7),(2,4),(2,5),(3,4),(3,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [8]
[(1,5),(2,7),(3,6),(4,8)] => [5,6,7,8,1,3,2,4] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [8]
[(1,6),(2,7),(3,5),(4,8)] => [5,6,7,8,3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8) => [8]
[(1,7),(2,6),(3,5),(4,8)] => [5,6,7,8,3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [8]
[(1,8),(2,6),(3,5),(4,7)] => [5,6,7,8,3,2,4,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,7),(5,6),(5,7),(6,7)],8) => [8]
[(1,8),(2,5),(3,6),(4,7)] => [5,6,7,8,2,3,4,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,7),(5,7),(6,7)],8) => [8]
[(1,7),(2,5),(3,6),(4,8)] => [5,6,7,8,2,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8) => [8]
[(1,6),(2,5),(3,7),(4,8)] => [5,6,7,8,2,1,3,4] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [8]
[(1,5),(2,6),(3,7),(4,8)] => [5,6,7,8,1,2,3,4] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7)],8) => [8]
[(1,4),(2,6),(3,7),(5,8)] => [4,6,7,1,8,2,3,5] => ([(0,3),(0,6),(0,7),(1,2),(1,4),(1,5),(2,6),(2,7),(3,4),(3,5),(4,6),(4,7),(5,6),(5,7)],8) => [8]
[(1,3),(2,6),(4,7),(5,8)] => [3,6,1,7,8,2,4,5] => ([(0,1),(0,7),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,7),(5,7),(6,7)],8) => [8]
[(1,2),(3,6),(4,7),(5,8)] => [2,1,6,7,8,3,4,5] => ([(0,1),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8) => [6,2]
[(1,2),(3,5),(4,7),(6,8)] => [2,1,5,7,3,8,4,6] => ([(0,1),(2,5),(2,7),(3,4),(3,7),(4,6),(5,6),(6,7)],8) => [6,2]
[(1,3),(2,5),(4,7),(6,8)] => [3,5,1,7,2,8,4,6] => ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8) => [8]
[(1,4),(2,5),(3,7),(6,8)] => [4,5,7,1,2,8,3,6] => ([(0,1),(0,7),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,7),(5,7),(6,7)],8) => [8]
[(1,5),(2,4),(3,7),(6,8)] => [4,5,7,2,1,8,3,6] => ([(0,1),(0,7),(1,6),(2,4),(2,5),(2,7),(3,4),(3,5),(3,7),(4,5),(4,6),(5,6),(6,7)],8) => [8]
[(1,6),(2,4),(3,7),(5,8)] => [4,6,7,2,8,1,3,5] => ([(0,3),(0,4),(0,7),(1,2),(1,5),(1,6),(2,4),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(5,7),(6,7)],8) => [8]
[(1,7),(2,4),(3,6),(5,8)] => [4,6,7,2,8,3,1,5] => ([(0,2),(0,6),(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8) => [8]
[(1,8),(2,4),(3,6),(5,7)] => [4,6,7,2,8,3,5,1] => ([(0,5),(0,6),(0,7),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,7),(5,7),(6,7)],8) => [8]
[(1,8),(2,3),(4,6),(5,7)] => [3,6,2,7,8,4,5,1] => ([(0,3),(0,7),(1,4),(1,5),(1,7),(2,4),(2,5),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [8]
[(1,7),(2,3),(4,6),(5,8)] => [3,6,2,7,8,4,1,5] => ([(0,4),(0,7),(1,2),(1,3),(1,6),(2,5),(2,7),(3,5),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [8]
[(1,6),(2,3),(4,7),(5,8)] => [3,6,2,7,8,1,4,5] => ([(0,5),(0,7),(1,3),(1,4),(1,7),(2,3),(2,4),(2,7),(3,6),(4,6),(5,6),(5,7),(6,7)],8) => [8]
[(1,5),(2,3),(4,7),(6,8)] => [3,5,2,7,1,8,4,6] => ([(0,4),(0,7),(1,2),(1,6),(2,5),(3,4),(3,5),(3,7),(4,7),(5,6),(6,7)],8) => [8]
[(1,4),(2,3),(5,7),(6,8)] => [3,4,2,1,7,8,5,6] => ([(0,2),(0,3),(1,2),(1,3),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [4,4]
[(1,3),(2,4),(5,7),(6,8)] => [3,4,1,2,7,8,5,6] => ([(0,6),(0,7),(1,3),(1,4),(2,3),(2,4),(5,6),(5,7)],8) => [4,4]
[(1,2),(3,4),(5,7),(6,8)] => [2,1,4,3,7,8,5,6] => ([(0,3),(1,2),(4,6),(4,7),(5,6),(5,7)],8) => [4,2,2]
[(1,2),(3,4),(5,8),(6,7)] => [2,1,4,3,7,8,6,5] => ([(0,3),(1,2),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [4,2,2]
[(1,3),(2,4),(5,8),(6,7)] => [3,4,1,2,7,8,6,5] => ([(0,2),(0,3),(1,2),(1,3),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [4,4]
[(1,4),(2,3),(5,8),(6,7)] => [3,4,2,1,7,8,6,5] => ([(0,6),(0,7),(1,4),(1,5),(2,4),(2,5),(3,6),(3,7),(4,5),(6,7)],8) => [4,4]
[(1,5),(2,3),(4,8),(6,7)] => [3,5,2,7,1,8,6,4] => ([(0,5),(0,7),(1,4),(1,6),(2,4),(2,6),(2,7),(3,5),(3,6),(3,7),(4,6),(5,7)],8) => [8]
[(1,6),(2,3),(4,8),(5,7)] => [3,6,2,7,8,1,5,4] => ([(0,3),(0,7),(1,4),(1,5),(1,7),(2,4),(2,5),(2,7),(3,6),(3,7),(4,5),(4,6),(5,6),(6,7)],8) => [8]
[(1,7),(2,3),(4,8),(5,6)] => [3,6,2,7,8,5,1,4] => ([(0,3),(0,7),(1,4),(1,6),(1,7),(2,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,6),(5,7),(6,7)],8) => [8]
[(1,8),(2,3),(4,7),(5,6)] => [3,6,2,7,8,5,4,1] => ([(0,3),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [8]
[(1,8),(2,4),(3,7),(5,6)] => [4,6,7,2,8,5,3,1] => ([(0,4),(0,6),(0,7),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,7),(5,6),(5,7),(6,7)],8) => [8]
[(1,7),(2,4),(3,8),(5,6)] => [4,6,7,2,8,5,1,3] => ([(0,4),(0,6),(0,7),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,7),(5,6),(5,7)],8) => [8]
[(1,6),(2,4),(3,8),(5,7)] => [4,6,7,2,8,1,5,3] => ([(0,5),(0,6),(0,7),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(5,7)],8) => [8]
[(1,5),(2,4),(3,8),(6,7)] => [4,5,7,2,1,8,6,3] => ([(0,3),(0,7),(1,4),(1,5),(1,7),(2,4),(2,5),(2,7),(3,6),(3,7),(4,5),(4,6),(5,6),(6,7)],8) => [8]
[(1,4),(2,5),(3,8),(6,7)] => [4,5,7,1,2,8,6,3] => ([(0,5),(0,7),(1,3),(1,4),(1,7),(2,3),(2,4),(2,7),(3,6),(4,6),(5,6),(5,7),(6,7)],8) => [8]
>>> Load all 124 entries. <<<
[(1,3),(2,5),(4,8),(6,7)] => [3,5,1,7,2,8,6,4] => ([(0,4),(0,7),(1,2),(1,6),(2,5),(3,4),(3,5),(3,7),(4,7),(5,6),(6,7)],8) => [8]
[(1,2),(3,5),(4,8),(6,7)] => [2,1,5,7,3,8,6,4] => ([(0,1),(2,3),(2,7),(3,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,2]
[(1,2),(3,6),(4,8),(5,7)] => [2,1,6,7,8,3,5,4] => ([(0,1),(2,3),(2,4),(2,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,2]
[(1,3),(2,6),(4,8),(5,7)] => [3,6,1,7,8,2,5,4] => ([(0,1),(0,7),(1,6),(2,4),(2,5),(2,7),(3,4),(3,5),(3,7),(4,5),(4,6),(5,6),(6,7)],8) => [8]
[(1,4),(2,6),(3,8),(5,7)] => [4,6,7,1,8,2,5,3] => ([(0,3),(0,4),(0,7),(1,2),(1,5),(1,6),(2,4),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(5,7),(6,7)],8) => [8]
[(1,5),(2,6),(3,8),(4,7)] => [5,6,7,8,1,2,4,3] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [8]
[(1,6),(2,5),(3,8),(4,7)] => [5,6,7,8,2,1,4,3] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,7),(5,6)],8) => [8]
[(1,7),(2,5),(3,8),(4,6)] => [5,6,7,8,2,4,1,3] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,7),(5,6),(6,7)],8) => [8]
[(1,8),(2,5),(3,7),(4,6)] => [5,6,7,8,2,4,3,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,7),(5,6),(5,7),(6,7)],8) => [8]
[(1,8),(2,6),(3,7),(4,5)] => [5,6,7,8,4,2,3,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [8]
[(1,7),(2,6),(3,8),(4,5)] => [5,6,7,8,4,2,1,3] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,7),(5,6),(5,7),(6,7)],8) => [8]
[(1,6),(2,7),(3,8),(4,5)] => [5,6,7,8,4,1,2,3] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,7),(5,7),(6,7)],8) => [8]
[(1,5),(2,7),(3,8),(4,6)] => [5,6,7,8,1,4,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8) => [8]
[(1,4),(2,7),(3,8),(5,6)] => [4,6,7,1,8,5,2,3] => ([(0,2),(0,5),(0,6),(1,5),(1,6),(1,7),(2,3),(2,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8) => [8]
[(1,3),(2,7),(4,8),(5,6)] => [3,6,1,7,8,5,2,4] => ([(0,1),(0,6),(1,4),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8) => [8]
[(1,2),(3,7),(4,8),(5,6)] => [2,1,6,7,8,5,3,4] => ([(0,1),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8) => [6,2]
[(1,2),(3,8),(4,7),(5,6)] => [2,1,6,7,8,5,4,3] => ([(0,1),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,2]
[(1,3),(2,8),(4,7),(5,6)] => [3,6,1,7,8,5,4,2] => ([(0,1),(0,7),(1,4),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [8]
[(1,4),(2,8),(3,7),(5,6)] => [4,6,7,1,8,5,3,2] => ([(0,2),(0,6),(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [8]
[(1,5),(2,8),(3,7),(4,6)] => [5,6,7,8,1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [8]
[(1,6),(2,8),(3,7),(4,5)] => [5,6,7,8,4,1,3,2] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,7),(5,6),(5,7),(6,7)],8) => [8]
[(1,7),(2,8),(3,6),(4,5)] => [5,6,7,8,4,3,1,2] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [8]
[(1,8),(2,7),(3,6),(4,5)] => [5,6,7,8,4,3,2,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [8]
Map
non-nesting-exceedence permutation
Description
The fixed-point-free permutation with deficiencies given by the perfect matching, no alignments and no inversions between exceedences.
Put differently, the exceedences form the unique non-nesting perfect matching whose openers coincide with those of the given perfect matching.
Map
graph of inversions
Description
The graph of inversions of a permutation.
For a permutation of {1,,n}, this is the graph with vertices {1,,n}, where (i,j) is an edge if and only if it is an inversion of the permutation.
Map
to partition of connected components
Description
Return the partition of the sizes of the connected components of the graph.