Identifier
Mp00058: Perfect matchings to permutationPermutations
Mp00087: Permutations inverse first fundamental transformationPermutations
Mp00072: Permutations binary search tree: left to right Binary trees
Images
[(1,2)] => [2,1] => [2,1] => [[.,.],.]
[(1,2),(3,4)] => [2,1,4,3] => [2,1,4,3] => [[.,.],[[.,.],.]]
[(1,3),(2,4)] => [3,4,1,2] => [3,1,4,2] => [[.,[.,.]],[.,.]]
[(1,4),(2,3)] => [4,3,2,1] => [3,2,4,1] => [[[.,.],.],[.,.]]
[(1,2),(3,4),(5,6)] => [2,1,4,3,6,5] => [2,1,4,3,6,5] => [[.,.],[[.,.],[[.,.],.]]]
[(1,3),(2,4),(5,6)] => [3,4,1,2,6,5] => [3,1,4,2,6,5] => [[.,[.,.]],[.,[[.,.],.]]]
[(1,4),(2,3),(5,6)] => [4,3,2,1,6,5] => [3,2,4,1,6,5] => [[[.,.],.],[.,[[.,.],.]]]
[(1,5),(2,3),(4,6)] => [5,3,2,6,1,4] => [3,2,5,1,6,4] => [[[.,.],.],[[.,.],[.,.]]]
[(1,6),(2,3),(4,5)] => [6,3,2,5,4,1] => [3,2,5,4,6,1] => [[[.,.],.],[[.,.],[.,.]]]
[(1,6),(2,4),(3,5)] => [6,4,5,2,3,1] => [4,2,5,3,6,1] => [[[.,.],[.,.]],[.,[.,.]]]
[(1,5),(2,4),(3,6)] => [5,4,6,2,1,3] => [4,2,5,1,6,3] => [[[.,.],[.,.]],[.,[.,.]]]
[(1,4),(2,5),(3,6)] => [4,5,6,1,2,3] => [4,1,5,2,6,3] => [[.,[.,[.,.]]],[.,[.,.]]]
[(1,3),(2,5),(4,6)] => [3,5,1,6,2,4] => [3,1,5,2,6,4] => [[.,[.,.]],[[.,.],[.,.]]]
[(1,2),(3,5),(4,6)] => [2,1,5,6,3,4] => [2,1,5,3,6,4] => [[.,.],[[.,[.,.]],[.,.]]]
[(1,2),(3,6),(4,5)] => [2,1,6,5,4,3] => [2,1,5,4,6,3] => [[.,.],[[[.,.],.],[.,.]]]
[(1,3),(2,6),(4,5)] => [3,6,1,5,4,2] => [3,1,5,4,6,2] => [[.,[.,.]],[[.,.],[.,.]]]
[(1,4),(2,6),(3,5)] => [4,6,5,1,3,2] => [4,1,5,3,6,2] => [[.,[[.,.],.]],[.,[.,.]]]
[(1,5),(2,6),(3,4)] => [5,6,4,3,1,2] => [4,3,5,1,6,2] => [[[.,[.,.]],.],[.,[.,.]]]
[(1,6),(2,5),(3,4)] => [6,5,4,3,2,1] => [4,3,5,2,6,1] => [[[[.,.],.],.],[.,[.,.]]]
[(1,2),(3,4),(5,6),(7,8)] => [2,1,4,3,6,5,8,7] => [2,1,4,3,6,5,8,7] => [[.,.],[[.,.],[[.,.],[[.,.],.]]]]
[(1,3),(2,4),(5,6),(7,8)] => [3,4,1,2,6,5,8,7] => [3,1,4,2,6,5,8,7] => [[.,[.,.]],[.,[[.,.],[[.,.],.]]]]
[(1,4),(2,3),(5,6),(7,8)] => [4,3,2,1,6,5,8,7] => [3,2,4,1,6,5,8,7] => [[[.,.],.],[.,[[.,.],[[.,.],.]]]]
[(1,5),(2,3),(4,6),(7,8)] => [5,3,2,6,1,4,8,7] => [3,2,5,1,6,4,8,7] => [[[.,.],.],[[.,.],[.,[[.,.],.]]]]
[(1,6),(2,3),(4,5),(7,8)] => [6,3,2,5,4,1,8,7] => [3,2,5,4,6,1,8,7] => [[[.,.],.],[[.,.],[.,[[.,.],.]]]]
[(1,7),(2,3),(4,5),(6,8)] => [7,3,2,5,4,8,1,6] => [3,2,5,4,7,1,8,6] => [[[.,.],.],[[.,.],[[.,.],[.,.]]]]
[(1,8),(2,3),(4,5),(6,7)] => [8,3,2,5,4,7,6,1] => [3,2,5,4,7,6,8,1] => [[[.,.],.],[[.,.],[[.,.],[.,.]]]]
[(1,8),(2,4),(3,5),(6,7)] => [8,4,5,2,3,7,6,1] => [4,2,5,3,7,6,8,1] => [[[.,.],[.,.]],[.,[[.,.],[.,.]]]]
[(1,7),(2,4),(3,5),(6,8)] => [7,4,5,2,3,8,1,6] => [4,2,5,3,7,1,8,6] => [[[.,.],[.,.]],[.,[[.,.],[.,.]]]]
[(1,6),(2,4),(3,5),(7,8)] => [6,4,5,2,3,1,8,7] => [4,2,5,3,6,1,8,7] => [[[.,.],[.,.]],[.,[.,[[.,.],.]]]]
[(1,5),(2,4),(3,6),(7,8)] => [5,4,6,2,1,3,8,7] => [4,2,5,1,6,3,8,7] => [[[.,.],[.,.]],[.,[.,[[.,.],.]]]]
[(1,4),(2,5),(3,6),(7,8)] => [4,5,6,1,2,3,8,7] => [4,1,5,2,6,3,8,7] => [[.,[.,[.,.]]],[.,[.,[[.,.],.]]]]
[(1,3),(2,5),(4,6),(7,8)] => [3,5,1,6,2,4,8,7] => [3,1,5,2,6,4,8,7] => [[.,[.,.]],[[.,.],[.,[[.,.],.]]]]
[(1,2),(3,5),(4,6),(7,8)] => [2,1,5,6,3,4,8,7] => [2,1,5,3,6,4,8,7] => [[.,.],[[.,[.,.]],[.,[[.,.],.]]]]
[(1,2),(3,6),(4,5),(7,8)] => [2,1,6,5,4,3,8,7] => [2,1,5,4,6,3,8,7] => [[.,.],[[[.,.],.],[.,[[.,.],.]]]]
[(1,3),(2,6),(4,5),(7,8)] => [3,6,1,5,4,2,8,7] => [3,1,5,4,6,2,8,7] => [[.,[.,.]],[[.,.],[.,[[.,.],.]]]]
[(1,4),(2,6),(3,5),(7,8)] => [4,6,5,1,3,2,8,7] => [4,1,5,3,6,2,8,7] => [[.,[[.,.],.]],[.,[.,[[.,.],.]]]]
[(1,5),(2,6),(3,4),(7,8)] => [5,6,4,3,1,2,8,7] => [4,3,5,1,6,2,8,7] => [[[.,[.,.]],.],[.,[.,[[.,.],.]]]]
[(1,6),(2,5),(3,4),(7,8)] => [6,5,4,3,2,1,8,7] => [4,3,5,2,6,1,8,7] => [[[[.,.],.],.],[.,[.,[[.,.],.]]]]
[(1,7),(2,5),(3,4),(6,8)] => [7,5,4,3,2,8,1,6] => [4,3,5,2,7,1,8,6] => [[[[.,.],.],.],[.,[[.,.],[.,.]]]]
[(1,8),(2,5),(3,4),(6,7)] => [8,5,4,3,2,7,6,1] => [4,3,5,2,7,6,8,1] => [[[[.,.],.],.],[.,[[.,.],[.,.]]]]
[(1,8),(2,6),(3,4),(5,7)] => [8,6,4,3,7,2,5,1] => [4,3,6,2,7,5,8,1] => [[[[.,.],.],.],[[.,.],[.,[.,.]]]]
[(1,7),(2,6),(3,4),(5,8)] => [7,6,4,3,8,2,1,5] => [4,3,6,2,7,1,8,5] => [[[[.,.],.],.],[[.,.],[.,[.,.]]]]
[(1,6),(2,7),(3,4),(5,8)] => [6,7,4,3,8,1,2,5] => [4,3,6,1,7,2,8,5] => [[[.,[.,.]],.],[[.,.],[.,[.,.]]]]
[(1,5),(2,7),(3,4),(6,8)] => [5,7,4,3,1,8,2,6] => [4,3,5,1,7,2,8,6] => [[[.,[.,.]],.],[.,[[.,.],[.,.]]]]
[(1,4),(2,7),(3,5),(6,8)] => [4,7,5,1,3,8,2,6] => [4,1,5,3,7,2,8,6] => [[.,[[.,.],.]],[.,[[.,.],[.,.]]]]
[(1,3),(2,7),(4,5),(6,8)] => [3,7,1,5,4,8,2,6] => [3,1,5,4,7,2,8,6] => [[.,[.,.]],[[.,.],[[.,.],[.,.]]]]
[(1,2),(3,7),(4,5),(6,8)] => [2,1,7,5,4,8,3,6] => [2,1,5,4,7,3,8,6] => [[.,.],[[[.,.],.],[[.,.],[.,.]]]]
[(1,2),(3,8),(4,5),(6,7)] => [2,1,8,5,4,7,6,3] => [2,1,5,4,7,6,8,3] => [[.,.],[[[.,.],.],[[.,.],[.,.]]]]
[(1,3),(2,8),(4,5),(6,7)] => [3,8,1,5,4,7,6,2] => [3,1,5,4,7,6,8,2] => [[.,[.,.]],[[.,.],[[.,.],[.,.]]]]
[(1,4),(2,8),(3,5),(6,7)] => [4,8,5,1,3,7,6,2] => [4,1,5,3,7,6,8,2] => [[.,[[.,.],.]],[.,[[.,.],[.,.]]]]
[(1,5),(2,8),(3,4),(6,7)] => [5,8,4,3,1,7,6,2] => [4,3,5,1,7,6,8,2] => [[[.,[.,.]],.],[.,[[.,.],[.,.]]]]
[(1,6),(2,8),(3,4),(5,7)] => [6,8,4,3,7,1,5,2] => [4,3,6,1,7,5,8,2] => [[[.,[.,.]],.],[[.,.],[.,[.,.]]]]
[(1,7),(2,8),(3,4),(5,6)] => [7,8,4,3,6,5,1,2] => [4,3,6,5,7,1,8,2] => [[[.,[.,.]],.],[[.,.],[.,[.,.]]]]
[(1,8),(2,7),(3,4),(5,6)] => [8,7,4,3,6,5,2,1] => [4,3,6,5,7,2,8,1] => [[[[.,.],.],.],[[.,.],[.,[.,.]]]]
[(1,8),(2,7),(3,5),(4,6)] => [8,7,5,6,3,4,2,1] => [5,3,6,4,7,2,8,1] => [[[[.,.],.],[.,.]],[.,[.,[.,.]]]]
[(1,7),(2,8),(3,5),(4,6)] => [7,8,5,6,3,4,1,2] => [5,3,6,4,7,1,8,2] => [[[.,[.,.]],[.,.]],[.,[.,[.,.]]]]
[(1,6),(2,8),(3,5),(4,7)] => [6,8,5,7,3,1,4,2] => [5,3,6,1,7,4,8,2] => [[[.,[.,.]],[.,.]],[.,[.,[.,.]]]]
[(1,5),(2,8),(3,6),(4,7)] => [5,8,6,7,1,3,4,2] => [5,1,6,3,7,4,8,2] => [[.,[[.,.],[.,.]]],[.,[.,[.,.]]]]
[(1,4),(2,8),(3,6),(5,7)] => [4,8,6,1,7,3,5,2] => [4,1,6,3,7,5,8,2] => [[.,[[.,.],.]],[[.,.],[.,[.,.]]]]
[(1,3),(2,8),(4,6),(5,7)] => [3,8,1,6,7,4,5,2] => [3,1,6,4,7,5,8,2] => [[.,[.,.]],[[.,[.,.]],[.,[.,.]]]]
[(1,2),(3,8),(4,6),(5,7)] => [2,1,8,6,7,4,5,3] => [2,1,6,4,7,5,8,3] => [[.,.],[[[.,.],[.,.]],[.,[.,.]]]]
[(1,2),(3,7),(4,6),(5,8)] => [2,1,7,6,8,4,3,5] => [2,1,6,4,7,3,8,5] => [[.,.],[[[.,.],[.,.]],[.,[.,.]]]]
[(1,3),(2,7),(4,6),(5,8)] => [3,7,1,6,8,4,2,5] => [3,1,6,4,7,2,8,5] => [[.,[.,.]],[[.,[.,.]],[.,[.,.]]]]
[(1,4),(2,7),(3,6),(5,8)] => [4,7,6,1,8,3,2,5] => [4,1,6,3,7,2,8,5] => [[.,[[.,.],.]],[[.,.],[.,[.,.]]]]
[(1,5),(2,7),(3,6),(4,8)] => [5,7,6,8,1,3,2,4] => [5,1,6,3,7,2,8,4] => [[.,[[.,.],[.,.]]],[.,[.,[.,.]]]]
[(1,6),(2,7),(3,5),(4,8)] => [6,7,5,8,3,1,2,4] => [5,3,6,1,7,2,8,4] => [[[.,[.,.]],[.,.]],[.,[.,[.,.]]]]
[(1,7),(2,6),(3,5),(4,8)] => [7,6,5,8,3,2,1,4] => [5,3,6,2,7,1,8,4] => [[[[.,.],.],[.,.]],[.,[.,[.,.]]]]
[(1,8),(2,6),(3,5),(4,7)] => [8,6,5,7,3,2,4,1] => [5,3,6,2,7,4,8,1] => [[[[.,.],.],[.,.]],[.,[.,[.,.]]]]
[(1,8),(2,5),(3,6),(4,7)] => [8,5,6,7,2,3,4,1] => [5,2,6,3,7,4,8,1] => [[[.,.],[.,[.,.]]],[.,[.,[.,.]]]]
[(1,7),(2,5),(3,6),(4,8)] => [7,5,6,8,2,3,1,4] => [5,2,6,3,7,1,8,4] => [[[.,.],[.,[.,.]]],[.,[.,[.,.]]]]
[(1,6),(2,5),(3,7),(4,8)] => [6,5,7,8,2,1,3,4] => [5,2,6,1,7,3,8,4] => [[[.,.],[.,[.,.]]],[.,[.,[.,.]]]]
[(1,5),(2,6),(3,7),(4,8)] => [5,6,7,8,1,2,3,4] => [5,1,6,2,7,3,8,4] => [[.,[.,[.,[.,.]]]],[.,[.,[.,.]]]]
[(1,4),(2,6),(3,7),(5,8)] => [4,6,7,1,8,2,3,5] => [4,1,6,2,7,3,8,5] => [[.,[.,[.,.]]],[[.,.],[.,[.,.]]]]
[(1,3),(2,6),(4,7),(5,8)] => [3,6,1,7,8,2,4,5] => [3,1,6,2,7,4,8,5] => [[.,[.,.]],[[.,[.,.]],[.,[.,.]]]]
[(1,2),(3,6),(4,7),(5,8)] => [2,1,6,7,8,3,4,5] => [2,1,6,3,7,4,8,5] => [[.,.],[[.,[.,[.,.]]],[.,[.,.]]]]
[(1,2),(3,5),(4,7),(6,8)] => [2,1,5,7,3,8,4,6] => [2,1,5,3,7,4,8,6] => [[.,.],[[.,[.,.]],[[.,.],[.,.]]]]
[(1,3),(2,5),(4,7),(6,8)] => [3,5,1,7,2,8,4,6] => [3,1,5,2,7,4,8,6] => [[.,[.,.]],[[.,.],[[.,.],[.,.]]]]
[(1,4),(2,5),(3,7),(6,8)] => [4,5,7,1,2,8,3,6] => [4,1,5,2,7,3,8,6] => [[.,[.,[.,.]]],[.,[[.,.],[.,.]]]]
[(1,5),(2,4),(3,7),(6,8)] => [5,4,7,2,1,8,3,6] => [4,2,5,1,7,3,8,6] => [[[.,.],[.,.]],[.,[[.,.],[.,.]]]]
[(1,6),(2,4),(3,7),(5,8)] => [6,4,7,2,8,1,3,5] => [4,2,6,1,7,3,8,5] => [[[.,.],[.,.]],[[.,.],[.,[.,.]]]]
[(1,7),(2,4),(3,6),(5,8)] => [7,4,6,2,8,3,1,5] => [4,2,6,3,7,1,8,5] => [[[.,.],[.,.]],[[.,.],[.,[.,.]]]]
[(1,8),(2,4),(3,6),(5,7)] => [8,4,6,2,7,3,5,1] => [4,2,6,3,7,5,8,1] => [[[.,.],[.,.]],[[.,.],[.,[.,.]]]]
[(1,8),(2,3),(4,6),(5,7)] => [8,3,2,6,7,4,5,1] => [3,2,6,4,7,5,8,1] => [[[.,.],.],[[.,[.,.]],[.,[.,.]]]]
[(1,7),(2,3),(4,6),(5,8)] => [7,3,2,6,8,4,1,5] => [3,2,6,4,7,1,8,5] => [[[.,.],.],[[.,[.,.]],[.,[.,.]]]]
[(1,6),(2,3),(4,7),(5,8)] => [6,3,2,7,8,1,4,5] => [3,2,6,1,7,4,8,5] => [[[.,.],.],[[.,[.,.]],[.,[.,.]]]]
[(1,5),(2,3),(4,7),(6,8)] => [5,3,2,7,1,8,4,6] => [3,2,5,1,7,4,8,6] => [[[.,.],.],[[.,.],[[.,.],[.,.]]]]
[(1,4),(2,3),(5,7),(6,8)] => [4,3,2,1,7,8,5,6] => [3,2,4,1,7,5,8,6] => [[[.,.],.],[.,[[.,[.,.]],[.,.]]]]
[(1,3),(2,4),(5,7),(6,8)] => [3,4,1,2,7,8,5,6] => [3,1,4,2,7,5,8,6] => [[.,[.,.]],[.,[[.,[.,.]],[.,.]]]]
[(1,2),(3,4),(5,7),(6,8)] => [2,1,4,3,7,8,5,6] => [2,1,4,3,7,5,8,6] => [[.,.],[[.,.],[[.,[.,.]],[.,.]]]]
[(1,2),(3,4),(5,8),(6,7)] => [2,1,4,3,8,7,6,5] => [2,1,4,3,7,6,8,5] => [[.,.],[[.,.],[[[.,.],.],[.,.]]]]
[(1,3),(2,4),(5,8),(6,7)] => [3,4,1,2,8,7,6,5] => [3,1,4,2,7,6,8,5] => [[.,[.,.]],[.,[[[.,.],.],[.,.]]]]
[(1,4),(2,3),(5,8),(6,7)] => [4,3,2,1,8,7,6,5] => [3,2,4,1,7,6,8,5] => [[[.,.],.],[.,[[[.,.],.],[.,.]]]]
[(1,5),(2,3),(4,8),(6,7)] => [5,3,2,8,1,7,6,4] => [3,2,5,1,7,6,8,4] => [[[.,.],.],[[.,.],[[.,.],[.,.]]]]
[(1,6),(2,3),(4,8),(5,7)] => [6,3,2,8,7,1,5,4] => [3,2,6,1,7,5,8,4] => [[[.,.],.],[[[.,.],.],[.,[.,.]]]]
[(1,7),(2,3),(4,8),(5,6)] => [7,3,2,8,6,5,1,4] => [3,2,6,5,7,1,8,4] => [[[.,.],.],[[[.,.],.],[.,[.,.]]]]
[(1,8),(2,3),(4,7),(5,6)] => [8,3,2,7,6,5,4,1] => [3,2,6,5,7,4,8,1] => [[[.,.],.],[[[.,.],.],[.,[.,.]]]]
[(1,8),(2,4),(3,7),(5,6)] => [8,4,7,2,6,5,3,1] => [4,2,6,5,7,3,8,1] => [[[.,.],[.,.]],[[.,.],[.,[.,.]]]]
[(1,7),(2,4),(3,8),(5,6)] => [7,4,8,2,6,5,1,3] => [4,2,6,5,7,1,8,3] => [[[.,.],[.,.]],[[.,.],[.,[.,.]]]]
[(1,6),(2,4),(3,8),(5,7)] => [6,4,8,2,7,1,5,3] => [4,2,6,1,7,5,8,3] => [[[.,.],[.,.]],[[.,.],[.,[.,.]]]]
[(1,5),(2,4),(3,8),(6,7)] => [5,4,8,2,1,7,6,3] => [4,2,5,1,7,6,8,3] => [[[.,.],[.,.]],[.,[[.,.],[.,.]]]]
[(1,4),(2,5),(3,8),(6,7)] => [4,5,8,1,2,7,6,3] => [4,1,5,2,7,6,8,3] => [[.,[.,[.,.]]],[.,[[.,.],[.,.]]]]
>>> Load all 140 entries. <<<
[(1,3),(2,5),(4,8),(6,7)] => [3,5,1,8,2,7,6,4] => [3,1,5,2,7,6,8,4] => [[.,[.,.]],[[.,.],[[.,.],[.,.]]]]
[(1,2),(3,5),(4,8),(6,7)] => [2,1,5,8,3,7,6,4] => [2,1,5,3,7,6,8,4] => [[.,.],[[.,[.,.]],[[.,.],[.,.]]]]
[(1,2),(3,6),(4,8),(5,7)] => [2,1,6,8,7,3,5,4] => [2,1,6,3,7,5,8,4] => [[.,.],[[.,[[.,.],.]],[.,[.,.]]]]
[(1,3),(2,6),(4,8),(5,7)] => [3,6,1,8,7,2,5,4] => [3,1,6,2,7,5,8,4] => [[.,[.,.]],[[[.,.],.],[.,[.,.]]]]
[(1,4),(2,6),(3,8),(5,7)] => [4,6,8,1,7,2,5,3] => [4,1,6,2,7,5,8,3] => [[.,[.,[.,.]]],[[.,.],[.,[.,.]]]]
[(1,5),(2,6),(3,8),(4,7)] => [5,6,8,7,1,2,4,3] => [5,1,6,2,7,4,8,3] => [[.,[.,[[.,.],.]]],[.,[.,[.,.]]]]
[(1,6),(2,5),(3,8),(4,7)] => [6,5,8,7,2,1,4,3] => [5,2,6,1,7,4,8,3] => [[[.,.],[[.,.],.]],[.,[.,[.,.]]]]
[(1,7),(2,5),(3,8),(4,6)] => [7,5,8,6,2,4,1,3] => [5,2,6,4,7,1,8,3] => [[[.,.],[[.,.],.]],[.,[.,[.,.]]]]
[(1,8),(2,5),(3,7),(4,6)] => [8,5,7,6,2,4,3,1] => [5,2,6,4,7,3,8,1] => [[[.,.],[[.,.],.]],[.,[.,[.,.]]]]
[(1,8),(2,6),(3,7),(4,5)] => [8,6,7,5,4,2,3,1] => [5,4,6,2,7,3,8,1] => [[[[.,.],[.,.]],.],[.,[.,[.,.]]]]
[(1,7),(2,6),(3,8),(4,5)] => [7,6,8,5,4,2,1,3] => [5,4,6,2,7,1,8,3] => [[[[.,.],[.,.]],.],[.,[.,[.,.]]]]
[(1,6),(2,7),(3,8),(4,5)] => [6,7,8,5,4,1,2,3] => [5,4,6,1,7,2,8,3] => [[[.,[.,[.,.]]],.],[.,[.,[.,.]]]]
[(1,5),(2,7),(3,8),(4,6)] => [5,7,8,6,1,4,2,3] => [5,1,6,4,7,2,8,3] => [[.,[[.,[.,.]],.]],[.,[.,[.,.]]]]
[(1,4),(2,7),(3,8),(5,6)] => [4,7,8,1,6,5,2,3] => [4,1,6,5,7,2,8,3] => [[.,[.,[.,.]]],[[.,.],[.,[.,.]]]]
[(1,3),(2,7),(4,8),(5,6)] => [3,7,1,8,6,5,2,4] => [3,1,6,5,7,2,8,4] => [[.,[.,.]],[[[.,.],.],[.,[.,.]]]]
[(1,2),(3,7),(4,8),(5,6)] => [2,1,7,8,6,5,3,4] => [2,1,6,5,7,3,8,4] => [[.,.],[[[.,[.,.]],.],[.,[.,.]]]]
[(1,2),(3,8),(4,7),(5,6)] => [2,1,8,7,6,5,4,3] => [2,1,6,5,7,4,8,3] => [[.,.],[[[[.,.],.],.],[.,[.,.]]]]
[(1,3),(2,8),(4,7),(5,6)] => [3,8,1,7,6,5,4,2] => [3,1,6,5,7,4,8,2] => [[.,[.,.]],[[[.,.],.],[.,[.,.]]]]
[(1,4),(2,8),(3,7),(5,6)] => [4,8,7,1,6,5,3,2] => [4,1,6,5,7,3,8,2] => [[.,[[.,.],.]],[[.,.],[.,[.,.]]]]
[(1,5),(2,8),(3,7),(4,6)] => [5,8,7,6,1,4,3,2] => [5,1,6,4,7,3,8,2] => [[.,[[[.,.],.],.]],[.,[.,[.,.]]]]
[(1,6),(2,8),(3,7),(4,5)] => [6,8,7,5,4,1,3,2] => [5,4,6,1,7,3,8,2] => [[[.,[[.,.],.]],.],[.,[.,[.,.]]]]
[(1,7),(2,8),(3,6),(4,5)] => [7,8,6,5,4,3,1,2] => [5,4,6,3,7,1,8,2] => [[[[.,[.,.]],.],.],[.,[.,[.,.]]]]
[(1,8),(2,7),(3,6),(4,5)] => [8,7,6,5,4,3,2,1] => [5,4,6,3,7,2,8,1] => [[[[[.,.],.],.],.],[.,[.,[.,.]]]]
[(1,2),(3,4),(5,6),(7,8),(9,10)] => [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => [[.,.],[[.,.],[[.,.],[[.,.],[[.,.],.]]]]]
[(1,3),(2,4),(5,6),(7,8),(9,10)] => [3,4,1,2,6,5,8,7,10,9] => [3,1,4,2,6,5,8,7,10,9] => [[.,[.,.]],[.,[[.,.],[[.,.],[[.,.],.]]]]]
[(1,4),(2,3),(5,6),(7,8),(9,10)] => [4,3,2,1,6,5,8,7,10,9] => [3,2,4,1,6,5,8,7,10,9] => [[[.,.],.],[.,[[.,.],[[.,.],[[.,.],.]]]]]
[(1,10),(2,3),(4,5),(6,7),(8,9)] => [10,3,2,5,4,7,6,9,8,1] => [3,2,5,4,7,6,9,8,10,1] => [[[.,.],.],[[.,.],[[.,.],[[.,.],[.,.]]]]]
[(1,4),(2,5),(3,6),(7,8),(9,10)] => [4,5,6,1,2,3,8,7,10,9] => [4,1,5,2,6,3,8,7,10,9] => [[.,[.,[.,.]]],[.,[.,[[.,.],[[.,.],.]]]]]
[(1,8),(2,9),(3,5),(4,6),(7,10)] => [8,9,5,6,3,4,10,1,2,7] => [5,3,6,4,8,1,9,2,10,7] => [[[.,[.,.]],[.,.]],[.,[[.,.],[.,[.,.]]]]]
[(1,5),(2,6),(3,7),(4,8),(9,10)] => [5,6,7,8,1,2,3,4,10,9] => [5,1,6,2,7,3,8,4,10,9] => [[.,[.,[.,[.,.]]]],[.,[.,[.,[[.,.],.]]]]]
[(1,9),(2,7),(3,6),(4,5),(8,10)] => [9,7,6,5,4,3,2,10,1,8] => [5,4,6,3,7,2,9,1,10,8] => [[[[[.,.],.],.],.],[.,[.,[[.,.],[.,.]]]]]
[(1,6),(2,7),(3,8),(4,9),(5,10)] => [6,7,8,9,10,1,2,3,4,5] => [6,1,7,2,8,3,9,4,10,5] => [[.,[.,[.,[.,[.,.]]]]],[.,[.,[.,[.,.]]]]]
[(1,7),(2,3),(4,8),(5,9),(6,10)] => [7,3,2,8,9,10,1,4,5,6] => [3,2,7,1,8,4,9,5,10,6] => [[[.,.],.],[[.,[.,[.,.]]],[.,[.,[.,.]]]]]
[(1,8),(2,5),(3,4),(6,9),(7,10)] => [8,5,4,3,2,9,10,1,6,7] => [4,3,5,2,8,1,9,6,10,7] => [[[[.,.],.],.],[.,[[.,[.,.]],[.,[.,.]]]]]
[(1,9),(2,7),(3,5),(4,10),(6,8)] => [9,7,5,10,3,8,2,6,1,4] => [5,3,7,2,8,6,9,1,10,4] => [[[[.,.],.],[.,.]],[[.,.],[.,[.,[.,.]]]]]
[(1,10),(2,9),(3,8),(4,7),(5,6)] => [10,9,8,7,6,5,4,3,2,1] => [6,5,7,4,8,3,9,2,10,1] => [[[[[[.,.],.],.],.],.],[.,[.,[.,[.,.]]]]]
[(1,12),(2,3),(4,5),(6,7),(8,9),(10,11)] => [12,3,2,5,4,7,6,9,8,11,10,1] => [3,2,5,4,7,6,9,8,11,10,12,1] => [[[.,.],.],[[.,.],[[.,.],[[.,.],[[.,.],[.,.]]]]]]
[(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => [2,1,4,3,6,5,8,7,10,9,12,11] => [2,1,4,3,6,5,8,7,10,9,12,11] => [[.,.],[[.,.],[[.,.],[[.,.],[[.,.],[[.,.],.]]]]]]
[(1,7),(2,8),(3,9),(4,10),(5,11),(6,12)] => [7,8,9,10,11,12,1,2,3,4,5,6] => [7,1,8,2,9,3,10,4,11,5,12,6] => [[.,[.,[.,[.,[.,[.,.]]]]]],[.,[.,[.,[.,[.,.]]]]]]
Map
to permutation
Description
Returns the fixed point free involution whose transpositions are the pairs in the perfect matching.
Map
inverse first fundamental transformation
Description
Let $\sigma = (i_{11}\cdots i_{1k_1})\cdots(i_{\ell 1}\cdots i_{\ell k_\ell})$ be a permutation given by cycle notation such that every cycle starts with its maximal entry, and all cycles are ordered increasingly by these maximal entries.
Maps $\sigma$ to the permutation $[i_{11},\ldots,i_{1k_1},\ldots,i_{\ell 1},\ldots,i_{\ell k_\ell}]$ in one-line notation.
In other words, this map sends the maximal entries of the cycles to the left-to-right maxima, and the sequences between two left-to-right maxima are given by the cycles.
Map
binary search tree: left to right
Description
Return the shape of the binary search tree of the permutation as a non labelled binary tree.