Processing math: 100%

Identifier
Mp00001: Alternating sign matrices to semistandard tableau via monotone trianglesSemistandard tableaux
Mp00075: Semistandard tableaux reading word permutationPermutations
Mp00088: Permutations Kreweras complementPermutations
Mp00114: Permutations connectivity setBinary words
Images
[[1]] => [[1]] => [1] => [1] =>
[[1,0],[0,1]] => [[1,1],[2]] => [3,1,2] => [3,1,2] => 00
[[0,1],[1,0]] => [[1,2],[2]] => [2,1,3] => [3,2,1] => 00
[[1,0,0],[0,1,0],[0,0,1]] => [[1,1,1],[2,2],[3]] => [6,4,5,1,2,3] => [5,6,1,3,4,2] => 00000
[[0,1,0],[1,0,0],[0,0,1]] => [[1,1,2],[2,2],[3]] => [6,3,4,1,2,5] => [5,6,3,4,1,2] => 00000
[[1,0,0],[0,0,1],[0,1,0]] => [[1,1,1],[2,3],[3]] => [5,4,6,1,2,3] => [5,6,1,3,2,4] => 00000
[[0,1,0],[1,-1,1],[0,1,0]] => [[1,1,2],[2,3],[3]] => [5,3,6,1,2,4] => [5,6,3,1,2,4] => 00000
[[0,0,1],[1,0,0],[0,1,0]] => [[1,1,3],[2,3],[3]] => [4,3,5,1,2,6] => [5,6,3,2,4,1] => 00000
[[0,1,0],[0,0,1],[1,0,0]] => [[1,2,2],[2,3],[3]] => [5,2,6,1,3,4] => [5,3,6,1,2,4] => 00000
[[0,0,1],[0,1,0],[1,0,0]] => [[1,2,3],[2,3],[3]] => [4,2,5,1,3,6] => [5,3,6,2,4,1] => 00000
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]] => [[1,1,1,1],[2,2,2],[3,3],[4]] => [10,8,9,5,6,7,1,2,3,4] => [8,9,10,1,5,6,7,3,4,2] => 000000000
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]] => [[1,1,1,2],[2,2,2],[3,3],[4]] => [10,8,9,4,5,6,1,2,3,7] => [8,9,10,5,6,7,1,3,4,2] => 000000000
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]] => [[1,1,1,1],[2,2,3],[3,3],[4]] => [10,7,8,5,6,9,1,2,3,4] => [8,9,10,1,5,6,3,4,7,2] => 000000000
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]] => [[1,1,1,2],[2,2,3],[3,3],[4]] => [10,7,8,4,5,9,1,2,3,6] => [8,9,10,5,6,1,3,4,7,2] => 000000000
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]] => [[1,1,1,3],[2,2,3],[3,3],[4]] => [10,6,7,4,5,8,1,2,3,9] => [8,9,10,5,6,3,4,7,1,2] => 000000000
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]] => [[1,1,2,2],[2,2,3],[3,3],[4]] => [10,7,8,3,4,9,1,2,5,6] => [8,9,5,6,10,1,3,4,7,2] => 000000000
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]] => [[1,1,2,3],[2,2,3],[3,3],[4]] => [10,6,7,3,4,8,1,2,5,9] => [8,9,5,6,10,3,4,7,1,2] => 000000000
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]] => [[1,1,1,1],[2,2,2],[3,4],[4]] => [9,8,10,5,6,7,1,2,3,4] => [8,9,10,1,5,6,7,3,2,4] => 000000000
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]] => [[1,1,1,2],[2,2,2],[3,4],[4]] => [9,8,10,4,5,6,1,2,3,7] => [8,9,10,5,6,7,1,3,2,4] => 000000000
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]] => [[1,1,1,1],[2,2,3],[3,4],[4]] => [9,7,10,5,6,8,1,2,3,4] => [8,9,10,1,5,6,3,7,2,4] => 000000000
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]] => [[1,1,1,2],[2,2,3],[3,4],[4]] => [9,7,10,4,5,8,1,2,3,6] => [8,9,10,5,6,1,3,7,2,4] => 000000000
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]] => [[1,1,1,3],[2,2,3],[3,4],[4]] => [9,6,10,4,5,7,1,2,3,8] => [8,9,10,5,6,3,7,1,2,4] => 000000000
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]] => [[1,1,2,2],[2,2,3],[3,4],[4]] => [9,7,10,3,4,8,1,2,5,6] => [8,9,5,6,10,1,3,7,2,4] => 000000000
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]] => [[1,1,2,3],[2,2,3],[3,4],[4]] => [9,6,10,3,4,7,1,2,5,8] => [8,9,5,6,10,3,7,1,2,4] => 000000000
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]] => [[1,1,1,1],[2,2,4],[3,4],[4]] => [8,7,9,5,6,10,1,2,3,4] => [8,9,10,1,5,6,3,2,4,7] => 000000000
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]] => [[1,1,1,2],[2,2,4],[3,4],[4]] => [8,7,9,4,5,10,1,2,3,6] => [8,9,10,5,6,1,3,2,4,7] => 000000000
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]] => [[1,1,1,3],[2,2,4],[3,4],[4]] => [8,6,9,4,5,10,1,2,3,7] => [8,9,10,5,6,3,1,2,4,7] => 000000000
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]] => [[1,1,1,4],[2,2,4],[3,4],[4]] => [7,6,8,4,5,9,1,2,3,10] => [8,9,10,5,6,3,2,4,7,1] => 000000000
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]] => [[1,1,2,2],[2,2,4],[3,4],[4]] => [8,7,9,3,4,10,1,2,5,6] => [8,9,5,6,10,1,3,2,4,7] => 000000000
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]] => [[1,1,2,3],[2,2,4],[3,4],[4]] => [8,6,9,3,4,10,1,2,5,7] => [8,9,5,6,10,3,1,2,4,7] => 000000000
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]] => [[1,1,2,4],[2,2,4],[3,4],[4]] => [7,6,8,3,4,9,1,2,5,10] => [8,9,5,6,10,3,2,4,7,1] => 000000000
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]] => [[1,1,1,1],[2,3,3],[3,4],[4]] => [9,6,10,5,7,8,1,2,3,4] => [8,9,10,1,5,3,6,7,2,4] => 000000000
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]] => [[1,1,1,2],[2,3,3],[3,4],[4]] => [9,6,10,4,7,8,1,2,3,5] => [8,9,10,5,1,3,6,7,2,4] => 000000000
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]] => [[1,1,1,3],[2,3,3],[3,4],[4]] => [9,5,10,4,6,7,1,2,3,8] => [8,9,10,5,3,6,7,1,2,4] => 000000000
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]] => [[1,1,2,2],[2,3,3],[3,4],[4]] => [9,6,10,3,7,8,1,2,4,5] => [8,9,5,10,1,3,6,7,2,4] => 000000000
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]] => [[1,1,2,3],[2,3,3],[3,4],[4]] => [9,5,10,3,6,7,1,2,4,8] => [8,9,5,10,3,6,7,1,2,4] => 000000000
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]] => [[1,1,1,1],[2,3,4],[3,4],[4]] => [8,6,9,5,7,10,1,2,3,4] => [8,9,10,1,5,3,6,2,4,7] => 000000000
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]] => [[1,1,1,2],[2,3,4],[3,4],[4]] => [8,6,9,4,7,10,1,2,3,5] => [8,9,10,5,1,3,6,2,4,7] => 000000000
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]] => [[1,1,1,3],[2,3,4],[3,4],[4]] => [8,5,9,4,6,10,1,2,3,7] => [8,9,10,5,3,6,1,2,4,7] => 000000000
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]] => [[1,1,1,4],[2,3,4],[3,4],[4]] => [7,5,8,4,6,9,1,2,3,10] => [8,9,10,5,3,6,2,4,7,1] => 000000000
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]] => [[1,1,2,2],[2,3,4],[3,4],[4]] => [8,6,9,3,7,10,1,2,4,5] => [8,9,5,10,1,3,6,2,4,7] => 000000000
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]] => [[1,1,2,3],[2,3,4],[3,4],[4]] => [8,5,9,3,6,10,1,2,4,7] => [8,9,5,10,3,6,1,2,4,7] => 000000000
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]] => [[1,1,2,4],[2,3,4],[3,4],[4]] => [7,5,8,3,6,9,1,2,4,10] => [8,9,5,10,3,6,2,4,7,1] => 000000000
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]] => [[1,1,3,3],[2,3,4],[3,4],[4]] => [8,4,9,3,5,10,1,2,6,7] => [8,9,5,3,6,10,1,2,4,7] => 000000000
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]] => [[1,1,3,4],[2,3,4],[3,4],[4]] => [7,4,8,3,5,9,1,2,6,10] => [8,9,5,3,6,10,2,4,7,1] => 000000000
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]] => [[1,2,2,2],[2,3,3],[3,4],[4]] => [9,6,10,2,7,8,1,3,4,5] => [8,5,9,10,1,3,6,7,2,4] => 000000000
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]] => [[1,2,2,3],[2,3,3],[3,4],[4]] => [9,5,10,2,6,7,1,3,4,8] => [8,5,9,10,3,6,7,1,2,4] => 000000000
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]] => [[1,2,2,2],[2,3,4],[3,4],[4]] => [8,6,9,2,7,10,1,3,4,5] => [8,5,9,10,1,3,6,2,4,7] => 000000000
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]] => [[1,2,2,3],[2,3,4],[3,4],[4]] => [8,5,9,2,6,10,1,3,4,7] => [8,5,9,10,3,6,1,2,4,7] => 000000000
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]] => [[1,2,2,4],[2,3,4],[3,4],[4]] => [7,5,8,2,6,9,1,3,4,10] => [8,5,9,10,3,6,2,4,7,1] => 000000000
[[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]] => [[1,2,3,3],[2,3,4],[3,4],[4]] => [8,4,9,2,5,10,1,3,6,7] => [8,5,9,3,6,10,1,2,4,7] => 000000000
[[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]] => [[1,2,3,4],[2,3,4],[3,4],[4]] => [7,4,8,2,5,9,1,3,6,10] => [8,5,9,3,6,10,2,4,7,1] => 000000000
Map
to semistandard tableau via monotone triangles
Description
The semistandard tableau corresponding the monotone triangle of an alternating sign matrix.
This is obtained by interpreting each row of the monotone triangle as an integer partition, and filling the cells of the smallest partition with ones, the second smallest with twos, and so on.
Map
reading word permutation
Description
Return the permutation obtained by reading the entries of the tableau row by row, starting with the bottommost row (in English notation).
Map
Kreweras complement
Description
Sends the permutation πSn to the permutation π1c where c=(1,,n) is the long cycle.
Map
connectivity set
Description
The connectivity set of a permutation as a binary word.
According to [2], also known as the global ascent set.
The connectivity set is
C(π)={i[n1]|1ji<kn:π(j)<π(k)}.
For n>1 it can also be described as the set of occurrences of the mesh pattern
([1,2],{(0,2),(1,0),(1,1),(2,0),(2,1)})
or equivalently
([1,2],{(0,1),(0,2),(1,1),(1,2),(2,0)}),
see [3].
The permutation is connected, when the connectivity set is empty.