Identifier
Mp00044:
Integer partitions
—conjugate⟶
Integer partitions
Mp00179: Integer partitions —to skew partition⟶ Skew partitions
Mp00185: Skew partitions —cell poset⟶ Posets
Mp00179: Integer partitions —to skew partition⟶ Skew partitions
Mp00185: Skew partitions —cell poset⟶ Posets
Images
[1] => [1] => [[1],[]] => ([],1)
[2] => [1,1] => [[1,1],[]] => ([(0,1)],2)
[1,1] => [2] => [[2],[]] => ([(0,1)],2)
[3] => [1,1,1] => [[1,1,1],[]] => ([(0,2),(2,1)],3)
[2,1] => [2,1] => [[2,1],[]] => ([(0,1),(0,2)],3)
[1,1,1] => [3] => [[3],[]] => ([(0,2),(2,1)],3)
[4] => [1,1,1,1] => [[1,1,1,1],[]] => ([(0,3),(2,1),(3,2)],4)
[3,1] => [2,1,1] => [[2,1,1],[]] => ([(0,2),(0,3),(3,1)],4)
[2,2] => [2,2] => [[2,2],[]] => ([(0,1),(0,2),(1,3),(2,3)],4)
[2,1,1] => [3,1] => [[3,1],[]] => ([(0,2),(0,3),(3,1)],4)
[1,1,1,1] => [4] => [[4],[]] => ([(0,3),(2,1),(3,2)],4)
[5] => [1,1,1,1,1] => [[1,1,1,1,1],[]] => ([(0,4),(2,3),(3,1),(4,2)],5)
[4,1] => [2,1,1,1] => [[2,1,1,1],[]] => ([(0,2),(0,4),(3,1),(4,3)],5)
[3,2] => [2,2,1] => [[2,2,1],[]] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
[3,1,1] => [3,1,1] => [[3,1,1],[]] => ([(0,3),(0,4),(3,2),(4,1)],5)
[2,2,1] => [3,2] => [[3,2],[]] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
[2,1,1,1] => [4,1] => [[4,1],[]] => ([(0,2),(0,4),(3,1),(4,3)],5)
[1,1,1,1,1] => [5] => [[5],[]] => ([(0,4),(2,3),(3,1),(4,2)],5)
[6] => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
[5,1] => [2,1,1,1,1] => [[2,1,1,1,1],[]] => ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
[4,2] => [2,2,1,1] => [[2,2,1,1],[]] => ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
[4,1,1] => [3,1,1,1] => [[3,1,1,1],[]] => ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
[3,3] => [2,2,2] => [[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
[3,2,1] => [3,2,1] => [[3,2,1],[]] => ([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6)
[3,1,1,1] => [4,1,1] => [[4,1,1],[]] => ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
[2,2,2] => [3,3] => [[3,3],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
[2,2,1,1] => [4,2] => [[4,2],[]] => ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
[2,1,1,1,1] => [5,1] => [[5,1],[]] => ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
[1,1,1,1,1,1] => [6] => [[6],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
[7] => [1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1],[]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
[6,1] => [2,1,1,1,1,1] => [[2,1,1,1,1,1],[]] => ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7)
[5,2] => [2,2,1,1,1] => [[2,2,1,1,1],[]] => ([(0,2),(0,5),(2,6),(3,4),(4,1),(5,3),(5,6)],7)
[5,1,1] => [3,1,1,1,1] => [[3,1,1,1,1],[]] => ([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7)
[4,3] => [2,2,2,1] => [[2,2,2,1],[]] => ([(0,2),(0,4),(2,5),(3,1),(3,6),(4,3),(4,5),(5,6)],7)
[4,2,1] => [3,2,1,1] => [[3,2,1,1],[]] => ([(0,4),(0,5),(3,2),(4,3),(4,6),(5,1),(5,6)],7)
[4,1,1,1] => [4,1,1,1] => [[4,1,1,1],[]] => ([(0,5),(0,6),(3,2),(4,1),(5,3),(6,4)],7)
[3,3,1] => [3,2,2] => [[3,2,2],[]] => ([(0,3),(0,4),(2,6),(3,1),(3,5),(4,2),(4,5),(5,6)],7)
[3,2,2] => [3,3,1] => [[3,3,1],[]] => ([(0,3),(0,4),(2,6),(3,1),(3,5),(4,2),(4,5),(5,6)],7)
[3,2,1,1] => [4,2,1] => [[4,2,1],[]] => ([(0,4),(0,5),(3,2),(4,3),(4,6),(5,1),(5,6)],7)
[3,1,1,1,1] => [5,1,1] => [[5,1,1],[]] => ([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7)
[2,2,2,1] => [4,3] => [[4,3],[]] => ([(0,2),(0,4),(2,5),(3,1),(3,6),(4,3),(4,5),(5,6)],7)
[2,2,1,1,1] => [5,2] => [[5,2],[]] => ([(0,2),(0,5),(2,6),(3,4),(4,1),(5,3),(5,6)],7)
[2,1,1,1,1,1] => [6,1] => [[6,1],[]] => ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7)
[1,1,1,1,1,1,1] => [7] => [[7],[]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
[8] => [1,1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1,1],[]] => ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
[7,1] => [2,1,1,1,1,1,1] => [[2,1,1,1,1,1,1],[]] => ([(0,2),(0,7),(3,4),(4,6),(5,3),(6,1),(7,5)],8)
[6,2] => [2,2,1,1,1,1] => [[2,2,1,1,1,1],[]] => ([(0,2),(0,6),(2,7),(3,5),(4,3),(5,1),(6,4),(6,7)],8)
[6,1,1] => [3,1,1,1,1,1] => [[3,1,1,1,1,1],[]] => ([(0,6),(0,7),(3,5),(4,3),(5,2),(6,4),(7,1)],8)
[5,3] => [2,2,2,1,1] => [[2,2,2,1,1],[]] => ([(0,2),(0,5),(2,6),(3,4),(3,7),(4,1),(5,3),(5,6),(6,7)],8)
[5,2,1] => [3,2,1,1,1] => [[3,2,1,1,1],[]] => ([(0,5),(0,6),(3,4),(4,2),(5,3),(5,7),(6,1),(6,7)],8)
[5,1,1,1] => [4,1,1,1,1] => [[4,1,1,1,1],[]] => ([(0,6),(0,7),(3,4),(4,1),(5,2),(6,5),(7,3)],8)
[4,4] => [2,2,2,2] => [[2,2,2,2],[]] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
[4,3,1] => [3,2,2,1] => [[3,2,2,1],[]] => ([(0,4),(0,5),(3,2),(3,7),(4,3),(4,6),(5,1),(5,6),(6,7)],8)
[4,2,2] => [3,3,1,1] => [[3,3,1,1],[]] => ([(0,4),(0,5),(1,7),(3,2),(4,3),(4,6),(5,1),(5,6),(6,7)],8)
[4,2,1,1] => [4,2,1,1] => [[4,2,1,1],[]] => ([(0,5),(0,6),(3,2),(4,1),(5,3),(5,7),(6,4),(6,7)],8)
[4,1,1,1,1] => [5,1,1,1] => [[5,1,1,1],[]] => ([(0,6),(0,7),(3,4),(4,1),(5,2),(6,5),(7,3)],8)
[3,3,2] => [3,3,2] => [[3,3,2],[]] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7)],8)
[3,3,1,1] => [4,2,2] => [[4,2,2],[]] => ([(0,4),(0,5),(1,7),(3,2),(4,3),(4,6),(5,1),(5,6),(6,7)],8)
[3,2,2,1] => [4,3,1] => [[4,3,1],[]] => ([(0,4),(0,5),(3,2),(3,7),(4,3),(4,6),(5,1),(5,6),(6,7)],8)
[3,2,1,1,1] => [5,2,1] => [[5,2,1],[]] => ([(0,5),(0,6),(3,4),(4,2),(5,3),(5,7),(6,1),(6,7)],8)
[3,1,1,1,1,1] => [6,1,1] => [[6,1,1],[]] => ([(0,6),(0,7),(3,5),(4,3),(5,2),(6,4),(7,1)],8)
[2,2,2,2] => [4,4] => [[4,4],[]] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
[2,2,2,1,1] => [5,3] => [[5,3],[]] => ([(0,2),(0,5),(2,6),(3,4),(3,7),(4,1),(5,3),(5,6),(6,7)],8)
[2,2,1,1,1,1] => [6,2] => [[6,2],[]] => ([(0,2),(0,6),(2,7),(3,5),(4,3),(5,1),(6,4),(6,7)],8)
[2,1,1,1,1,1,1] => [7,1] => [[7,1],[]] => ([(0,2),(0,7),(3,4),(4,6),(5,3),(6,1),(7,5)],8)
[1,1,1,1,1,1,1,1] => [8] => [[8],[]] => ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
[9] => [1,1,1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1,1,1],[]] => ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
[8,1] => [2,1,1,1,1,1,1,1] => [[2,1,1,1,1,1,1,1],[]] => ([(0,2),(0,8),(3,5),(4,3),(5,7),(6,4),(7,1),(8,6)],9)
[7,2] => [2,2,1,1,1,1,1] => [[2,2,1,1,1,1,1],[]] => ([(0,2),(0,7),(2,8),(3,4),(4,6),(5,3),(6,1),(7,5),(7,8)],9)
[7,1,1] => [3,1,1,1,1,1,1] => [[3,1,1,1,1,1,1],[]] => ([(0,7),(0,8),(3,4),(4,6),(5,3),(6,2),(7,5),(8,1)],9)
[6,3] => [2,2,2,1,1,1] => [[2,2,2,1,1,1],[]] => ([(0,2),(0,6),(2,7),(3,5),(4,3),(4,8),(5,1),(6,4),(6,7),(7,8)],9)
[6,2,1] => [3,2,1,1,1,1] => [[3,2,1,1,1,1],[]] => ([(0,6),(0,7),(3,5),(4,3),(5,2),(6,4),(6,8),(7,1),(7,8)],9)
[6,1,1,1] => [4,1,1,1,1,1] => [[4,1,1,1,1,1],[]] => ([(0,7),(0,8),(3,5),(4,3),(5,2),(6,1),(7,6),(8,4)],9)
[5,4] => [2,2,2,2,1] => [[2,2,2,2,1],[]] => ([(0,2),(0,5),(2,6),(3,4),(3,8),(4,1),(4,7),(5,3),(5,6),(6,8),(8,7)],9)
[5,3,1] => [3,2,2,1,1] => [[3,2,2,1,1],[]] => ([(0,5),(0,6),(3,4),(3,8),(4,2),(5,3),(5,7),(6,1),(6,7),(7,8)],9)
[5,2,2] => [3,3,1,1,1] => [[3,3,1,1,1],[]] => ([(0,5),(0,6),(2,8),(3,4),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8)],9)
[5,2,1,1] => [4,2,1,1,1] => [[4,2,1,1,1],[]] => ([(0,6),(0,7),(3,4),(4,1),(5,2),(6,5),(6,8),(7,3),(7,8)],9)
[5,1,1,1,1] => [5,1,1,1,1] => [[5,1,1,1,1],[]] => ([(0,7),(0,8),(3,5),(4,6),(5,2),(6,1),(7,3),(8,4)],9)
[4,4,1] => [3,2,2,2] => [[3,2,2,2],[]] => ([(0,4),(0,5),(2,7),(3,2),(3,8),(4,3),(4,6),(5,1),(5,6),(6,8),(8,7)],9)
[4,3,2] => [3,3,2,1] => [[3,3,2,1],[]] => ([(0,4),(0,5),(2,7),(3,1),(3,8),(4,2),(4,6),(5,3),(5,6),(6,7),(6,8)],9)
[4,3,1,1] => [4,2,2,1] => [[4,2,2,1],[]] => ([(0,5),(0,6),(3,1),(4,2),(4,8),(5,3),(5,7),(6,4),(6,7),(7,8)],9)
[4,2,2,1] => [4,3,1,1] => [[4,3,1,1],[]] => ([(0,5),(0,6),(3,1),(4,2),(4,8),(5,3),(5,7),(6,4),(6,7),(7,8)],9)
[4,2,1,1,1] => [5,2,1,1] => [[5,2,1,1],[]] => ([(0,6),(0,7),(3,4),(4,1),(5,2),(6,5),(6,8),(7,3),(7,8)],9)
[4,1,1,1,1,1] => [6,1,1,1] => [[6,1,1,1],[]] => ([(0,7),(0,8),(3,5),(4,3),(5,2),(6,1),(7,6),(8,4)],9)
[3,3,3] => [3,3,3] => [[3,3,3],[]] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
[3,3,2,1] => [4,3,2] => [[4,3,2],[]] => ([(0,4),(0,5),(2,7),(3,1),(3,8),(4,2),(4,6),(5,3),(5,6),(6,7),(6,8)],9)
[3,3,1,1,1] => [5,2,2] => [[5,2,2],[]] => ([(0,5),(0,6),(2,8),(3,4),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8)],9)
[3,2,2,2] => [4,4,1] => [[4,4,1],[]] => ([(0,4),(0,5),(2,7),(3,2),(3,8),(4,3),(4,6),(5,1),(5,6),(6,8),(8,7)],9)
[3,2,2,1,1] => [5,3,1] => [[5,3,1],[]] => ([(0,5),(0,6),(3,4),(3,8),(4,2),(5,3),(5,7),(6,1),(6,7),(7,8)],9)
[3,2,1,1,1,1] => [6,2,1] => [[6,2,1],[]] => ([(0,6),(0,7),(3,5),(4,3),(5,2),(6,4),(6,8),(7,1),(7,8)],9)
[3,1,1,1,1,1,1] => [7,1,1] => [[7,1,1],[]] => ([(0,7),(0,8),(3,4),(4,6),(5,3),(6,2),(7,5),(8,1)],9)
[2,2,2,2,1] => [5,4] => [[5,4],[]] => ([(0,2),(0,5),(2,6),(3,4),(3,8),(4,1),(4,7),(5,3),(5,6),(6,8),(8,7)],9)
[2,2,2,1,1,1] => [6,3] => [[6,3],[]] => ([(0,2),(0,6),(2,7),(3,5),(4,3),(4,8),(5,1),(6,4),(6,7),(7,8)],9)
[2,2,1,1,1,1,1] => [7,2] => [[7,2],[]] => ([(0,2),(0,7),(2,8),(3,4),(4,6),(5,3),(6,1),(7,5),(7,8)],9)
[2,1,1,1,1,1,1,1] => [8,1] => [[8,1],[]] => ([(0,2),(0,8),(3,5),(4,3),(5,7),(6,4),(7,1),(8,6)],9)
[1,1,1,1,1,1,1,1,1] => [9] => [[9],[]] => ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
[10] => [1,1,1,1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1,1,1,1],[]] => ([(0,9),(2,4),(3,2),(4,6),(5,3),(6,8),(7,5),(8,1),(9,7)],10)
[9,1] => [2,1,1,1,1,1,1,1,1] => [[2,1,1,1,1,1,1,1,1],[]] => ([(0,2),(0,9),(3,4),(4,6),(5,3),(6,8),(7,5),(8,1),(9,7)],10)
[8,2] => [2,2,1,1,1,1,1,1] => [[2,2,1,1,1,1,1,1],[]] => ([(0,2),(0,8),(2,9),(3,5),(4,3),(5,7),(6,4),(7,1),(8,6),(8,9)],10)
[8,1,1] => [3,1,1,1,1,1,1,1] => [[3,1,1,1,1,1,1,1],[]] => ([(0,8),(0,9),(3,5),(4,3),(5,7),(6,4),(7,2),(8,6),(9,1)],10)
[7,3] => [2,2,2,1,1,1,1] => [[2,2,2,1,1,1,1],[]] => ([(0,2),(0,7),(2,8),(3,4),(4,6),(5,3),(5,9),(6,1),(7,5),(7,8),(8,9)],10)
>>> Load all 218 entries. <<<Map
conjugate
Description
Return the conjugate partition of the partition.
The conjugate partition of the partition $\lambda$ of $n$ is the partition $\lambda^*$ whose Ferrers diagram is obtained from the diagram of $\lambda$ by interchanging rows with columns.
This is also called the associated partition or the transpose in the literature.
The conjugate partition of the partition $\lambda$ of $n$ is the partition $\lambda^*$ whose Ferrers diagram is obtained from the diagram of $\lambda$ by interchanging rows with columns.
This is also called the associated partition or the transpose in the literature.
Map
to skew partition
Description
The partition regarded as a skew partition.
Map
cell poset
Description
The Young diagram of a skew partition regarded as a poset.
This is the poset on the cells of the Young diagram, such that a cell $d$ is greater than a cell $c$ if the entry in $d$ must be larger than the entry of $c$ in any standard Young tableau on the skew partition.
This is the poset on the cells of the Young diagram, such that a cell $d$ is greater than a cell $c$ if the entry in $d$ must be larger than the entry of $c$ in any standard Young tableau on the skew partition.
searching the database
Sorry, this map was not found in the database.