Identifier
Mp00179:
Integer partitions
—to skew partition⟶
Skew partitions
Mp00192: Skew partitions —dominating sublattice⟶ Lattices
Mp00192: Skew partitions —dominating sublattice⟶ Lattices
Images
[1] => [[1],[]] => ([],1)
[2] => [[2],[]] => ([],1)
[1,1] => [[1,1],[]] => ([],1)
[3] => [[3],[]] => ([],1)
[2,1] => [[2,1],[]] => ([],1)
[1,1,1] => [[1,1,1],[]] => ([],1)
[4] => [[4],[]] => ([],1)
[3,1] => [[3,1],[]] => ([],1)
[2,2] => [[2,2],[]] => ([],1)
[2,1,1] => [[2,1,1],[]] => ([],1)
[1,1,1,1] => [[1,1,1,1],[]] => ([],1)
[5] => [[5],[]] => ([],1)
[4,1] => [[4,1],[]] => ([],1)
[3,2] => [[3,2],[]] => ([],1)
[3,1,1] => [[3,1,1],[]] => ([],1)
[2,2,1] => [[2,2,1],[]] => ([],1)
[2,1,1,1] => [[2,1,1,1],[]] => ([],1)
[1,1,1,1,1] => [[1,1,1,1,1],[]] => ([],1)
[6] => [[6],[]] => ([],1)
[5,1] => [[5,1],[]] => ([],1)
[4,2] => [[4,2],[]] => ([],1)
[4,1,1] => [[4,1,1],[]] => ([],1)
[3,3] => [[3,3],[]] => ([],1)
[3,2,1] => [[3,2,1],[]] => ([],1)
[3,1,1,1] => [[3,1,1,1],[]] => ([],1)
[2,2,2] => [[2,2,2],[]] => ([],1)
[2,2,1,1] => [[2,2,1,1],[]] => ([],1)
[2,1,1,1,1] => [[2,1,1,1,1],[]] => ([],1)
[1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([],1)
[7] => [[7],[]] => ([],1)
[6,1] => [[6,1],[]] => ([],1)
[5,2] => [[5,2],[]] => ([],1)
[5,1,1] => [[5,1,1],[]] => ([],1)
[4,3] => [[4,3],[]] => ([],1)
[4,2,1] => [[4,2,1],[]] => ([],1)
[4,1,1,1] => [[4,1,1,1],[]] => ([],1)
[3,3,1] => [[3,3,1],[]] => ([],1)
[3,2,2] => [[3,2,2],[]] => ([],1)
[3,2,1,1] => [[3,2,1,1],[]] => ([],1)
[3,1,1,1,1] => [[3,1,1,1,1],[]] => ([],1)
[2,2,2,1] => [[2,2,2,1],[]] => ([],1)
[2,2,1,1,1] => [[2,2,1,1,1],[]] => ([],1)
[2,1,1,1,1,1] => [[2,1,1,1,1,1],[]] => ([],1)
[1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1],[]] => ([],1)
[8] => [[8],[]] => ([],1)
[7,1] => [[7,1],[]] => ([],1)
[6,2] => [[6,2],[]] => ([],1)
[6,1,1] => [[6,1,1],[]] => ([],1)
[5,3] => [[5,3],[]] => ([],1)
[5,2,1] => [[5,2,1],[]] => ([],1)
[5,1,1,1] => [[5,1,1,1],[]] => ([],1)
[4,4] => [[4,4],[]] => ([],1)
[4,3,1] => [[4,3,1],[]] => ([],1)
[4,2,2] => [[4,2,2],[]] => ([],1)
[4,2,1,1] => [[4,2,1,1],[]] => ([],1)
[4,1,1,1,1] => [[4,1,1,1,1],[]] => ([],1)
[3,3,2] => [[3,3,2],[]] => ([],1)
[3,3,1,1] => [[3,3,1,1],[]] => ([],1)
[3,2,2,1] => [[3,2,2,1],[]] => ([],1)
[3,2,1,1,1] => [[3,2,1,1,1],[]] => ([],1)
[3,1,1,1,1,1] => [[3,1,1,1,1,1],[]] => ([],1)
[2,2,2,2] => [[2,2,2,2],[]] => ([],1)
[2,2,2,1,1] => [[2,2,2,1,1],[]] => ([],1)
[2,2,1,1,1,1] => [[2,2,1,1,1,1],[]] => ([],1)
[2,1,1,1,1,1,1] => [[2,1,1,1,1,1,1],[]] => ([],1)
[1,1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1,1],[]] => ([],1)
[9] => [[9],[]] => ([],1)
[8,1] => [[8,1],[]] => ([],1)
[7,2] => [[7,2],[]] => ([],1)
[7,1,1] => [[7,1,1],[]] => ([],1)
[6,3] => [[6,3],[]] => ([],1)
[6,2,1] => [[6,2,1],[]] => ([],1)
[6,1,1,1] => [[6,1,1,1],[]] => ([],1)
[5,4] => [[5,4],[]] => ([],1)
[5,3,1] => [[5,3,1],[]] => ([],1)
[5,2,2] => [[5,2,2],[]] => ([],1)
[5,2,1,1] => [[5,2,1,1],[]] => ([],1)
[5,1,1,1,1] => [[5,1,1,1,1],[]] => ([],1)
[4,4,1] => [[4,4,1],[]] => ([],1)
[4,3,2] => [[4,3,2],[]] => ([],1)
[4,3,1,1] => [[4,3,1,1],[]] => ([],1)
[4,2,2,1] => [[4,2,2,1],[]] => ([],1)
[4,2,1,1,1] => [[4,2,1,1,1],[]] => ([],1)
[4,1,1,1,1,1] => [[4,1,1,1,1,1],[]] => ([],1)
[3,3,3] => [[3,3,3],[]] => ([],1)
[3,3,2,1] => [[3,3,2,1],[]] => ([],1)
[3,3,1,1,1] => [[3,3,1,1,1],[]] => ([],1)
[3,2,2,2] => [[3,2,2,2],[]] => ([],1)
[3,2,2,1,1] => [[3,2,2,1,1],[]] => ([],1)
[3,2,1,1,1,1] => [[3,2,1,1,1,1],[]] => ([],1)
[3,1,1,1,1,1,1] => [[3,1,1,1,1,1,1],[]] => ([],1)
[2,2,2,2,1] => [[2,2,2,2,1],[]] => ([],1)
[2,2,2,1,1,1] => [[2,2,2,1,1,1],[]] => ([],1)
[2,2,1,1,1,1,1] => [[2,2,1,1,1,1,1],[]] => ([],1)
[2,1,1,1,1,1,1,1] => [[2,1,1,1,1,1,1,1],[]] => ([],1)
[1,1,1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1,1,1],[]] => ([],1)
[10] => [[10],[]] => ([],1)
[9,1] => [[9,1],[]] => ([],1)
[8,2] => [[8,2],[]] => ([],1)
[8,1,1] => [[8,1,1],[]] => ([],1)
[7,3] => [[7,3],[]] => ([],1)
>>> Load all 181 entries. <<<Map
to skew partition
Description
The partition regarded as a skew partition.
Map
dominating sublattice
Description
Return the sublattice of the dominance order induced by the support of the expansion of the skew Schur function into Schur functions.
Consider the expansion of the skew Schur function $s_{\lambda/\mu}=\sum_\nu c^\lambda_{\mu, \nu} s_\nu$ as a linear combination of straight Schur functions.
It is shown in [1] that the subposet of the dominance order whose elements are the partitions $\nu$ with $c^\lambda_{\mu, \nu} > 0$ form a lattice.
The example $\lambda = (5^2,4^2,1)$ and $\mu=(3,2)$ shows that this lattice is not a sublattice of the dominance order.
Consider the expansion of the skew Schur function $s_{\lambda/\mu}=\sum_\nu c^\lambda_{\mu, \nu} s_\nu$ as a linear combination of straight Schur functions.
It is shown in [1] that the subposet of the dominance order whose elements are the partitions $\nu$ with $c^\lambda_{\mu, \nu} > 0$ form a lattice.
The example $\lambda = (5^2,4^2,1)$ and $\mu=(3,2)$ shows that this lattice is not a sublattice of the dominance order.
searching the database
Sorry, this map was not found in the database.