Identifier
Images
[] => ([],1) => ([],1) => ([],1)
[[]] => ([(0,1)],2) => ([(0,1)],2) => ([(0,1)],2)
[[],[]] => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => ([],1)
[[[]]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3)
[[],[],[]] => ([(0,3),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3)],4) => ([],1)
[[],[[]]] => ([(0,3),(1,2),(2,3)],4) => ([(0,2),(0,3),(3,1)],4) => ([(0,1)],2)
[[[]],[]] => ([(0,3),(1,2),(2,3)],4) => ([(0,2),(0,3),(3,1)],4) => ([(0,1)],2)
[[[],[]]] => ([(0,3),(1,3),(3,2)],4) => ([(0,3),(3,1),(3,2)],4) => ([],1)
[[[[]]]] => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(2,1),(3,2)],4)
[[],[],[],[]] => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4)],5) => ([],1)
[[],[],[[]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,2),(0,3),(0,4),(4,1)],5) => ([(0,1)],2)
[[],[[]],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,2),(0,3),(0,4),(4,1)],5) => ([(0,1)],2)
[[],[[],[]]] => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,3),(0,4),(4,1),(4,2)],5) => ([],1)
[[],[[[]]]] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(0,2),(0,4),(3,1),(4,3)],5) => ([(0,2),(2,1)],3)
[[[]],[],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,2),(0,3),(0,4),(4,1)],5) => ([(0,1)],2)
[[[]],[[]]] => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(0,3),(0,4),(3,2),(4,1)],5) => ([(0,1),(0,2),(1,3),(2,3)],4)
[[[],[]],[]] => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,3),(0,4),(4,1),(4,2)],5) => ([],1)
[[[[]]],[]] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(0,2),(0,4),(3,1),(4,3)],5) => ([(0,2),(2,1)],3)
[[[],[],[]]] => ([(0,4),(1,4),(2,4),(4,3)],5) => ([(0,4),(4,1),(4,2),(4,3)],5) => ([],1)
[[[],[[]]]] => ([(0,4),(1,2),(2,4),(4,3)],5) => ([(0,4),(3,2),(4,1),(4,3)],5) => ([(0,1)],2)
[[[[]],[]]] => ([(0,4),(1,2),(2,4),(4,3)],5) => ([(0,4),(3,2),(4,1),(4,3)],5) => ([(0,1)],2)
[[[[],[]]]] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,3),(3,4),(4,1),(4,2)],5) => ([],1)
[[[[[]]]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(2,3),(3,1),(4,2)],5)
[[],[],[],[],[]] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(0,5)],6) => ([],1)
[[],[],[],[[]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,2),(0,3),(0,4),(0,5),(5,1)],6) => ([(0,1)],2)
[[],[],[[]],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,2),(0,3),(0,4),(0,5),(5,1)],6) => ([(0,1)],2)
[[],[],[[],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(0,4),(0,5),(5,1),(5,2)],6) => ([],1)
[[],[],[[[]]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,2),(0,3),(0,5),(4,1),(5,4)],6) => ([(0,2),(2,1)],3)
[[],[[]],[],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,2),(0,3),(0,4),(0,5),(5,1)],6) => ([(0,1)],2)
[[],[[]],[[]]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(4,2),(5,1)],6) => ([(0,1),(0,2),(1,3),(2,3)],4)
[[],[[],[]],[]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(0,4),(0,5),(5,1),(5,2)],6) => ([],1)
[[],[[[]]],[]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,2),(0,3),(0,5),(4,1),(5,4)],6) => ([(0,2),(2,1)],3)
[[],[[],[],[]]] => ([(0,5),(1,5),(2,5),(3,4),(5,4)],6) => ([(0,4),(0,5),(5,1),(5,2),(5,3)],6) => ([],1)
[[],[[],[[]]]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(0,3),(0,5),(4,2),(5,1),(5,4)],6) => ([(0,1)],2)
[[],[[[]],[]]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(0,3),(0,5),(4,2),(5,1),(5,4)],6) => ([(0,1)],2)
[[],[[[],[]]]] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6) => ([(0,3),(0,4),(4,5),(5,1),(5,2)],6) => ([],1)
[[],[[[[]]]]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => ([(0,2),(0,5),(3,4),(4,1),(5,3)],6) => ([(0,3),(2,1),(3,2)],4)
[[[]],[],[],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,2),(0,3),(0,4),(0,5),(5,1)],6) => ([(0,1)],2)
[[[]],[],[[]]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(4,2),(5,1)],6) => ([(0,1),(0,2),(1,3),(2,3)],4)
[[[]],[[]],[]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(4,2),(5,1)],6) => ([(0,1),(0,2),(1,3),(2,3)],4)
[[[]],[[],[]]] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,4),(0,5),(4,3),(5,1),(5,2)],6) => ([(0,1)],2)
[[[]],[[[]]]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => ([(0,4),(0,5),(3,2),(4,3),(5,1)],6) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
[[[],[]],[],[]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(0,4),(0,5),(5,1),(5,2)],6) => ([],1)
[[[[]]],[],[]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,2),(0,3),(0,5),(4,1),(5,4)],6) => ([(0,2),(2,1)],3)
[[[],[]],[[]]] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,4),(0,5),(4,3),(5,1),(5,2)],6) => ([(0,1)],2)
[[[[]]],[[]]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => ([(0,4),(0,5),(3,2),(4,3),(5,1)],6) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
[[[],[],[]],[]] => ([(0,5),(1,5),(2,5),(3,4),(5,4)],6) => ([(0,4),(0,5),(5,1),(5,2),(5,3)],6) => ([],1)
[[[],[[]]],[]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(0,3),(0,5),(4,2),(5,1),(5,4)],6) => ([(0,1)],2)
[[[[]],[]],[]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(0,3),(0,5),(4,2),(5,1),(5,4)],6) => ([(0,1)],2)
[[[[],[]]],[]] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6) => ([(0,3),(0,4),(4,5),(5,1),(5,2)],6) => ([],1)
[[[[[]]]],[]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => ([(0,2),(0,5),(3,4),(4,1),(5,3)],6) => ([(0,3),(2,1),(3,2)],4)
[[[],[],[],[]]] => ([(0,5),(1,5),(2,5),(3,5),(5,4)],6) => ([(0,5),(5,1),(5,2),(5,3),(5,4)],6) => ([],1)
[[[],[],[[]]]] => ([(0,5),(1,5),(2,3),(3,5),(5,4)],6) => ([(0,5),(4,3),(5,1),(5,2),(5,4)],6) => ([(0,1)],2)
[[[],[[]],[]]] => ([(0,5),(1,5),(2,3),(3,5),(5,4)],6) => ([(0,5),(4,3),(5,1),(5,2),(5,4)],6) => ([(0,1)],2)
[[[],[[],[]]]] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6) => ([(0,5),(4,2),(4,3),(5,1),(5,4)],6) => ([],1)
[[[],[[[]]]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => ([(0,5),(3,4),(4,2),(5,1),(5,3)],6) => ([(0,2),(2,1)],3)
[[[[]],[],[]]] => ([(0,5),(1,5),(2,3),(3,5),(5,4)],6) => ([(0,5),(4,3),(5,1),(5,2),(5,4)],6) => ([(0,1)],2)
[[[[]],[[]]]] => ([(0,4),(1,3),(3,5),(4,5),(5,2)],6) => ([(0,5),(3,2),(4,1),(5,3),(5,4)],6) => ([(0,1),(0,2),(1,3),(2,3)],4)
[[[[],[]],[]]] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6) => ([(0,5),(4,2),(4,3),(5,1),(5,4)],6) => ([],1)
[[[[[]]],[]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => ([(0,5),(3,4),(4,2),(5,1),(5,3)],6) => ([(0,2),(2,1)],3)
[[[[],[],[]]]] => ([(0,5),(1,5),(2,5),(3,4),(5,3)],6) => ([(0,4),(4,5),(5,1),(5,2),(5,3)],6) => ([],1)
[[[[],[[]]]]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => ([(0,4),(3,2),(4,5),(5,1),(5,3)],6) => ([(0,1)],2)
[[[[[]],[]]]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => ([(0,4),(3,2),(4,5),(5,1),(5,3)],6) => ([(0,1)],2)
[[[[[],[]]]]] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => ([(0,4),(3,5),(4,3),(5,1),(5,2)],6) => ([],1)
[[[[[[]]]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
[[],[],[],[],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6)],7) => ([],1)
[[],[],[],[],[[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,2),(0,3),(0,4),(0,5),(0,6),(6,1)],7) => ([(0,1)],2)
[[],[],[],[[]],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,2),(0,3),(0,4),(0,5),(0,6),(6,1)],7) => ([(0,1)],2)
[[],[],[],[[],[]]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(0,4),(0,5),(0,6),(6,1),(6,2)],7) => ([],1)
[[],[],[],[[[]]]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,2),(0,3),(0,4),(0,6),(5,1),(6,5)],7) => ([(0,2),(2,1)],3)
[[],[],[[]],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,2),(0,3),(0,4),(0,5),(0,6),(6,1)],7) => ([(0,1)],2)
[[],[],[[]],[[]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,3),(0,4),(0,5),(0,6),(5,2),(6,1)],7) => ([(0,1),(0,2),(1,3),(2,3)],4)
[[],[],[[],[]],[]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(0,4),(0,5),(0,6),(6,1),(6,2)],7) => ([],1)
[[],[],[[[]]],[]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,2),(0,3),(0,4),(0,6),(5,1),(6,5)],7) => ([(0,2),(2,1)],3)
[[],[],[[],[],[]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(5,6)],7) => ([(0,4),(0,5),(0,6),(6,1),(6,2),(6,3)],7) => ([],1)
[[],[],[[],[[]]]] => ([(0,6),(1,6),(2,5),(3,4),(4,5),(5,6)],7) => ([(0,3),(0,4),(0,6),(5,2),(6,1),(6,5)],7) => ([(0,1)],2)
[[],[],[[[]],[]]] => ([(0,6),(1,6),(2,5),(3,4),(4,5),(5,6)],7) => ([(0,3),(0,4),(0,6),(5,2),(6,1),(6,5)],7) => ([(0,1)],2)
[[],[],[[[],[]]]] => ([(0,6),(1,6),(2,5),(3,5),(4,6),(5,4)],7) => ([(0,3),(0,4),(0,5),(5,6),(6,1),(6,2)],7) => ([],1)
[[],[],[[[[]]]]] => ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7) => ([(0,2),(0,3),(0,6),(4,5),(5,1),(6,4)],7) => ([(0,3),(2,1),(3,2)],4)
[[],[[]],[],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,2),(0,3),(0,4),(0,5),(0,6),(6,1)],7) => ([(0,1)],2)
[[],[[]],[],[[]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,3),(0,4),(0,5),(0,6),(5,2),(6,1)],7) => ([(0,1),(0,2),(1,3),(2,3)],4)
[[],[[]],[[]],[]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,3),(0,4),(0,5),(0,6),(5,2),(6,1)],7) => ([(0,1),(0,2),(1,3),(2,3)],4)
[[],[[]],[[],[]]] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,4),(0,5),(0,6),(5,3),(6,1),(6,2)],7) => ([(0,1)],2)
[[],[[]],[[[]]]] => ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7) => ([(0,3),(0,5),(0,6),(4,1),(5,2),(6,4)],7) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
[[],[[],[]],[],[]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(0,4),(0,5),(0,6),(6,1),(6,2)],7) => ([],1)
[[],[[[]]],[],[]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,2),(0,3),(0,4),(0,6),(5,1),(6,5)],7) => ([(0,2),(2,1)],3)
[[],[[],[]],[[]]] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,4),(0,5),(0,6),(5,3),(6,1),(6,2)],7) => ([(0,1)],2)
[[],[[[]]],[[]]] => ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7) => ([(0,3),(0,5),(0,6),(4,1),(5,2),(6,4)],7) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
[[],[[],[],[]],[]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(5,6)],7) => ([(0,4),(0,5),(0,6),(6,1),(6,2),(6,3)],7) => ([],1)
[[],[[],[[]]],[]] => ([(0,6),(1,6),(2,5),(3,4),(4,5),(5,6)],7) => ([(0,3),(0,4),(0,6),(5,2),(6,1),(6,5)],7) => ([(0,1)],2)
[[],[[[]],[]],[]] => ([(0,6),(1,6),(2,5),(3,4),(4,5),(5,6)],7) => ([(0,3),(0,4),(0,6),(5,2),(6,1),(6,5)],7) => ([(0,1)],2)
[[],[[[],[]]],[]] => ([(0,6),(1,6),(2,5),(3,5),(4,6),(5,4)],7) => ([(0,3),(0,4),(0,5),(5,6),(6,1),(6,2)],7) => ([],1)
[[],[[[[]]]],[]] => ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7) => ([(0,2),(0,3),(0,6),(4,5),(5,1),(6,4)],7) => ([(0,3),(2,1),(3,2)],4)
[[],[[],[],[],[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(6,5)],7) => ([(0,5),(0,6),(6,1),(6,2),(6,3),(6,4)],7) => ([],1)
[[],[[],[],[[]]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(6,5)],7) => ([(0,4),(0,6),(5,3),(6,1),(6,2),(6,5)],7) => ([(0,1)],2)
[[],[[],[[]],[]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(6,5)],7) => ([(0,4),(0,6),(5,3),(6,1),(6,2),(6,5)],7) => ([(0,1)],2)
[[],[[],[[],[]]]] => ([(0,4),(1,4),(2,5),(3,6),(4,6),(6,5)],7) => ([(0,4),(0,6),(5,2),(5,3),(6,1),(6,5)],7) => ([],1)
[[],[[],[[[]]]]] => ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7) => ([(0,3),(0,6),(4,5),(5,2),(6,1),(6,4)],7) => ([(0,2),(2,1)],3)
[[],[[[]],[],[]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(6,5)],7) => ([(0,4),(0,6),(5,3),(6,1),(6,2),(6,5)],7) => ([(0,1)],2)
[[],[[[]],[[]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7) => ([(0,3),(0,6),(4,2),(5,1),(6,4),(6,5)],7) => ([(0,1),(0,2),(1,3),(2,3)],4)
[[],[[[],[]],[]]] => ([(0,4),(1,4),(2,5),(3,6),(4,6),(6,5)],7) => ([(0,4),(0,6),(5,2),(5,3),(6,1),(6,5)],7) => ([],1)
>>> Load all 301 entries. <<<Map
to poset
Description
Return the poset obtained by interpreting the tree as the Hasse diagram of a graph.
Map
dual poset
Description
The dual of a poset.
The dual (or opposite) of a poset $(\mathcal P,\leq)$ is the poset $(\mathcal P^d,\leq_d)$ with $x \leq_d y$ if $y \leq x$.
The dual (or opposite) of a poset $(\mathcal P,\leq)$ is the poset $(\mathcal P^d,\leq_d)$ with $x \leq_d y$ if $y \leq x$.
Map
antichains of maximal size
Description
The lattice of antichains of maximal size in a poset.
The set of antichains of maximal size can be ordered by setting $A \leq B \leftrightarrow \mathop{\downarrow} A \subseteq \mathop{\downarrow} B$, where $\mathop{\downarrow} A$ is the order ideal generated by $A$.
This is a sublattice of the lattice of all antichains with respect to the same order relation. In particular, it is distributive.
The set of antichains of maximal size can be ordered by setting $A \leq B \leftrightarrow \mathop{\downarrow} A \subseteq \mathop{\downarrow} B$, where $\mathop{\downarrow} A$ is the order ideal generated by $A$.
This is a sublattice of the lattice of all antichains with respect to the same order relation. In particular, it is distributive.
searching the database
Sorry, this map was not found in the database.