Identifier
Mp00045:
Integer partitions
—reading tableau⟶
Standard tableaux
Mp00134: Standard tableaux —descent word⟶ Binary words
Mp00224: Binary words —runsort⟶ Binary words
Mp00134: Standard tableaux —descent word⟶ Binary words
Mp00224: Binary words —runsort⟶ Binary words
Images
[1] => [[1]] => =>
[2] => [[1,2]] => 0 => 0
[1,1] => [[1],[2]] => 1 => 1
[3] => [[1,2,3]] => 00 => 00
[2,1] => [[1,3],[2]] => 10 => 01
[1,1,1] => [[1],[2],[3]] => 11 => 11
[4] => [[1,2,3,4]] => 000 => 000
[3,1] => [[1,3,4],[2]] => 100 => 001
[2,2] => [[1,2],[3,4]] => 010 => 001
[2,1,1] => [[1,4],[2],[3]] => 110 => 011
[1,1,1,1] => [[1],[2],[3],[4]] => 111 => 111
[5] => [[1,2,3,4,5]] => 0000 => 0000
[4,1] => [[1,3,4,5],[2]] => 1000 => 0001
[3,2] => [[1,2,5],[3,4]] => 0100 => 0001
[3,1,1] => [[1,4,5],[2],[3]] => 1100 => 0011
[2,2,1] => [[1,3],[2,5],[4]] => 1010 => 0011
[2,1,1,1] => [[1,5],[2],[3],[4]] => 1110 => 0111
[1,1,1,1,1] => [[1],[2],[3],[4],[5]] => 1111 => 1111
[6] => [[1,2,3,4,5,6]] => 00000 => 00000
[5,1] => [[1,3,4,5,6],[2]] => 10000 => 00001
[4,2] => [[1,2,5,6],[3,4]] => 01000 => 00001
[4,1,1] => [[1,4,5,6],[2],[3]] => 11000 => 00011
[3,3] => [[1,2,3],[4,5,6]] => 00100 => 00001
[3,2,1] => [[1,3,6],[2,5],[4]] => 10100 => 00011
[3,1,1,1] => [[1,5,6],[2],[3],[4]] => 11100 => 00111
[2,2,2] => [[1,2],[3,4],[5,6]] => 01010 => 00101
[2,2,1,1] => [[1,4],[2,6],[3],[5]] => 11010 => 00111
[2,1,1,1,1] => [[1,6],[2],[3],[4],[5]] => 11110 => 01111
[1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6]] => 11111 => 11111
[7] => [[1,2,3,4,5,6,7]] => 000000 => 000000
[6,1] => [[1,3,4,5,6,7],[2]] => 100000 => 000001
[5,2] => [[1,2,5,6,7],[3,4]] => 010000 => 000001
[5,1,1] => [[1,4,5,6,7],[2],[3]] => 110000 => 000011
[4,3] => [[1,2,3,7],[4,5,6]] => 001000 => 000001
[4,2,1] => [[1,3,6,7],[2,5],[4]] => 101000 => 000011
[4,1,1,1] => [[1,5,6,7],[2],[3],[4]] => 111000 => 000111
[3,3,1] => [[1,3,4],[2,6,7],[5]] => 100100 => 000011
[3,2,2] => [[1,2,7],[3,4],[5,6]] => 010100 => 000101
[3,2,1,1] => [[1,4,7],[2,6],[3],[5]] => 110100 => 000111
[3,1,1,1,1] => [[1,6,7],[2],[3],[4],[5]] => 111100 => 001111
[2,2,2,1] => [[1,3],[2,5],[4,7],[6]] => 101010 => 001011
[2,2,1,1,1] => [[1,5],[2,7],[3],[4],[6]] => 111010 => 001111
[2,1,1,1,1,1] => [[1,7],[2],[3],[4],[5],[6]] => 111110 => 011111
[1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7]] => 111111 => 111111
[8] => [[1,2,3,4,5,6,7,8]] => 0000000 => 0000000
[7,1] => [[1,3,4,5,6,7,8],[2]] => 1000000 => 0000001
[6,2] => [[1,2,5,6,7,8],[3,4]] => 0100000 => 0000001
[6,1,1] => [[1,4,5,6,7,8],[2],[3]] => 1100000 => 0000011
[5,3] => [[1,2,3,7,8],[4,5,6]] => 0010000 => 0000001
[5,2,1] => [[1,3,6,7,8],[2,5],[4]] => 1010000 => 0000011
[5,1,1,1] => [[1,5,6,7,8],[2],[3],[4]] => 1110000 => 0000111
[4,4] => [[1,2,3,4],[5,6,7,8]] => 0001000 => 0000001
[4,3,1] => [[1,3,4,8],[2,6,7],[5]] => 1001000 => 0000011
[4,2,2] => [[1,2,7,8],[3,4],[5,6]] => 0101000 => 0000101
[4,2,1,1] => [[1,4,7,8],[2,6],[3],[5]] => 1101000 => 0000111
[4,1,1,1,1] => [[1,6,7,8],[2],[3],[4],[5]] => 1111000 => 0001111
[3,3,2] => [[1,2,5],[3,4,8],[6,7]] => 0100100 => 0000101
[3,3,1,1] => [[1,4,5],[2,7,8],[3],[6]] => 1100100 => 0000111
[3,2,2,1] => [[1,3,8],[2,5],[4,7],[6]] => 1010100 => 0001011
[3,2,1,1,1] => [[1,5,8],[2,7],[3],[4],[6]] => 1110100 => 0001111
[3,1,1,1,1,1] => [[1,7,8],[2],[3],[4],[5],[6]] => 1111100 => 0011111
[2,2,2,2] => [[1,2],[3,4],[5,6],[7,8]] => 0101010 => 0010101
[2,2,2,1,1] => [[1,4],[2,6],[3,8],[5],[7]] => 1101010 => 0010111
[2,2,1,1,1,1] => [[1,6],[2,8],[3],[4],[5],[7]] => 1111010 => 0011111
[2,1,1,1,1,1,1] => [[1,8],[2],[3],[4],[5],[6],[7]] => 1111110 => 0111111
[1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8]] => 1111111 => 1111111
[9] => [[1,2,3,4,5,6,7,8,9]] => 00000000 => 00000000
[8,1] => [[1,3,4,5,6,7,8,9],[2]] => 10000000 => 00000001
[7,2] => [[1,2,5,6,7,8,9],[3,4]] => 01000000 => 00000001
[7,1,1] => [[1,4,5,6,7,8,9],[2],[3]] => 11000000 => 00000011
[6,3] => [[1,2,3,7,8,9],[4,5,6]] => 00100000 => 00000001
[6,2,1] => [[1,3,6,7,8,9],[2,5],[4]] => 10100000 => 00000011
[6,1,1,1] => [[1,5,6,7,8,9],[2],[3],[4]] => 11100000 => 00000111
[5,4] => [[1,2,3,4,9],[5,6,7,8]] => 00010000 => 00000001
[5,3,1] => [[1,3,4,8,9],[2,6,7],[5]] => 10010000 => 00000011
[5,2,2] => [[1,2,7,8,9],[3,4],[5,6]] => 01010000 => 00000101
[5,2,1,1] => [[1,4,7,8,9],[2,6],[3],[5]] => 11010000 => 00000111
[5,1,1,1,1] => [[1,6,7,8,9],[2],[3],[4],[5]] => 11110000 => 00001111
[4,4,1] => [[1,3,4,5],[2,7,8,9],[6]] => 10001000 => 00000011
[4,3,2] => [[1,2,5,9],[3,4,8],[6,7]] => 01001000 => 00000101
[4,3,1,1] => [[1,4,5,9],[2,7,8],[3],[6]] => 11001000 => 00000111
[4,2,2,1] => [[1,3,8,9],[2,5],[4,7],[6]] => 10101000 => 00001011
[4,2,1,1,1] => [[1,5,8,9],[2,7],[3],[4],[6]] => 11101000 => 00001111
[4,1,1,1,1,1] => [[1,7,8,9],[2],[3],[4],[5],[6]] => 11111000 => 00011111
[3,3,3] => [[1,2,3],[4,5,6],[7,8,9]] => 00100100 => 00001001
[3,3,2,1] => [[1,3,6],[2,5,9],[4,8],[7]] => 10100100 => 00001011
[3,3,1,1,1] => [[1,5,6],[2,8,9],[3],[4],[7]] => 11100100 => 00001111
[3,2,2,2] => [[1,2,9],[3,4],[5,6],[7,8]] => 01010100 => 00010101
[3,2,2,1,1] => [[1,4,9],[2,6],[3,8],[5],[7]] => 11010100 => 00010111
[3,2,1,1,1,1] => [[1,6,9],[2,8],[3],[4],[5],[7]] => 11110100 => 00011111
[3,1,1,1,1,1,1] => [[1,8,9],[2],[3],[4],[5],[6],[7]] => 11111100 => 00111111
[2,2,2,2,1] => [[1,3],[2,5],[4,7],[6,9],[8]] => 10101010 => 00101011
[2,2,2,1,1,1] => [[1,5],[2,7],[3,9],[4],[6],[8]] => 11101010 => 00101111
[2,2,1,1,1,1,1] => [[1,7],[2,9],[3],[4],[5],[6],[8]] => 11111010 => 00111111
[2,1,1,1,1,1,1,1] => [[1,9],[2],[3],[4],[5],[6],[7],[8]] => 11111110 => 01111111
[1,1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8],[9]] => 11111111 => 11111111
[10] => [[1,2,3,4,5,6,7,8,9,10]] => 000000000 => 000000000
[9,1] => [[1,3,4,5,6,7,8,9,10],[2]] => 100000000 => 000000001
[8,2] => [[1,2,5,6,7,8,9,10],[3,4]] => 010000000 => 000000001
[8,1,1] => [[1,4,5,6,7,8,9,10],[2],[3]] => 110000000 => 000000011
[7,3] => [[1,2,3,7,8,9,10],[4,5,6]] => 001000000 => 000000001
>>> Load all 148 entries. <<<Map
reading tableau
Description
Return the RSK recording tableau of the reading word of the (standard) tableau $T$ labeled down (in English convention) each column to the shape of a partition.
Map
descent word
Description
The descent word of a standard Young tableau.
For a standard Young tableau of size $n$ we set $w_i=1$ if $i+1$ is in a lower row than $i$, and $0$ otherwise, for $1\leq i < n$.
For a standard Young tableau of size $n$ we set $w_i=1$ if $i+1$ is in a lower row than $i$, and $0$ otherwise, for $1\leq i < n$.
Map
runsort
Description
The word obtained by sorting the weakly increasing runs lexicographically.
searching the database
Sorry, this map was not found in the database.