Identifier
Mp00063:
Permutations
—to alternating sign matrix⟶
Alternating sign matrices
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00225: Semistandard tableaux —weight⟶ Integer partitions
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00225: Semistandard tableaux —weight⟶ Integer partitions
Images
[1] => [[1]] => [[1]] => [1]
[1,2] => [[1,0],[0,1]] => [[1,1],[2]] => [2,1]
[2,1] => [[0,1],[1,0]] => [[1,2],[2]] => [2,1]
[1,2,3] => [[1,0,0],[0,1,0],[0,0,1]] => [[1,1,1],[2,2],[3]] => [3,2,1]
[1,3,2] => [[1,0,0],[0,0,1],[0,1,0]] => [[1,1,1],[2,3],[3]] => [3,2,1]
[2,1,3] => [[0,1,0],[1,0,0],[0,0,1]] => [[1,1,2],[2,2],[3]] => [3,2,1]
[2,3,1] => [[0,0,1],[1,0,0],[0,1,0]] => [[1,1,3],[2,3],[3]] => [3,2,1]
[3,1,2] => [[0,1,0],[0,0,1],[1,0,0]] => [[1,2,2],[2,3],[3]] => [3,2,1]
[3,2,1] => [[0,0,1],[0,1,0],[1,0,0]] => [[1,2,3],[2,3],[3]] => [3,2,1]
[1,2,3,4] => [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]] => [[1,1,1,1],[2,2,2],[3,3],[4]] => [4,3,2,1]
[1,2,4,3] => [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]] => [[1,1,1,1],[2,2,2],[3,4],[4]] => [4,3,2,1]
[1,3,2,4] => [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]] => [[1,1,1,1],[2,2,3],[3,3],[4]] => [4,3,2,1]
[1,3,4,2] => [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]] => [[1,1,1,1],[2,2,4],[3,4],[4]] => [4,3,2,1]
[1,4,2,3] => [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]] => [[1,1,1,1],[2,3,3],[3,4],[4]] => [4,3,2,1]
[1,4,3,2] => [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]] => [[1,1,1,1],[2,3,4],[3,4],[4]] => [4,3,2,1]
[2,1,3,4] => [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]] => [[1,1,1,2],[2,2,2],[3,3],[4]] => [4,3,2,1]
[2,1,4,3] => [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]] => [[1,1,1,2],[2,2,2],[3,4],[4]] => [4,3,2,1]
[2,3,1,4] => [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]] => [[1,1,1,3],[2,2,3],[3,3],[4]] => [4,3,2,1]
[2,3,4,1] => [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]] => [[1,1,1,4],[2,2,4],[3,4],[4]] => [4,3,2,1]
[2,4,1,3] => [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]] => [[1,1,1,3],[2,3,3],[3,4],[4]] => [4,3,2,1]
[2,4,3,1] => [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]] => [[1,1,1,4],[2,3,4],[3,4],[4]] => [4,3,2,1]
[3,1,2,4] => [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]] => [[1,1,2,2],[2,2,3],[3,3],[4]] => [4,3,2,1]
[3,1,4,2] => [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]] => [[1,1,2,2],[2,2,4],[3,4],[4]] => [4,3,2,1]
[3,2,1,4] => [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]] => [[1,1,2,3],[2,2,3],[3,3],[4]] => [4,3,2,1]
[3,2,4,1] => [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]] => [[1,1,2,4],[2,2,4],[3,4],[4]] => [4,3,2,1]
[3,4,1,2] => [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]] => [[1,1,3,3],[2,3,4],[3,4],[4]] => [4,3,2,1]
[3,4,2,1] => [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]] => [[1,1,3,4],[2,3,4],[3,4],[4]] => [4,3,2,1]
[4,1,2,3] => [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]] => [[1,2,2,2],[2,3,3],[3,4],[4]] => [4,3,2,1]
[4,1,3,2] => [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]] => [[1,2,2,2],[2,3,4],[3,4],[4]] => [4,3,2,1]
[4,2,1,3] => [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]] => [[1,2,2,3],[2,3,3],[3,4],[4]] => [4,3,2,1]
[4,2,3,1] => [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]] => [[1,2,2,4],[2,3,4],[3,4],[4]] => [4,3,2,1]
[4,3,1,2] => [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]] => [[1,2,3,3],[2,3,4],[3,4],[4]] => [4,3,2,1]
[4,3,2,1] => [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]] => [[1,2,3,4],[2,3,4],[3,4],[4]] => [4,3,2,1]
[1,2,3,4,5] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]] => [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,4],[5]] => [5,4,3,2,1]
[1,2,3,5,4] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]] => [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,5],[5]] => [5,4,3,2,1]
[1,2,4,3,5] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]] => [[1,1,1,1,1],[2,2,2,2],[3,3,4],[4,4],[5]] => [5,4,3,2,1]
[1,2,4,5,3] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]] => [[1,1,1,1,1],[2,2,2,2],[3,3,5],[4,5],[5]] => [5,4,3,2,1]
[1,2,5,3,4] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0]] => [[1,1,1,1,1],[2,2,2,2],[3,4,4],[4,5],[5]] => [5,4,3,2,1]
[1,2,5,4,3] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]] => [[1,1,1,1,1],[2,2,2,2],[3,4,5],[4,5],[5]] => [5,4,3,2,1]
[1,3,2,4,5] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]] => [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,4],[5]] => [5,4,3,2,1]
[1,3,2,5,4] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]] => [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,5],[5]] => [5,4,3,2,1]
[1,3,4,2,5] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]] => [[1,1,1,1,1],[2,2,2,4],[3,3,4],[4,4],[5]] => [5,4,3,2,1]
[1,3,4,5,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]] => [[1,1,1,1,1],[2,2,2,5],[3,3,5],[4,5],[5]] => [5,4,3,2,1]
[1,3,5,2,4] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0]] => [[1,1,1,1,1],[2,2,2,4],[3,4,4],[4,5],[5]] => [5,4,3,2,1]
[1,3,5,4,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0]] => [[1,1,1,1,1],[2,2,2,5],[3,4,5],[4,5],[5]] => [5,4,3,2,1]
[1,4,2,3,5] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]] => [[1,1,1,1,1],[2,2,3,3],[3,3,4],[4,4],[5]] => [5,4,3,2,1]
[1,4,2,5,3] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]] => [[1,1,1,1,1],[2,2,3,3],[3,3,5],[4,5],[5]] => [5,4,3,2,1]
[1,4,3,2,5] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]] => [[1,1,1,1,1],[2,2,3,4],[3,3,4],[4,4],[5]] => [5,4,3,2,1]
[1,4,3,5,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0]] => [[1,1,1,1,1],[2,2,3,5],[3,3,5],[4,5],[5]] => [5,4,3,2,1]
[1,4,5,2,3] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0]] => [[1,1,1,1,1],[2,2,4,4],[3,4,5],[4,5],[5]] => [5,4,3,2,1]
[1,4,5,3,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0]] => [[1,1,1,1,1],[2,2,4,5],[3,4,5],[4,5],[5]] => [5,4,3,2,1]
[1,5,2,3,4] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0]] => [[1,1,1,1,1],[2,3,3,3],[3,4,4],[4,5],[5]] => [5,4,3,2,1]
[1,5,2,4,3] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0]] => [[1,1,1,1,1],[2,3,3,3],[3,4,5],[4,5],[5]] => [5,4,3,2,1]
[1,5,3,2,4] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0]] => [[1,1,1,1,1],[2,3,3,4],[3,4,4],[4,5],[5]] => [5,4,3,2,1]
[1,5,3,4,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0]] => [[1,1,1,1,1],[2,3,3,5],[3,4,5],[4,5],[5]] => [5,4,3,2,1]
[1,5,4,2,3] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0]] => [[1,1,1,1,1],[2,3,4,4],[3,4,5],[4,5],[5]] => [5,4,3,2,1]
[1,5,4,3,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]] => [[1,1,1,1,1],[2,3,4,5],[3,4,5],[4,5],[5]] => [5,4,3,2,1]
[2,1,3,4,5] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]] => [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,4],[5]] => [5,4,3,2,1]
[2,1,3,5,4] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]] => [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,5],[5]] => [5,4,3,2,1]
[2,1,4,3,5] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]] => [[1,1,1,1,2],[2,2,2,2],[3,3,4],[4,4],[5]] => [5,4,3,2,1]
[2,1,4,5,3] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]] => [[1,1,1,1,2],[2,2,2,2],[3,3,5],[4,5],[5]] => [5,4,3,2,1]
[2,1,5,3,4] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0]] => [[1,1,1,1,2],[2,2,2,2],[3,4,4],[4,5],[5]] => [5,4,3,2,1]
[2,1,5,4,3] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]] => [[1,1,1,1,2],[2,2,2,2],[3,4,5],[4,5],[5]] => [5,4,3,2,1]
[2,3,1,4,5] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]] => [[1,1,1,1,3],[2,2,2,3],[3,3,3],[4,4],[5]] => [5,4,3,2,1]
[2,3,1,5,4] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]] => [[1,1,1,1,3],[2,2,2,3],[3,3,3],[4,5],[5]] => [5,4,3,2,1]
[2,3,4,1,5] => [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]] => [[1,1,1,1,4],[2,2,2,4],[3,3,4],[4,4],[5]] => [5,4,3,2,1]
[2,3,4,5,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]] => [[1,1,1,1,5],[2,2,2,5],[3,3,5],[4,5],[5]] => [5,4,3,2,1]
[2,3,5,1,4] => [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0]] => [[1,1,1,1,4],[2,2,2,4],[3,4,4],[4,5],[5]] => [5,4,3,2,1]
[2,3,5,4,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0]] => [[1,1,1,1,5],[2,2,2,5],[3,4,5],[4,5],[5]] => [5,4,3,2,1]
[2,4,1,3,5] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]] => [[1,1,1,1,3],[2,2,3,3],[3,3,4],[4,4],[5]] => [5,4,3,2,1]
[2,4,1,5,3] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]] => [[1,1,1,1,3],[2,2,3,3],[3,3,5],[4,5],[5]] => [5,4,3,2,1]
[2,4,3,1,5] => [[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]] => [[1,1,1,1,4],[2,2,3,4],[3,3,4],[4,4],[5]] => [5,4,3,2,1]
[2,4,3,5,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0]] => [[1,1,1,1,5],[2,2,3,5],[3,3,5],[4,5],[5]] => [5,4,3,2,1]
[2,4,5,1,3] => [[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0]] => [[1,1,1,1,4],[2,2,4,4],[3,4,5],[4,5],[5]] => [5,4,3,2,1]
[2,4,5,3,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0]] => [[1,1,1,1,5],[2,2,4,5],[3,4,5],[4,5],[5]] => [5,4,3,2,1]
[2,5,1,3,4] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0]] => [[1,1,1,1,3],[2,3,3,3],[3,4,4],[4,5],[5]] => [5,4,3,2,1]
[2,5,1,4,3] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0]] => [[1,1,1,1,3],[2,3,3,3],[3,4,5],[4,5],[5]] => [5,4,3,2,1]
[2,5,3,1,4] => [[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0]] => [[1,1,1,1,4],[2,3,3,4],[3,4,4],[4,5],[5]] => [5,4,3,2,1]
[2,5,3,4,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0]] => [[1,1,1,1,5],[2,3,3,5],[3,4,5],[4,5],[5]] => [5,4,3,2,1]
[2,5,4,1,3] => [[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0]] => [[1,1,1,1,4],[2,3,4,4],[3,4,5],[4,5],[5]] => [5,4,3,2,1]
[2,5,4,3,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]] => [[1,1,1,1,5],[2,3,4,5],[3,4,5],[4,5],[5]] => [5,4,3,2,1]
[3,1,2,4,5] => [[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]] => [[1,1,1,2,2],[2,2,2,3],[3,3,3],[4,4],[5]] => [5,4,3,2,1]
[3,1,2,5,4] => [[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0]] => [[1,1,1,2,2],[2,2,2,3],[3,3,3],[4,5],[5]] => [5,4,3,2,1]
[3,1,4,2,5] => [[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]] => [[1,1,1,2,2],[2,2,2,4],[3,3,4],[4,4],[5]] => [5,4,3,2,1]
[3,1,4,5,2] => [[0,1,0,0,0],[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0]] => [[1,1,1,2,2],[2,2,2,5],[3,3,5],[4,5],[5]] => [5,4,3,2,1]
[3,1,5,2,4] => [[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0]] => [[1,1,1,2,2],[2,2,2,4],[3,4,4],[4,5],[5]] => [5,4,3,2,1]
[3,1,5,4,2] => [[0,1,0,0,0],[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0]] => [[1,1,1,2,2],[2,2,2,5],[3,4,5],[4,5],[5]] => [5,4,3,2,1]
[3,2,1,4,5] => [[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]] => [[1,1,1,2,3],[2,2,2,3],[3,3,3],[4,4],[5]] => [5,4,3,2,1]
[3,2,1,5,4] => [[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0]] => [[1,1,1,2,3],[2,2,2,3],[3,3,3],[4,5],[5]] => [5,4,3,2,1]
[3,2,4,1,5] => [[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]] => [[1,1,1,2,4],[2,2,2,4],[3,3,4],[4,4],[5]] => [5,4,3,2,1]
[3,2,4,5,1] => [[0,0,0,0,1],[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0]] => [[1,1,1,2,5],[2,2,2,5],[3,3,5],[4,5],[5]] => [5,4,3,2,1]
[3,2,5,1,4] => [[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0]] => [[1,1,1,2,4],[2,2,2,4],[3,4,4],[4,5],[5]] => [5,4,3,2,1]
[3,2,5,4,1] => [[0,0,0,0,1],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0]] => [[1,1,1,2,5],[2,2,2,5],[3,4,5],[4,5],[5]] => [5,4,3,2,1]
[3,4,1,2,5] => [[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]] => [[1,1,1,3,3],[2,2,3,4],[3,3,4],[4,4],[5]] => [5,4,3,2,1]
[3,4,1,5,2] => [[0,0,1,0,0],[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0]] => [[1,1,1,3,3],[2,2,3,5],[3,3,5],[4,5],[5]] => [5,4,3,2,1]
[3,4,2,1,5] => [[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]] => [[1,1,1,3,4],[2,2,3,4],[3,3,4],[4,4],[5]] => [5,4,3,2,1]
[3,4,2,5,1] => [[0,0,0,0,1],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0]] => [[1,1,1,3,5],[2,2,3,5],[3,3,5],[4,5],[5]] => [5,4,3,2,1]
[3,4,5,1,2] => [[0,0,0,1,0],[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0]] => [[1,1,1,4,4],[2,2,4,5],[3,4,5],[4,5],[5]] => [5,4,3,2,1]
[3,4,5,2,1] => [[0,0,0,0,1],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0]] => [[1,1,1,4,5],[2,2,4,5],[3,4,5],[4,5],[5]] => [5,4,3,2,1]
[3,5,1,2,4] => [[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0]] => [[1,1,1,3,3],[2,3,3,4],[3,4,4],[4,5],[5]] => [5,4,3,2,1]
[3,5,1,4,2] => [[0,0,1,0,0],[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0]] => [[1,1,1,3,3],[2,3,3,5],[3,4,5],[4,5],[5]] => [5,4,3,2,1]
>>> Load all 204 entries. <<<Map
to alternating sign matrix
Description
Maps a permutation to its permutation matrix as an alternating sign matrix.
Map
to semistandard tableau via monotone triangles
Description
The semistandard tableau corresponding the monotone triangle of an alternating sign matrix.
This is obtained by interpreting each row of the monotone triangle as an integer partition, and filling the cells of the smallest partition with ones, the second smallest with twos, and so on.
This is obtained by interpreting each row of the monotone triangle as an integer partition, and filling the cells of the smallest partition with ones, the second smallest with twos, and so on.
Map
weight
Description
The weight of a semistandard tableau as an integer partition.
The weight (or content) of a semistandard tableaux $T$ with maximal entry $m$ is the weak composition $(\alpha_1, \dots, \alpha_m)$ such that $\alpha_i$ is the number of letters $i$ occurring in $T$.
This map returns the integer partition obtained by sorting the weight into decreasing order and omitting zeros.
Since semistandard tableaux are bigraded by the size of the partition and the maximal occurring entry, this map is not graded.
The weight (or content) of a semistandard tableaux $T$ with maximal entry $m$ is the weak composition $(\alpha_1, \dots, \alpha_m)$ such that $\alpha_i$ is the number of letters $i$ occurring in $T$.
This map returns the integer partition obtained by sorting the weight into decreasing order and omitting zeros.
Since semistandard tableaux are bigraded by the size of the partition and the maximal occurring entry, this map is not graded.
searching the database
Sorry, this map was not found in the database.