Identifier
Mp00033:
Dyck paths
—to two-row standard tableau⟶
Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00240: Permutations —weak exceedance partition⟶ Set partitions
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00240: Permutations —weak exceedance partition⟶ Set partitions
Images
[1,0] => [[1],[2]] => [2,1] => {{1,2}}
[1,0,1,0] => [[1,3],[2,4]] => [2,4,1,3] => {{1,2,4},{3}}
[1,1,0,0] => [[1,2],[3,4]] => [3,4,1,2] => {{1,3},{2,4}}
[1,0,1,0,1,0] => [[1,3,5],[2,4,6]] => [2,4,6,1,3,5] => {{1,2,4},{3,6},{5}}
[1,0,1,1,0,0] => [[1,3,4],[2,5,6]] => [2,5,6,1,3,4] => {{1,2,5},{3,6},{4}}
[1,1,0,0,1,0] => [[1,2,5],[3,4,6]] => [3,4,6,1,2,5] => {{1,3,6},{2,4},{5}}
[1,1,0,1,0,0] => [[1,2,4],[3,5,6]] => [3,5,6,1,2,4] => {{1,3,6},{2,5},{4}}
[1,1,1,0,0,0] => [[1,2,3],[4,5,6]] => [4,5,6,1,2,3] => {{1,4},{2,5},{3,6}}
[1,0,1,0,1,0,1,0] => [[1,3,5,7],[2,4,6,8]] => [2,4,6,8,1,3,5,7] => {{1,2,4,8},{3,6},{5},{7}}
[1,0,1,0,1,1,0,0] => [[1,3,5,6],[2,4,7,8]] => [2,4,7,8,1,3,5,6] => {{1,2,4,8},{3,7},{5},{6}}
[1,0,1,1,0,0,1,0] => [[1,3,4,7],[2,5,6,8]] => [2,5,6,8,1,3,4,7] => {{1,2,5},{3,6},{4,8},{7}}
[1,0,1,1,0,1,0,0] => [[1,3,4,6],[2,5,7,8]] => [2,5,7,8,1,3,4,6] => {{1,2,5},{3,7},{4,8},{6}}
[1,0,1,1,1,0,0,0] => [[1,3,4,5],[2,6,7,8]] => [2,6,7,8,1,3,4,5] => {{1,2,6},{3,7},{4,8},{5}}
[1,1,0,0,1,0,1,0] => [[1,2,5,7],[3,4,6,8]] => [3,4,6,8,1,2,5,7] => {{1,3,6},{2,4,8},{5},{7}}
[1,1,0,0,1,1,0,0] => [[1,2,5,6],[3,4,7,8]] => [3,4,7,8,1,2,5,6] => {{1,3,7},{2,4,8},{5},{6}}
[1,1,0,1,0,0,1,0] => [[1,2,4,7],[3,5,6,8]] => [3,5,6,8,1,2,4,7] => {{1,3,6},{2,5},{4,8},{7}}
[1,1,0,1,0,1,0,0] => [[1,2,4,6],[3,5,7,8]] => [3,5,7,8,1,2,4,6] => {{1,3,7},{2,5},{4,8},{6}}
[1,1,0,1,1,0,0,0] => [[1,2,4,5],[3,6,7,8]] => [3,6,7,8,1,2,4,5] => {{1,3,7},{2,6},{4,8},{5}}
[1,1,1,0,0,0,1,0] => [[1,2,3,7],[4,5,6,8]] => [4,5,6,8,1,2,3,7] => {{1,4,8},{2,5},{3,6},{7}}
[1,1,1,0,0,1,0,0] => [[1,2,3,6],[4,5,7,8]] => [4,5,7,8,1,2,3,6] => {{1,4,8},{2,5},{3,7},{6}}
[1,1,1,0,1,0,0,0] => [[1,2,3,5],[4,6,7,8]] => [4,6,7,8,1,2,3,5] => {{1,4,8},{2,6},{3,7},{5}}
[1,1,1,1,0,0,0,0] => [[1,2,3,4],[5,6,7,8]] => [5,6,7,8,1,2,3,4] => {{1,5},{2,6},{3,7},{4,8}}
[1,0,1,0,1,0,1,0,1,0] => [[1,3,5,7,9],[2,4,6,8,10]] => [2,4,6,8,10,1,3,5,7,9] => {{1,2,4,8},{3,6},{5,10},{7},{9}}
[1,0,1,0,1,0,1,1,0,0] => [[1,3,5,7,8],[2,4,6,9,10]] => [2,4,6,9,10,1,3,5,7,8] => {{1,2,4,9},{3,6},{5,10},{7},{8}}
[1,0,1,0,1,1,0,0,1,0] => [[1,3,5,6,9],[2,4,7,8,10]] => [2,4,7,8,10,1,3,5,6,9] => {{1,2,4,8},{3,7},{5,10},{6},{9}}
[1,0,1,0,1,1,0,1,0,0] => [[1,3,5,6,8],[2,4,7,9,10]] => [2,4,7,9,10,1,3,5,6,8] => {{1,2,4,9},{3,7},{5,10},{6},{8}}
[1,0,1,0,1,1,1,0,0,0] => [[1,3,5,6,7],[2,4,8,9,10]] => [2,4,8,9,10,1,3,5,6,7] => {{1,2,4,9},{3,8},{5,10},{6},{7}}
[1,0,1,1,0,0,1,0,1,0] => [[1,3,4,7,9],[2,5,6,8,10]] => [2,5,6,8,10,1,3,4,7,9] => {{1,2,5,10},{3,6},{4,8},{7},{9}}
[1,0,1,1,0,0,1,1,0,0] => [[1,3,4,7,8],[2,5,6,9,10]] => [2,5,6,9,10,1,3,4,7,8] => {{1,2,5,10},{3,6},{4,9},{7},{8}}
[1,0,1,1,0,1,0,0,1,0] => [[1,3,4,6,9],[2,5,7,8,10]] => [2,5,7,8,10,1,3,4,6,9] => {{1,2,5,10},{3,7},{4,8},{6},{9}}
[1,0,1,1,0,1,0,1,0,0] => [[1,3,4,6,8],[2,5,7,9,10]] => [2,5,7,9,10,1,3,4,6,8] => {{1,2,5,10},{3,7},{4,9},{6},{8}}
[1,0,1,1,0,1,1,0,0,0] => [[1,3,4,6,7],[2,5,8,9,10]] => [2,5,8,9,10,1,3,4,6,7] => {{1,2,5,10},{3,8},{4,9},{6},{7}}
[1,0,1,1,1,0,0,0,1,0] => [[1,3,4,5,9],[2,6,7,8,10]] => [2,6,7,8,10,1,3,4,5,9] => {{1,2,6},{3,7},{4,8},{5,10},{9}}
[1,0,1,1,1,0,0,1,0,0] => [[1,3,4,5,8],[2,6,7,9,10]] => [2,6,7,9,10,1,3,4,5,8] => {{1,2,6},{3,7},{4,9},{5,10},{8}}
[1,0,1,1,1,0,1,0,0,0] => [[1,3,4,5,7],[2,6,8,9,10]] => [2,6,8,9,10,1,3,4,5,7] => {{1,2,6},{3,8},{4,9},{5,10},{7}}
[1,0,1,1,1,1,0,0,0,0] => [[1,3,4,5,6],[2,7,8,9,10]] => [2,7,8,9,10,1,3,4,5,6] => {{1,2,7},{3,8},{4,9},{5,10},{6}}
[1,1,0,0,1,0,1,0,1,0] => [[1,2,5,7,9],[3,4,6,8,10]] => [3,4,6,8,10,1,2,5,7,9] => {{1,3,6},{2,4,8},{5,10},{7},{9}}
[1,1,0,0,1,0,1,1,0,0] => [[1,2,5,7,8],[3,4,6,9,10]] => [3,4,6,9,10,1,2,5,7,8] => {{1,3,6},{2,4,9},{5,10},{7},{8}}
[1,1,0,0,1,1,0,0,1,0] => [[1,2,5,6,9],[3,4,7,8,10]] => [3,4,7,8,10,1,2,5,6,9] => {{1,3,7},{2,4,8},{5,10},{6},{9}}
[1,1,0,0,1,1,0,1,0,0] => [[1,2,5,6,8],[3,4,7,9,10]] => [3,4,7,9,10,1,2,5,6,8] => {{1,3,7},{2,4,9},{5,10},{6},{8}}
[1,1,0,0,1,1,1,0,0,0] => [[1,2,5,6,7],[3,4,8,9,10]] => [3,4,8,9,10,1,2,5,6,7] => {{1,3,8},{2,4,9},{5,10},{6},{7}}
[1,1,0,1,0,0,1,0,1,0] => [[1,2,4,7,9],[3,5,6,8,10]] => [3,5,6,8,10,1,2,4,7,9] => {{1,3,6},{2,5,10},{4,8},{7},{9}}
[1,1,0,1,0,0,1,1,0,0] => [[1,2,4,7,8],[3,5,6,9,10]] => [3,5,6,9,10,1,2,4,7,8] => {{1,3,6},{2,5,10},{4,9},{7},{8}}
[1,1,0,1,0,1,0,0,1,0] => [[1,2,4,6,9],[3,5,7,8,10]] => [3,5,7,8,10,1,2,4,6,9] => {{1,3,7},{2,5,10},{4,8},{6},{9}}
[1,1,0,1,0,1,0,1,0,0] => [[1,2,4,6,8],[3,5,7,9,10]] => [3,5,7,9,10,1,2,4,6,8] => {{1,3,7},{2,5,10},{4,9},{6},{8}}
[1,1,0,1,0,1,1,0,0,0] => [[1,2,4,6,7],[3,5,8,9,10]] => [3,5,8,9,10,1,2,4,6,7] => {{1,3,8},{2,5,10},{4,9},{6},{7}}
[1,1,0,1,1,0,0,0,1,0] => [[1,2,4,5,9],[3,6,7,8,10]] => [3,6,7,8,10,1,2,4,5,9] => {{1,3,7},{2,6},{4,8},{5,10},{9}}
[1,1,0,1,1,0,0,1,0,0] => [[1,2,4,5,8],[3,6,7,9,10]] => [3,6,7,9,10,1,2,4,5,8] => {{1,3,7},{2,6},{4,9},{5,10},{8}}
[1,1,0,1,1,0,1,0,0,0] => [[1,2,4,5,7],[3,6,8,9,10]] => [3,6,8,9,10,1,2,4,5,7] => {{1,3,8},{2,6},{4,9},{5,10},{7}}
[1,1,0,1,1,1,0,0,0,0] => [[1,2,4,5,6],[3,7,8,9,10]] => [3,7,8,9,10,1,2,4,5,6] => {{1,3,8},{2,7},{4,9},{5,10},{6}}
[1,1,1,0,0,0,1,0,1,0] => [[1,2,3,7,9],[4,5,6,8,10]] => [4,5,6,8,10,1,2,3,7,9] => {{1,4,8},{2,5,10},{3,6},{7},{9}}
[1,1,1,0,0,0,1,1,0,0] => [[1,2,3,7,8],[4,5,6,9,10]] => [4,5,6,9,10,1,2,3,7,8] => {{1,4,9},{2,5,10},{3,6},{7},{8}}
[1,1,1,0,0,1,0,0,1,0] => [[1,2,3,6,9],[4,5,7,8,10]] => [4,5,7,8,10,1,2,3,6,9] => {{1,4,8},{2,5,10},{3,7},{6},{9}}
[1,1,1,0,0,1,0,1,0,0] => [[1,2,3,6,8],[4,5,7,9,10]] => [4,5,7,9,10,1,2,3,6,8] => {{1,4,9},{2,5,10},{3,7},{6},{8}}
[1,1,1,0,0,1,1,0,0,0] => [[1,2,3,6,7],[4,5,8,9,10]] => [4,5,8,9,10,1,2,3,6,7] => {{1,4,9},{2,5,10},{3,8},{6},{7}}
[1,1,1,0,1,0,0,0,1,0] => [[1,2,3,5,9],[4,6,7,8,10]] => [4,6,7,8,10,1,2,3,5,9] => {{1,4,8},{2,6},{3,7},{5,10},{9}}
[1,1,1,0,1,0,0,1,0,0] => [[1,2,3,5,8],[4,6,7,9,10]] => [4,6,7,9,10,1,2,3,5,8] => {{1,4,9},{2,6},{3,7},{5,10},{8}}
[1,1,1,0,1,0,1,0,0,0] => [[1,2,3,5,7],[4,6,8,9,10]] => [4,6,8,9,10,1,2,3,5,7] => {{1,4,9},{2,6},{3,8},{5,10},{7}}
[1,1,1,0,1,1,0,0,0,0] => [[1,2,3,5,6],[4,7,8,9,10]] => [4,7,8,9,10,1,2,3,5,6] => {{1,4,9},{2,7},{3,8},{5,10},{6}}
[1,1,1,1,0,0,0,0,1,0] => [[1,2,3,4,9],[5,6,7,8,10]] => [5,6,7,8,10,1,2,3,4,9] => {{1,5,10},{2,6},{3,7},{4,8},{9}}
[1,1,1,1,0,0,0,1,0,0] => [[1,2,3,4,8],[5,6,7,9,10]] => [5,6,7,9,10,1,2,3,4,8] => {{1,5,10},{2,6},{3,7},{4,9},{8}}
[1,1,1,1,0,0,1,0,0,0] => [[1,2,3,4,7],[5,6,8,9,10]] => [5,6,8,9,10,1,2,3,4,7] => {{1,5,10},{2,6},{3,8},{4,9},{7}}
[1,1,1,1,0,1,0,0,0,0] => [[1,2,3,4,6],[5,7,8,9,10]] => [5,7,8,9,10,1,2,3,4,6] => {{1,5,10},{2,7},{3,8},{4,9},{6}}
[1,1,1,1,1,0,0,0,0,0] => [[1,2,3,4,5],[6,7,8,9,10]] => [6,7,8,9,10,1,2,3,4,5] => {{1,6},{2,7},{3,8},{4,9},{5,10}}
[1,0,1,0,1,0,1,0,1,0,1,0] => [[1,3,5,7,9,11],[2,4,6,8,10,12]] => [2,4,6,8,10,12,1,3,5,7,9,11] => {{1,2,4,8},{3,6,12},{5,10},{7},{9},{11}}
[1,0,1,0,1,0,1,0,1,1,0,0] => [[1,3,5,7,9,10],[2,4,6,8,11,12]] => [2,4,6,8,11,12,1,3,5,7,9,10] => {{1,2,4,8},{3,6,12},{5,11},{7},{9},{10}}
[1,0,1,0,1,0,1,1,0,0,1,0] => [[1,3,5,7,8,11],[2,4,6,9,10,12]] => [2,4,6,9,10,12,1,3,5,7,8,11] => {{1,2,4,9},{3,6,12},{5,10},{7},{8},{11}}
[1,0,1,0,1,0,1,1,0,1,0,0] => [[1,3,5,7,8,10],[2,4,6,9,11,12]] => [2,4,6,9,11,12,1,3,5,7,8,10] => {{1,2,4,9},{3,6,12},{5,11},{7},{8},{10}}
[1,0,1,0,1,0,1,1,1,0,0,0] => [[1,3,5,7,8,9],[2,4,6,10,11,12]] => [2,4,6,10,11,12,1,3,5,7,8,9] => {{1,2,4,10},{3,6,12},{5,11},{7},{8},{9}}
[1,0,1,0,1,1,0,0,1,0,1,0] => [[1,3,5,6,9,11],[2,4,7,8,10,12]] => [2,4,7,8,10,12,1,3,5,6,9,11] => {{1,2,4,8},{3,7},{5,10},{6,12},{9},{11}}
[1,0,1,0,1,1,0,0,1,1,0,0] => [[1,3,5,6,9,10],[2,4,7,8,11,12]] => [2,4,7,8,11,12,1,3,5,6,9,10] => {{1,2,4,8},{3,7},{5,11},{6,12},{9},{10}}
[1,0,1,0,1,1,0,1,0,0,1,0] => [[1,3,5,6,8,11],[2,4,7,9,10,12]] => [2,4,7,9,10,12,1,3,5,6,8,11] => {{1,2,4,9},{3,7},{5,10},{6,12},{8},{11}}
[1,0,1,0,1,1,0,1,0,1,0,0] => [[1,3,5,6,8,10],[2,4,7,9,11,12]] => [2,4,7,9,11,12,1,3,5,6,8,10] => {{1,2,4,9},{3,7},{5,11},{6,12},{8},{10}}
[1,0,1,0,1,1,0,1,1,0,0,0] => [[1,3,5,6,8,9],[2,4,7,10,11,12]] => [2,4,7,10,11,12,1,3,5,6,8,9] => {{1,2,4,10},{3,7},{5,11},{6,12},{8},{9}}
[1,0,1,0,1,1,1,0,0,0,1,0] => [[1,3,5,6,7,11],[2,4,8,9,10,12]] => [2,4,8,9,10,12,1,3,5,6,7,11] => {{1,2,4,9},{3,8},{5,10},{6,12},{7},{11}}
[1,0,1,0,1,1,1,0,0,1,0,0] => [[1,3,5,6,7,10],[2,4,8,9,11,12]] => [2,4,8,9,11,12,1,3,5,6,7,10] => {{1,2,4,9},{3,8},{5,11},{6,12},{7},{10}}
[1,0,1,0,1,1,1,0,1,0,0,0] => [[1,3,5,6,7,9],[2,4,8,10,11,12]] => [2,4,8,10,11,12,1,3,5,6,7,9] => {{1,2,4,10},{3,8},{5,11},{6,12},{7},{9}}
[1,0,1,0,1,1,1,1,0,0,0,0] => [[1,3,5,6,7,8],[2,4,9,10,11,12]] => [2,4,9,10,11,12,1,3,5,6,7,8] => {{1,2,4,10},{3,9},{5,11},{6,12},{7},{8}}
[1,0,1,1,0,0,1,0,1,0,1,0] => [[1,3,4,7,9,11],[2,5,6,8,10,12]] => [2,5,6,8,10,12,1,3,4,7,9,11] => {{1,2,5,10},{3,6,12},{4,8},{7},{9},{11}}
[1,0,1,1,0,0,1,0,1,1,0,0] => [[1,3,4,7,9,10],[2,5,6,8,11,12]] => [2,5,6,8,11,12,1,3,4,7,9,10] => {{1,2,5,11},{3,6,12},{4,8},{7},{9},{10}}
[1,0,1,1,0,0,1,1,0,0,1,0] => [[1,3,4,7,8,11],[2,5,6,9,10,12]] => [2,5,6,9,10,12,1,3,4,7,8,11] => {{1,2,5,10},{3,6,12},{4,9},{7},{8},{11}}
[1,0,1,1,0,0,1,1,0,1,0,0] => [[1,3,4,7,8,10],[2,5,6,9,11,12]] => [2,5,6,9,11,12,1,3,4,7,8,10] => {{1,2,5,11},{3,6,12},{4,9},{7},{8},{10}}
[1,0,1,1,0,0,1,1,1,0,0,0] => [[1,3,4,7,8,9],[2,5,6,10,11,12]] => [2,5,6,10,11,12,1,3,4,7,8,9] => {{1,2,5,11},{3,6,12},{4,10},{7},{8},{9}}
[1,0,1,1,0,1,0,0,1,0,1,0] => [[1,3,4,6,9,11],[2,5,7,8,10,12]] => [2,5,7,8,10,12,1,3,4,6,9,11] => {{1,2,5,10},{3,7},{4,8},{6,12},{9},{11}}
[1,0,1,1,0,1,0,0,1,1,0,0] => [[1,3,4,6,9,10],[2,5,7,8,11,12]] => [2,5,7,8,11,12,1,3,4,6,9,10] => {{1,2,5,11},{3,7},{4,8},{6,12},{9},{10}}
[1,0,1,1,0,1,0,1,0,0,1,0] => [[1,3,4,6,8,11],[2,5,7,9,10,12]] => [2,5,7,9,10,12,1,3,4,6,8,11] => {{1,2,5,10},{3,7},{4,9},{6,12},{8},{11}}
[1,0,1,1,0,1,0,1,0,1,0,0] => [[1,3,4,6,8,10],[2,5,7,9,11,12]] => [2,5,7,9,11,12,1,3,4,6,8,10] => {{1,2,5,11},{3,7},{4,9},{6,12},{8},{10}}
[1,0,1,1,0,1,0,1,1,0,0,0] => [[1,3,4,6,8,9],[2,5,7,10,11,12]] => [2,5,7,10,11,12,1,3,4,6,8,9] => {{1,2,5,11},{3,7},{4,10},{6,12},{8},{9}}
[1,0,1,1,0,1,1,0,0,0,1,0] => [[1,3,4,6,7,11],[2,5,8,9,10,12]] => [2,5,8,9,10,12,1,3,4,6,7,11] => {{1,2,5,10},{3,8},{4,9},{6,12},{7},{11}}
[1,0,1,1,0,1,1,0,0,1,0,0] => [[1,3,4,6,7,10],[2,5,8,9,11,12]] => [2,5,8,9,11,12,1,3,4,6,7,10] => {{1,2,5,11},{3,8},{4,9},{6,12},{7},{10}}
[1,0,1,1,0,1,1,0,1,0,0,0] => [[1,3,4,6,7,9],[2,5,8,10,11,12]] => [2,5,8,10,11,12,1,3,4,6,7,9] => {{1,2,5,11},{3,8},{4,10},{6,12},{7},{9}}
[1,0,1,1,0,1,1,1,0,0,0,0] => [[1,3,4,6,7,8],[2,5,9,10,11,12]] => [2,5,9,10,11,12,1,3,4,6,7,8] => {{1,2,5,11},{3,9},{4,10},{6,12},{7},{8}}
[1,0,1,1,1,0,0,0,1,0,1,0] => [[1,3,4,5,9,11],[2,6,7,8,10,12]] => [2,6,7,8,10,12,1,3,4,5,9,11] => {{1,2,6,12},{3,7},{4,8},{5,10},{9},{11}}
[1,0,1,1,1,0,0,0,1,1,0,0] => [[1,3,4,5,9,10],[2,6,7,8,11,12]] => [2,6,7,8,11,12,1,3,4,5,9,10] => {{1,2,6,12},{3,7},{4,8},{5,11},{9},{10}}
[1,0,1,1,1,0,0,1,0,0,1,0] => [[1,3,4,5,8,11],[2,6,7,9,10,12]] => [2,6,7,9,10,12,1,3,4,5,8,11] => {{1,2,6,12},{3,7},{4,9},{5,10},{8},{11}}
[1,0,1,1,1,0,0,1,0,1,0,0] => [[1,3,4,5,8,10],[2,6,7,9,11,12]] => [2,6,7,9,11,12,1,3,4,5,8,10] => {{1,2,6,12},{3,7},{4,9},{5,11},{8},{10}}
[1,0,1,1,1,0,0,1,1,0,0,0] => [[1,3,4,5,8,9],[2,6,7,10,11,12]] => [2,6,7,10,11,12,1,3,4,5,8,9] => {{1,2,6,12},{3,7},{4,10},{5,11},{8},{9}}
[1,0,1,1,1,0,1,0,0,0,1,0] => [[1,3,4,5,7,11],[2,6,8,9,10,12]] => [2,6,8,9,10,12,1,3,4,5,7,11] => {{1,2,6,12},{3,8},{4,9},{5,10},{7},{11}}
[1,0,1,1,1,0,1,0,0,1,0,0] => [[1,3,4,5,7,10],[2,6,8,9,11,12]] => [2,6,8,9,11,12,1,3,4,5,7,10] => {{1,2,6,12},{3,8},{4,9},{5,11},{7},{10}}
[1,0,1,1,1,0,1,0,1,0,0,0] => [[1,3,4,5,7,9],[2,6,8,10,11,12]] => [2,6,8,10,11,12,1,3,4,5,7,9] => {{1,2,6,12},{3,8},{4,10},{5,11},{7},{9}}
[1,0,1,1,1,0,1,1,0,0,0,0] => [[1,3,4,5,7,8],[2,6,9,10,11,12]] => [2,6,9,10,11,12,1,3,4,5,7,8] => {{1,2,6,12},{3,9},{4,10},{5,11},{7},{8}}
>>> Load all 196 entries. <<<Map
to two-row standard tableau
Description
Return a standard tableau of shape $(n,n)$ where $n$ is the semilength of the Dyck path.
Given a Dyck path $D$, its image is given by recording the positions of the up-steps in the first row and the positions of the down-steps in the second row.
Given a Dyck path $D$, its image is given by recording the positions of the up-steps in the first row and the positions of the down-steps in the second row.
Map
reading word permutation
Description
Return the permutation obtained by reading the entries of the tableau row by row, starting with the bottom-most row in English notation.
Map
weak exceedance partition
Description
The set partition induced by the weak exceedances of a permutation.
This is the coarsest set partition that contains all arcs $(i, \pi(i))$ with $i\leq\pi(i)$.
This is the coarsest set partition that contains all arcs $(i, \pi(i))$ with $i\leq\pi(i)$.
searching the database
Sorry, this map was not found in the database.