Images
            
            
              ([],1) => ([],1) => ([],1)
            
              ([],2) => ([],1) => ([],1)
            
              ([(0,1)],2) => ([(0,1)],2) => ([],2)
            
              ([],3) => ([],1) => ([],1)
            
              ([(1,2)],3) => ([(0,1)],2) => ([],2)
            
              ([(0,2),(1,2)],3) => ([(0,1)],2) => ([],2)
            
              ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => ([],3)
            
              ([],4) => ([],1) => ([],1)
            
              ([(2,3)],4) => ([(0,1)],2) => ([],2)
            
              ([(1,3),(2,3)],4) => ([(0,1)],2) => ([],2)
            
              ([(0,3),(1,3),(2,3)],4) => ([(0,1)],2) => ([],2)
            
              ([(0,3),(1,2)],4) => ([(0,1)],2) => ([],2)
            
              ([(0,3),(1,2),(2,3)],4) => ([(0,1)],2) => ([],2)
            
              ([(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => ([],3)
            
              ([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => ([],3)
            
              ([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,1)],2) => ([],2)
            
              ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => ([],3)
            
              ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([],4)
            
              ([],5) => ([],1) => ([],1)
            
              ([(3,4)],5) => ([(0,1)],2) => ([],2)
            
              ([(2,4),(3,4)],5) => ([(0,1)],2) => ([],2)
            
              ([(1,4),(2,4),(3,4)],5) => ([(0,1)],2) => ([],2)
            
              ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1)],2) => ([],2)
            
              ([(1,4),(2,3)],5) => ([(0,1)],2) => ([],2)
            
              ([(1,4),(2,3),(3,4)],5) => ([(0,1)],2) => ([],2)
            
              ([(0,1),(2,4),(3,4)],5) => ([(0,1)],2) => ([],2)
            
              ([(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3)
            
              ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,1)],2) => ([],2)
            
              ([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3)
            
              ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3)
            
              ([(1,3),(1,4),(2,3),(2,4)],5) => ([(0,1)],2) => ([],2)
            
              ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,1)],2) => ([],2)
            
              ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3)
            
              ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3)
            
              ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3)
            
              ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,1)],2) => ([],2)
            
              ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3)
            
              ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,1)],2) => ([],2)
            
              ([(0,1),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3)
            
              ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3)
            
              ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3)
            
              ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([],5)
            
              ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3)
            
              ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3)
            
              ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3)
            
              ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([],4)
            
              ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([],4)
            
              ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([],4)
            
              ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3)
            
              ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3)
            
              ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([],4)
            
              ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([],5)
            
              ([],6) => ([],1) => ([],1)
            
              ([(4,5)],6) => ([(0,1)],2) => ([],2)
            
              ([(3,5),(4,5)],6) => ([(0,1)],2) => ([],2)
            
              ([(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => ([],2)
            
              ([(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => ([],2)
            
              ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => ([],2)
            
              ([(2,5),(3,4)],6) => ([(0,1)],2) => ([],2)
            
              ([(2,5),(3,4),(4,5)],6) => ([(0,1)],2) => ([],2)
            
              ([(1,2),(3,5),(4,5)],6) => ([(0,1)],2) => ([],2)
            
              ([(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3)
            
              ([(1,5),(2,5),(3,4),(4,5)],6) => ([(0,1)],2) => ([],2)
            
              ([(0,1),(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => ([],2)
            
              ([(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3)
            
              ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,1)],2) => ([],2)
            
              ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3)
            
              ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3)
            
              ([(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => ([],2)
            
              ([(0,5),(1,5),(2,4),(3,4)],6) => ([(0,1)],2) => ([],2)
            
              ([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,1)],2) => ([],2)
            
              ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,1)],2) => ([],2)
            
              ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3)
            
              ([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3)
            
              ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,1)],2) => ([],2)
            
              ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,1)],2) => ([],2)
            
              ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3)
            
              ([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3)
            
              ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3)
            
              ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => ([],2)
            
              ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => ([],2)
            
              ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => ([],2)
            
              ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3)
            
              ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3)
            
              ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3)
            
              ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => ([],2)
            
              ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3)
            
              ([(0,5),(1,4),(2,3)],6) => ([(0,1)],2) => ([],2)
            
              ([(1,5),(2,4),(3,4),(3,5)],6) => ([(0,1)],2) => ([],2)
            
              ([(0,1),(2,5),(3,4),(4,5)],6) => ([(0,1)],2) => ([],2)
            
              ([(1,2),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3)
            
              ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,1)],2) => ([],2)
            
              ([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3)
            
              ([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3)
            
              ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3)
            
              ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3)
            
              ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3)
            
              ([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([],5)
            
              ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,1)],2) => ([],2)
            
              ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3)
            
              ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([],5)
            
>>> Load all 208 entries. <<<Map
            core
	Description
            The core of a graph.
The core of a graph $G$ is the smallest graph $C$ such that there is a homomorphism from $G$ to $C$ and a homomorphism from $C$ to $G$.
Note that the core of a graph is not necessarily connected, see [2].
        The core of a graph $G$ is the smallest graph $C$ such that there is a homomorphism from $G$ to $C$ and a homomorphism from $C$ to $G$.
Note that the core of a graph is not necessarily connected, see [2].
Map
            weak duplicate order
	Description
            The weak duplicate order of the de-duplicate of a graph.
Let $G=(V, E)$ be a graph and let $N=\{ N_v | v\in V\}$ be the set of (distinct) neighbourhoods of $G$.
This map yields the poset obtained by ordering $N$ by reverse inclusion.
        Let $G=(V, E)$ be a graph and let $N=\{ N_v | v\in V\}$ be the set of (distinct) neighbourhoods of $G$.
This map yields the poset obtained by ordering $N$ by reverse inclusion.
searching the database
Sorry, this map was not found in the database.