Images
([],1) => ([],1) => ([],1)
([],2) => ([],1) => ([],1)
([(0,1)],2) => ([(0,1)],2) => ([],2)
([],3) => ([],1) => ([],1)
([(1,2)],3) => ([(0,1)],2) => ([],2)
([(0,2),(1,2)],3) => ([(0,1)],2) => ([],2)
([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => ([],3)
([],4) => ([],1) => ([],1)
([(2,3)],4) => ([(0,1)],2) => ([],2)
([(1,3),(2,3)],4) => ([(0,1)],2) => ([],2)
([(0,3),(1,3),(2,3)],4) => ([(0,1)],2) => ([],2)
([(0,3),(1,2)],4) => ([(0,1)],2) => ([],2)
([(0,3),(1,2),(2,3)],4) => ([(0,1)],2) => ([],2)
([(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => ([],3)
([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => ([],3)
([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,1)],2) => ([],2)
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => ([],3)
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([],4)
([],5) => ([],1) => ([],1)
([(3,4)],5) => ([(0,1)],2) => ([],2)
([(2,4),(3,4)],5) => ([(0,1)],2) => ([],2)
([(1,4),(2,4),(3,4)],5) => ([(0,1)],2) => ([],2)
([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1)],2) => ([],2)
([(1,4),(2,3)],5) => ([(0,1)],2) => ([],2)
([(1,4),(2,3),(3,4)],5) => ([(0,1)],2) => ([],2)
([(0,1),(2,4),(3,4)],5) => ([(0,1)],2) => ([],2)
([(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3)
([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,1)],2) => ([],2)
([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3)
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3)
([(1,3),(1,4),(2,3),(2,4)],5) => ([(0,1)],2) => ([],2)
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,1)],2) => ([],2)
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3)
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3)
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3)
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,1)],2) => ([],2)
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3)
([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,1)],2) => ([],2)
([(0,1),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3)
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3)
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3)
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([],5)
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3)
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3)
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3)
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([],4)
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([],4)
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([],4)
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3)
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3)
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([],4)
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([],5)
([],6) => ([],1) => ([],1)
([(4,5)],6) => ([(0,1)],2) => ([],2)
([(3,5),(4,5)],6) => ([(0,1)],2) => ([],2)
([(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => ([],2)
([(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => ([],2)
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => ([],2)
([(2,5),(3,4)],6) => ([(0,1)],2) => ([],2)
([(2,5),(3,4),(4,5)],6) => ([(0,1)],2) => ([],2)
([(1,2),(3,5),(4,5)],6) => ([(0,1)],2) => ([],2)
([(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3)
([(1,5),(2,5),(3,4),(4,5)],6) => ([(0,1)],2) => ([],2)
([(0,1),(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => ([],2)
([(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3)
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,1)],2) => ([],2)
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3)
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3)
([(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => ([],2)
([(0,5),(1,5),(2,4),(3,4)],6) => ([(0,1)],2) => ([],2)
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,1)],2) => ([],2)
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,1)],2) => ([],2)
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3)
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3)
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,1)],2) => ([],2)
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,1)],2) => ([],2)
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3)
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3)
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3)
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => ([],2)
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => ([],2)
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => ([],2)
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3)
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3)
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3)
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => ([],2)
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3)
([(0,5),(1,4),(2,3)],6) => ([(0,1)],2) => ([],2)
([(1,5),(2,4),(3,4),(3,5)],6) => ([(0,1)],2) => ([],2)
([(0,1),(2,5),(3,4),(4,5)],6) => ([(0,1)],2) => ([],2)
([(1,2),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3)
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,1)],2) => ([],2)
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3)
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3)
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3)
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3)
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3)
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([],5)
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,1)],2) => ([],2)
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3)
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([],5)
>>> Load all 208 entries. <<<Map
core
Description
The core of a graph.
The core of a graph G is the smallest graph C such that there is a homomorphism from G to C and a homomorphism from C to G.
Note that the core of a graph is not necessarily connected, see [2].
The core of a graph G is the smallest graph C such that there is a homomorphism from G to C and a homomorphism from C to G.
Note that the core of a graph is not necessarily connected, see [2].
Map
weak duplicate order
Description
The weak duplicate order of the de-duplicate of a graph.
Let G=(V,E) be a graph and let N={Nv|v∈V} be the set of (distinct) neighbourhoods of G.
This map yields the poset obtained by ordering N by reverse inclusion.
Let G=(V,E) be a graph and let N={Nv|v∈V} be the set of (distinct) neighbourhoods of G.
This map yields the poset obtained by ordering N by reverse inclusion.
searching the database
Sorry, this map was not found in the database.