Identifier
Mp00092:
Perfect matchings
—to set partition⟶
Set partitions
Mp00249: Set partitions —Callan switch⟶ Set partitions
Mp00249: Set partitions —Callan switch⟶ Set partitions
Images
[(1,2)] => {{1,2}} => {{1,2}}
[(1,2),(3,4)] => {{1,2},{3,4}} => {{1,2},{3,4}}
[(1,3),(2,4)] => {{1,3},{2,4}} => {{1,3},{2,4}}
[(1,4),(2,3)] => {{1,4},{2,3}} => {{1,4},{2,3}}
[(1,2),(3,4),(5,6)] => {{1,2},{3,4},{5,6}} => {{1,2},{3,4},{5,6}}
[(1,3),(2,4),(5,6)] => {{1,3},{2,4},{5,6}} => {{1,3},{2,4},{5,6}}
[(1,4),(2,3),(5,6)] => {{1,4},{2,3},{5,6}} => {{1,4},{2,3},{5,6}}
[(1,5),(2,3),(4,6)] => {{1,5},{2,3},{4,6}} => {{1,5},{2,3},{4,6}}
[(1,6),(2,3),(4,5)] => {{1,6},{2,3},{4,5}} => {{1,6},{2,3},{4,5}}
[(1,6),(2,4),(3,5)] => {{1,6},{2,4},{3,5}} => {{1,6},{2,4},{3,5}}
[(1,5),(2,4),(3,6)] => {{1,5},{2,4},{3,6}} => {{1,5},{2,4},{3,6}}
[(1,4),(2,5),(3,6)] => {{1,4},{2,5},{3,6}} => {{1,4},{2,5},{3,6}}
[(1,3),(2,5),(4,6)] => {{1,3},{2,5},{4,6}} => {{1,3},{2,5},{4,6}}
[(1,2),(3,5),(4,6)] => {{1,2},{3,5},{4,6}} => {{1,2},{3,5},{4,6}}
[(1,2),(3,6),(4,5)] => {{1,2},{3,6},{4,5}} => {{1,2},{3,6},{4,5}}
[(1,3),(2,6),(4,5)] => {{1,3},{2,6},{4,5}} => {{1,3},{2,6},{4,5}}
[(1,4),(2,6),(3,5)] => {{1,4},{2,6},{3,5}} => {{1,4},{2,6},{3,5}}
[(1,5),(2,6),(3,4)] => {{1,5},{2,6},{3,4}} => {{1,5},{2,6},{3,4}}
[(1,6),(2,5),(3,4)] => {{1,6},{2,5},{3,4}} => {{1,6},{2,5},{3,4}}
[(1,2),(3,4),(5,6),(7,8)] => {{1,2},{3,4},{5,6},{7,8}} => {{1,2},{3,4},{5,6},{7,8}}
[(1,3),(2,4),(5,6),(7,8)] => {{1,3},{2,4},{5,6},{7,8}} => {{1,3},{2,4},{5,6},{7,8}}
[(1,4),(2,3),(5,6),(7,8)] => {{1,4},{2,3},{5,6},{7,8}} => {{1,4},{2,3},{5,6},{7,8}}
[(1,5),(2,3),(4,6),(7,8)] => {{1,5},{2,3},{4,6},{7,8}} => {{1,5},{2,3},{4,6},{7,8}}
[(1,6),(2,3),(4,5),(7,8)] => {{1,6},{2,3},{4,5},{7,8}} => {{1,6},{2,3},{4,5},{7,8}}
[(1,7),(2,3),(4,5),(6,8)] => {{1,7},{2,3},{4,5},{6,8}} => {{1,7},{2,3},{4,5},{6,8}}
[(1,8),(2,3),(4,5),(6,7)] => {{1,8},{2,3},{4,5},{6,7}} => {{1,8},{2,3},{4,5},{6,7}}
[(1,8),(2,4),(3,5),(6,7)] => {{1,8},{2,4},{3,5},{6,7}} => {{1,8},{2,4},{3,5},{6,7}}
[(1,7),(2,4),(3,5),(6,8)] => {{1,7},{2,4},{3,5},{6,8}} => {{1,7},{2,4},{3,5},{6,8}}
[(1,6),(2,4),(3,5),(7,8)] => {{1,6},{2,4},{3,5},{7,8}} => {{1,6},{2,4},{3,5},{7,8}}
[(1,5),(2,4),(3,6),(7,8)] => {{1,5},{2,4},{3,6},{7,8}} => {{1,5},{2,4},{3,6},{7,8}}
[(1,4),(2,5),(3,6),(7,8)] => {{1,4},{2,5},{3,6},{7,8}} => {{1,4},{2,5},{3,6},{7,8}}
[(1,3),(2,5),(4,6),(7,8)] => {{1,3},{2,5},{4,6},{7,8}} => {{1,3},{2,5},{4,6},{7,8}}
[(1,2),(3,5),(4,6),(7,8)] => {{1,2},{3,5},{4,6},{7,8}} => {{1,2},{3,5},{4,6},{7,8}}
[(1,2),(3,6),(4,5),(7,8)] => {{1,2},{3,6},{4,5},{7,8}} => {{1,2},{3,6},{4,5},{7,8}}
[(1,3),(2,6),(4,5),(7,8)] => {{1,3},{2,6},{4,5},{7,8}} => {{1,3},{2,6},{4,5},{7,8}}
[(1,4),(2,6),(3,5),(7,8)] => {{1,4},{2,6},{3,5},{7,8}} => {{1,4},{2,6},{3,5},{7,8}}
[(1,5),(2,6),(3,4),(7,8)] => {{1,5},{2,6},{3,4},{7,8}} => {{1,5},{2,6},{3,4},{7,8}}
[(1,6),(2,5),(3,4),(7,8)] => {{1,6},{2,5},{3,4},{7,8}} => {{1,6},{2,5},{3,4},{7,8}}
[(1,7),(2,5),(3,4),(6,8)] => {{1,7},{2,5},{3,4},{6,8}} => {{1,7},{2,5},{3,4},{6,8}}
[(1,8),(2,5),(3,4),(6,7)] => {{1,8},{2,5},{3,4},{6,7}} => {{1,8},{2,5},{3,4},{6,7}}
[(1,8),(2,6),(3,4),(5,7)] => {{1,8},{2,6},{3,4},{5,7}} => {{1,8},{2,6},{3,4},{5,7}}
[(1,7),(2,6),(3,4),(5,8)] => {{1,7},{2,6},{3,4},{5,8}} => {{1,7},{2,6},{3,4},{5,8}}
[(1,6),(2,7),(3,4),(5,8)] => {{1,6},{2,7},{3,4},{5,8}} => {{1,6},{2,7},{3,4},{5,8}}
[(1,5),(2,7),(3,4),(6,8)] => {{1,5},{2,7},{3,4},{6,8}} => {{1,5},{2,7},{3,4},{6,8}}
[(1,4),(2,7),(3,5),(6,8)] => {{1,4},{2,7},{3,5},{6,8}} => {{1,4},{2,7},{3,5},{6,8}}
[(1,3),(2,7),(4,5),(6,8)] => {{1,3},{2,7},{4,5},{6,8}} => {{1,3},{2,7},{4,5},{6,8}}
[(1,2),(3,7),(4,5),(6,8)] => {{1,2},{3,7},{4,5},{6,8}} => {{1,2},{3,7},{4,5},{6,8}}
[(1,2),(3,8),(4,5),(6,7)] => {{1,2},{3,8},{4,5},{6,7}} => {{1,2},{3,8},{4,5},{6,7}}
[(1,3),(2,8),(4,5),(6,7)] => {{1,3},{2,8},{4,5},{6,7}} => {{1,3},{2,8},{4,5},{6,7}}
[(1,4),(2,8),(3,5),(6,7)] => {{1,4},{2,8},{3,5},{6,7}} => {{1,4},{2,8},{3,5},{6,7}}
[(1,5),(2,8),(3,4),(6,7)] => {{1,5},{2,8},{3,4},{6,7}} => {{1,5},{2,8},{3,4},{6,7}}
[(1,6),(2,8),(3,4),(5,7)] => {{1,6},{2,8},{3,4},{5,7}} => {{1,6},{2,8},{3,4},{5,7}}
[(1,7),(2,8),(3,4),(5,6)] => {{1,7},{2,8},{3,4},{5,6}} => {{1,7},{2,8},{3,4},{5,6}}
[(1,8),(2,7),(3,4),(5,6)] => {{1,8},{2,7},{3,4},{5,6}} => {{1,8},{2,7},{3,4},{5,6}}
[(1,8),(2,7),(3,5),(4,6)] => {{1,8},{2,7},{3,5},{4,6}} => {{1,8},{2,7},{3,5},{4,6}}
[(1,7),(2,8),(3,5),(4,6)] => {{1,7},{2,8},{3,5},{4,6}} => {{1,7},{2,8},{3,5},{4,6}}
[(1,6),(2,8),(3,5),(4,7)] => {{1,6},{2,8},{3,5},{4,7}} => {{1,6},{2,8},{3,5},{4,7}}
[(1,5),(2,8),(3,6),(4,7)] => {{1,5},{2,8},{3,6},{4,7}} => {{1,5},{2,8},{3,6},{4,7}}
[(1,4),(2,8),(3,6),(5,7)] => {{1,4},{2,8},{3,6},{5,7}} => {{1,4},{2,8},{3,6},{5,7}}
[(1,3),(2,8),(4,6),(5,7)] => {{1,3},{2,8},{4,6},{5,7}} => {{1,3},{2,8},{4,6},{5,7}}
[(1,2),(3,8),(4,6),(5,7)] => {{1,2},{3,8},{4,6},{5,7}} => {{1,2},{3,8},{4,6},{5,7}}
[(1,2),(3,7),(4,6),(5,8)] => {{1,2},{3,7},{4,6},{5,8}} => {{1,2},{3,7},{4,6},{5,8}}
[(1,3),(2,7),(4,6),(5,8)] => {{1,3},{2,7},{4,6},{5,8}} => {{1,3},{2,7},{4,6},{5,8}}
[(1,4),(2,7),(3,6),(5,8)] => {{1,4},{2,7},{3,6},{5,8}} => {{1,4},{2,7},{3,6},{5,8}}
[(1,5),(2,7),(3,6),(4,8)] => {{1,5},{2,7},{3,6},{4,8}} => {{1,5},{2,7},{3,6},{4,8}}
[(1,6),(2,7),(3,5),(4,8)] => {{1,6},{2,7},{3,5},{4,8}} => {{1,6},{2,7},{3,5},{4,8}}
[(1,7),(2,6),(3,5),(4,8)] => {{1,7},{2,6},{3,5},{4,8}} => {{1,7},{2,6},{3,5},{4,8}}
[(1,8),(2,6),(3,5),(4,7)] => {{1,8},{2,6},{3,5},{4,7}} => {{1,8},{2,6},{3,5},{4,7}}
[(1,8),(2,5),(3,6),(4,7)] => {{1,8},{2,5},{3,6},{4,7}} => {{1,8},{2,5},{3,6},{4,7}}
[(1,7),(2,5),(3,6),(4,8)] => {{1,7},{2,5},{3,6},{4,8}} => {{1,7},{2,5},{3,6},{4,8}}
[(1,6),(2,5),(3,7),(4,8)] => {{1,6},{2,5},{3,7},{4,8}} => {{1,6},{2,5},{3,7},{4,8}}
[(1,5),(2,6),(3,7),(4,8)] => {{1,5},{2,6},{3,7},{4,8}} => {{1,5},{2,6},{3,7},{4,8}}
[(1,4),(2,6),(3,7),(5,8)] => {{1,4},{2,6},{3,7},{5,8}} => {{1,4},{2,6},{3,7},{5,8}}
[(1,3),(2,6),(4,7),(5,8)] => {{1,3},{2,6},{4,7},{5,8}} => {{1,3},{2,6},{4,7},{5,8}}
[(1,2),(3,6),(4,7),(5,8)] => {{1,2},{3,6},{4,7},{5,8}} => {{1,2},{3,6},{4,7},{5,8}}
[(1,2),(3,5),(4,7),(6,8)] => {{1,2},{3,5},{4,7},{6,8}} => {{1,2},{3,5},{4,7},{6,8}}
[(1,3),(2,5),(4,7),(6,8)] => {{1,3},{2,5},{4,7},{6,8}} => {{1,3},{2,5},{4,7},{6,8}}
[(1,4),(2,5),(3,7),(6,8)] => {{1,4},{2,5},{3,7},{6,8}} => {{1,4},{2,5},{3,7},{6,8}}
[(1,5),(2,4),(3,7),(6,8)] => {{1,5},{2,4},{3,7},{6,8}} => {{1,5},{2,4},{3,7},{6,8}}
[(1,6),(2,4),(3,7),(5,8)] => {{1,6},{2,4},{3,7},{5,8}} => {{1,6},{2,4},{3,7},{5,8}}
[(1,7),(2,4),(3,6),(5,8)] => {{1,7},{2,4},{3,6},{5,8}} => {{1,7},{2,4},{3,6},{5,8}}
[(1,8),(2,4),(3,6),(5,7)] => {{1,8},{2,4},{3,6},{5,7}} => {{1,8},{2,4},{3,6},{5,7}}
[(1,8),(2,3),(4,6),(5,7)] => {{1,8},{2,3},{4,6},{5,7}} => {{1,8},{2,3},{4,6},{5,7}}
[(1,7),(2,3),(4,6),(5,8)] => {{1,7},{2,3},{4,6},{5,8}} => {{1,7},{2,3},{4,6},{5,8}}
[(1,6),(2,3),(4,7),(5,8)] => {{1,6},{2,3},{4,7},{5,8}} => {{1,6},{2,3},{4,7},{5,8}}
[(1,5),(2,3),(4,7),(6,8)] => {{1,5},{2,3},{4,7},{6,8}} => {{1,5},{2,3},{4,7},{6,8}}
[(1,4),(2,3),(5,7),(6,8)] => {{1,4},{2,3},{5,7},{6,8}} => {{1,4},{2,3},{5,7},{6,8}}
[(1,3),(2,4),(5,7),(6,8)] => {{1,3},{2,4},{5,7},{6,8}} => {{1,3},{2,4},{5,7},{6,8}}
[(1,2),(3,4),(5,7),(6,8)] => {{1,2},{3,4},{5,7},{6,8}} => {{1,2},{3,4},{5,7},{6,8}}
[(1,2),(3,4),(5,8),(6,7)] => {{1,2},{3,4},{5,8},{6,7}} => {{1,2},{3,4},{5,8},{6,7}}
[(1,3),(2,4),(5,8),(6,7)] => {{1,3},{2,4},{5,8},{6,7}} => {{1,3},{2,4},{5,8},{6,7}}
[(1,4),(2,3),(5,8),(6,7)] => {{1,4},{2,3},{5,8},{6,7}} => {{1,4},{2,3},{5,8},{6,7}}
[(1,5),(2,3),(4,8),(6,7)] => {{1,5},{2,3},{4,8},{6,7}} => {{1,5},{2,3},{4,8},{6,7}}
[(1,6),(2,3),(4,8),(5,7)] => {{1,6},{2,3},{4,8},{5,7}} => {{1,6},{2,3},{4,8},{5,7}}
[(1,7),(2,3),(4,8),(5,6)] => {{1,7},{2,3},{4,8},{5,6}} => {{1,7},{2,3},{4,8},{5,6}}
[(1,8),(2,3),(4,7),(5,6)] => {{1,8},{2,3},{4,7},{5,6}} => {{1,8},{2,3},{4,7},{5,6}}
[(1,8),(2,4),(3,7),(5,6)] => {{1,8},{2,4},{3,7},{5,6}} => {{1,8},{2,4},{3,7},{5,6}}
[(1,7),(2,4),(3,8),(5,6)] => {{1,7},{2,4},{3,8},{5,6}} => {{1,7},{2,4},{3,8},{5,6}}
[(1,6),(2,4),(3,8),(5,7)] => {{1,6},{2,4},{3,8},{5,7}} => {{1,6},{2,4},{3,8},{5,7}}
[(1,5),(2,4),(3,8),(6,7)] => {{1,5},{2,4},{3,8},{6,7}} => {{1,5},{2,4},{3,8},{6,7}}
[(1,4),(2,5),(3,8),(6,7)] => {{1,4},{2,5},{3,8},{6,7}} => {{1,4},{2,5},{3,8},{6,7}}
>>> Load all 124 entries. <<<Map
to set partition
Description
Return the set partition corresponding to the perfect matching.
Map
Callan switch
Description
Switch the first closer and the minimum of the smallest closer and the second element of the block containing 1 in a set partition.
More precisely, this involution implements a joint symmetry between St000971The smallest closer of a set partition. and St001784The minimum of the smallest closer and the second element of the block containing 1 in a set partition..
More precisely, this involution implements a joint symmetry between St000971The smallest closer of a set partition. and St001784The minimum of the smallest closer and the second element of the block containing 1 in a set partition..
searching the database
Sorry, this map was not found in the database.