Identifier
Mp00046:
Ordered trees
—to graph⟶
Graphs
Mp00275: Graphs —to edge-partition of connected components⟶ Integer partitions
Mp00275: Graphs —to edge-partition of connected components⟶ Integer partitions
Images
[] => ([],1) => []
[[]] => ([(0,1)],2) => [1]
[[],[]] => ([(0,2),(1,2)],3) => [2]
[[[]]] => ([(0,2),(1,2)],3) => [2]
[[],[],[]] => ([(0,3),(1,3),(2,3)],4) => [3]
[[],[[]]] => ([(0,3),(1,2),(2,3)],4) => [3]
[[[]],[]] => ([(0,3),(1,2),(2,3)],4) => [3]
[[[],[]]] => ([(0,3),(1,3),(2,3)],4) => [3]
[[[[]]]] => ([(0,3),(1,2),(2,3)],4) => [3]
[[],[],[],[]] => ([(0,4),(1,4),(2,4),(3,4)],5) => [4]
[[],[],[[]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => [4]
[[],[[]],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => [4]
[[],[[],[]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => [4]
[[],[[[]]]] => ([(0,4),(1,3),(2,3),(2,4)],5) => [4]
[[[]],[],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => [4]
[[[]],[[]]] => ([(0,4),(1,3),(2,3),(2,4)],5) => [4]
[[[],[]],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => [4]
[[[[]]],[]] => ([(0,4),(1,3),(2,3),(2,4)],5) => [4]
[[[],[],[]]] => ([(0,4),(1,4),(2,4),(3,4)],5) => [4]
[[[],[[]]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => [4]
[[[[]],[]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => [4]
[[[[],[]]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => [4]
[[[[[]]]]] => ([(0,4),(1,3),(2,3),(2,4)],5) => [4]
[[],[],[],[],[]] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => [5]
[[],[],[],[[]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [5]
[[],[],[[]],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [5]
[[],[],[[],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => [5]
[[],[],[[[]]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [5]
[[],[[]],[],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [5]
[[],[[]],[[]]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [5]
[[],[[],[]],[]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => [5]
[[],[[[]]],[]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [5]
[[],[[],[],[]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [5]
[[],[[],[[]]]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [5]
[[],[[[]],[]]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [5]
[[],[[[],[]]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [5]
[[],[[[[]]]]] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => [5]
[[[]],[],[],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [5]
[[[]],[],[[]]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [5]
[[[]],[[]],[]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [5]
[[[]],[[],[]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [5]
[[[]],[[[]]]] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => [5]
[[[],[]],[],[]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => [5]
[[[[]]],[],[]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [5]
[[[],[]],[[]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [5]
[[[[]]],[[]]] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => [5]
[[[],[],[]],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [5]
[[[],[[]]],[]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [5]
[[[[]],[]],[]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [5]
[[[[],[]]],[]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [5]
[[[[[]]]],[]] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => [5]
[[[],[],[],[]]] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => [5]
[[[],[],[[]]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [5]
[[[],[[]],[]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [5]
[[[],[[],[]]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => [5]
[[[],[[[]]]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [5]
[[[[]],[],[]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [5]
[[[[]],[[]]]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [5]
[[[[],[]],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => [5]
[[[[[]]],[]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [5]
[[[[],[],[]]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [5]
[[[[],[[]]]]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [5]
[[[[[]],[]]]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [5]
[[[[[],[]]]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [5]
[[[[[[]]]]]] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => [5]
[[],[],[],[],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => [6]
[[],[],[],[],[[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => [6]
[[],[],[],[[]],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => [6]
[[],[],[],[[],[]]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => [6]
[[],[],[],[[[]]]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => [6]
[[],[],[[]],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => [6]
[[],[],[[]],[[]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => [6]
[[],[],[[],[]],[]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => [6]
[[],[],[[[]]],[]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => [6]
[[],[],[[],[],[]]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => [6]
[[],[],[[],[[]]]] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => [6]
[[],[],[[[]],[]]] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => [6]
[[],[],[[[],[]]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => [6]
[[],[],[[[[]]]]] => ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7) => [6]
[[],[[]],[],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => [6]
[[],[[]],[],[[]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => [6]
[[],[[]],[[]],[]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => [6]
[[],[[]],[[],[]]] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => [6]
[[],[[]],[[[]]]] => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7) => [6]
[[],[[],[]],[],[]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => [6]
[[],[[[]]],[],[]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => [6]
[[],[[],[]],[[]]] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => [6]
[[],[[[]]],[[]]] => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7) => [6]
[[],[[],[],[]],[]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => [6]
[[],[[],[[]]],[]] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => [6]
[[],[[[]],[]],[]] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => [6]
[[],[[[],[]]],[]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => [6]
[[],[[[[]]]],[]] => ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7) => [6]
[[],[[],[],[],[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => [6]
[[],[[],[],[[]]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => [6]
[[],[[],[[]],[]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => [6]
[[],[[],[[],[]]]] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => [6]
[[],[[],[[[]]]]] => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7) => [6]
[[],[[[]],[],[]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => [6]
[[],[[[]],[[]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => [6]
[[],[[[],[]],[]]] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => [6]
>>> Load all 197 entries. <<<Map
to graph
Description
Return the undirected graph obtained from the tree nodes and edges.
Map
to edge-partition of connected components
Description
Sends a graph to the partition recording the number of edges in its connected components.
searching the database
Sorry, this map was not found in the database.