Identifier
Mp00095:
Integer partitions
—to binary word⟶
Binary words
Mp00135: Binary words —rotate front-to-back⟶ Binary words
Mp00278: Binary words —rowmotion⟶ Binary words
Mp00135: Binary words —rotate front-to-back⟶ Binary words
Mp00278: Binary words —rowmotion⟶ Binary words
Images
[1] => 10 => 01 => 10
[2] => 100 => 001 => 010
[1,1] => 110 => 101 => 110
[3] => 1000 => 0001 => 0010
[2,1] => 1010 => 0101 => 1010
[1,1,1] => 1110 => 1101 => 1110
[4] => 10000 => 00001 => 00010
[3,1] => 10010 => 00101 => 01010
[2,2] => 1100 => 1001 => 0110
[2,1,1] => 10110 => 01101 => 10110
[1,1,1,1] => 11110 => 11101 => 11110
[5] => 100000 => 000001 => 000010
[4,1] => 100010 => 000101 => 001010
[3,2] => 10100 => 01001 => 10010
[3,1,1] => 100110 => 001101 => 010110
[2,2,1] => 11010 => 10101 => 11010
[2,1,1,1] => 101110 => 011101 => 101110
[1,1,1,1,1] => 111110 => 111101 => 111110
[6] => 1000000 => 0000001 => 0000010
[5,1] => 1000010 => 0000101 => 0001010
[4,2] => 100100 => 001001 => 010010
[4,1,1] => 1000110 => 0001101 => 0010110
[3,3] => 11000 => 10001 => 00110
[3,2,1] => 101010 => 010101 => 101010
[3,1,1,1] => 1001110 => 0011101 => 0101110
[2,2,2] => 11100 => 11001 => 01110
[2,2,1,1] => 110110 => 101101 => 110110
[2,1,1,1,1] => 1011110 => 0111101 => 1011110
[1,1,1,1,1,1] => 1111110 => 1111101 => 1111110
[7] => 10000000 => 00000001 => 00000010
[6,1] => 10000010 => 00000101 => 00001010
[5,2] => 1000100 => 0001001 => 0010010
[5,1,1] => 10000110 => 00001101 => 00010110
[4,3] => 101000 => 010001 => 100010
[4,2,1] => 1001010 => 0010101 => 0101010
[4,1,1,1] => 10001110 => 00011101 => 00101110
[3,3,1] => 110010 => 100101 => 011010
[3,2,2] => 101100 => 011001 => 100110
[3,2,1,1] => 1010110 => 0101101 => 1010110
[3,1,1,1,1] => 10011110 => 00111101 => 01011110
[2,2,2,1] => 111010 => 110101 => 111010
[2,2,1,1,1] => 1101110 => 1011101 => 1101110
[2,1,1,1,1,1] => 10111110 => 01111101 => 10111110
[1,1,1,1,1,1,1] => 11111110 => 11111101 => 11111110
[8] => 100000000 => 000000001 => 000000010
[7,1] => 100000010 => 000000101 => 000001010
[6,2] => 10000100 => 00001001 => 00010010
[6,1,1] => 100000110 => 000001101 => 000010110
[5,3] => 1001000 => 0010001 => 0100010
[5,2,1] => 10001010 => 00010101 => 00101010
[5,1,1,1] => 100001110 => 000011101 => 000101110
[4,4] => 110000 => 100001 => 000110
[4,3,1] => 1010010 => 0100101 => 1001010
[4,2,2] => 1001100 => 0011001 => 0100110
[4,2,1,1] => 10010110 => 00101101 => 01010110
[4,1,1,1,1] => 100011110 => 000111101 => 001011110
[3,3,2] => 110100 => 101001 => 110010
[3,3,1,1] => 1100110 => 1001101 => 0110110
[3,2,2,1] => 1011010 => 0110101 => 1011010
[3,2,1,1,1] => 10101110 => 01011101 => 10101110
[3,1,1,1,1,1] => 100111110 => 001111101 => 010111110
[2,2,2,2] => 111100 => 111001 => 011110
[2,2,2,1,1] => 1110110 => 1101101 => 1110110
[2,2,1,1,1,1] => 11011110 => 10111101 => 11011110
[2,1,1,1,1,1,1] => 101111110 => 011111101 => 101111110
[1,1,1,1,1,1,1,1] => 111111110 => 111111101 => 111111110
[9] => 1000000000 => 0000000001 => 0000000010
[8,1] => 1000000010 => 0000000101 => 0000001010
[7,2] => 100000100 => 000001001 => 000010010
[7,1,1] => 1000000110 => 0000001101 => 0000010110
[6,3] => 10001000 => 00010001 => 00100010
[6,2,1] => 100001010 => 000010101 => 000101010
[6,1,1,1] => 1000001110 => 0000011101 => 0000101110
[5,4] => 1010000 => 0100001 => 1000010
[5,3,1] => 10010010 => 00100101 => 01001010
[5,2,2] => 10001100 => 00011001 => 00100110
[5,2,1,1] => 100010110 => 000101101 => 001010110
[5,1,1,1,1] => 1000011110 => 0000111101 => 0001011110
[4,4,1] => 1100010 => 1000101 => 0011010
[4,3,2] => 1010100 => 0101001 => 1010010
[4,3,1,1] => 10100110 => 01001101 => 10010110
[4,2,2,1] => 10011010 => 00110101 => 01011010
[4,2,1,1,1] => 100101110 => 001011101 => 010101110
[4,1,1,1,1,1] => 1000111110 => 0001111101 => 0010111110
[3,3,3] => 111000 => 110001 => 001110
[3,3,2,1] => 1101010 => 1010101 => 1101010
[3,3,1,1,1] => 11001110 => 10011101 => 01101110
[3,2,2,2] => 1011100 => 0111001 => 1001110
[3,2,2,1,1] => 10110110 => 01101101 => 10110110
[3,2,1,1,1,1] => 101011110 => 010111101 => 101011110
[3,1,1,1,1,1,1] => 1001111110 => 0011111101 => 0101111110
[2,2,2,2,1] => 1111010 => 1110101 => 1111010
[2,2,2,1,1,1] => 11101110 => 11011101 => 11101110
[2,2,1,1,1,1,1] => 110111110 => 101111101 => 110111110
[2,1,1,1,1,1,1,1] => 1011111110 => 0111111101 => 1011111110
[1,1,1,1,1,1,1,1,1] => 1111111110 => 1111111101 => 1111111110
[10] => 10000000000 => 00000000001 => 00000000010
[9,1] => 10000000010 => 00000000101 => 00000001010
[8,2] => 1000000100 => 0000001001 => 0000010010
[8,1,1] => 10000000110 => 00000001101 => 00000010110
[7,3] => 100001000 => 000010001 => 000100010
>>> Load all 397 entries. <<<Map
to binary word
Description
Return the partition as binary word, by traversing its shape from the first row to the last row, down steps as 1 and left steps as 0.
Map
rotate front-to-back
Description
The rotation of a binary word, first letter last.
This is the word obtained by moving the first letter to the end.
This is the word obtained by moving the first letter to the end.
Map
rowmotion
Description
Return the rowmotion of the binary word, regarded as an order ideal in the product of two chains.
In particular, this operation preserves the number of ones, and its order is the length of the word, see section 3.3 of [1].
In particular, this operation preserves the number of ones, and its order is the length of the word, see section 3.3 of [1].
searching the database
Sorry, this map was not found in the database.