Identifier
Mp00283: Perfect matchings non-nesting-exceedence permutationPermutations
Mp00160: Permutations graph of inversionsGraphs
Mp00318: Graphs dual on components Graphs
Images
[(1,2)] => [2,1] => ([(0,1)],2) => ([(0,1)],2)
[(1,2),(3,4)] => [2,1,4,3] => ([(0,3),(1,2)],4) => ([(0,3),(1,2)],4)
[(1,3),(2,4)] => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,2),(0,3),(1,2),(1,3)],4)
[(1,4),(2,3)] => [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
[(1,2),(3,4),(5,6)] => [2,1,4,3,6,5] => ([(0,5),(1,4),(2,3)],6) => ([(0,5),(1,4),(2,3)],6)
[(1,3),(2,4),(5,6)] => [3,4,1,2,6,5] => ([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
[(1,4),(2,3),(5,6)] => [3,4,2,1,6,5] => ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
[(1,5),(2,3),(4,6)] => [3,5,2,6,1,4] => ([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
[(1,6),(2,3),(4,5)] => [3,5,2,6,4,1] => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
[(1,6),(2,4),(3,5)] => [4,5,6,2,3,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
[(1,5),(2,4),(3,6)] => [4,5,6,2,1,3] => ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
[(1,4),(2,5),(3,6)] => [4,5,6,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
[(1,3),(2,5),(4,6)] => [3,5,1,6,2,4] => ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
[(1,2),(3,5),(4,6)] => [2,1,5,6,3,4] => ([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
[(1,2),(3,6),(4,5)] => [2,1,5,6,4,3] => ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
[(1,3),(2,6),(4,5)] => [3,5,1,6,4,2] => ([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
[(1,4),(2,6),(3,5)] => [4,5,6,1,3,2] => ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
[(1,5),(2,6),(3,4)] => [4,5,6,3,1,2] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
[(1,6),(2,5),(3,4)] => [4,5,6,3,2,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
Map
non-nesting-exceedence permutation
Description
The fixed-point-free permutation with deficiencies given by the perfect matching, no alignments and no inversions between exceedences.
Put differently, the exceedences form the unique non-nesting perfect matching whose openers coincide with those of the given perfect matching.
Map
graph of inversions
Description
The graph of inversions of a permutation.
For a permutation of $\{1,\dots,n\}$, this is the graph with vertices $\{1,\dots,n\}$, where $(i,j)$ is an edge if and only if it is an inversion of the permutation.
Map
dual on components
Description
The dual of the 3-connected planar components of a graph.
Replace each connected component which is 3-connected and planar with its planar dual.