searching the database
Your data matches 112 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000018
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
St000018: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000018: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => 0
[1,2] => [1,2] => 0
[2,1] => [1,2] => 0
[1,2,3] => [1,2,3] => 0
[1,3,2] => [1,2,3] => 0
[2,1,3] => [1,2,3] => 0
[2,3,1] => [1,2,3] => 0
[3,1,2] => [1,3,2] => 1
[3,2,1] => [1,3,2] => 1
[1,2,3,4] => [1,2,3,4] => 0
[1,2,4,3] => [1,2,3,4] => 0
[1,3,2,4] => [1,2,3,4] => 0
[1,3,4,2] => [1,2,3,4] => 0
[1,4,2,3] => [1,2,4,3] => 1
[1,4,3,2] => [1,2,4,3] => 1
[2,1,3,4] => [1,2,3,4] => 0
[2,1,4,3] => [1,2,3,4] => 0
[2,3,1,4] => [1,2,3,4] => 0
[2,3,4,1] => [1,2,3,4] => 0
[2,4,1,3] => [1,2,4,3] => 1
[2,4,3,1] => [1,2,4,3] => 1
[3,1,2,4] => [1,3,2,4] => 1
[3,1,4,2] => [1,3,4,2] => 2
[3,2,1,4] => [1,3,2,4] => 1
[3,2,4,1] => [1,3,4,2] => 2
[3,4,1,2] => [1,3,2,4] => 1
[3,4,2,1] => [1,3,2,4] => 1
[4,1,2,3] => [1,4,3,2] => 3
[4,1,3,2] => [1,4,2,3] => 2
[4,2,1,3] => [1,4,3,2] => 3
[4,2,3,1] => [1,4,2,3] => 2
[4,3,1,2] => [1,4,2,3] => 2
[4,3,2,1] => [1,4,2,3] => 2
[1,2,3,4,5] => [1,2,3,4,5] => 0
[1,2,3,5,4] => [1,2,3,4,5] => 0
[1,2,4,3,5] => [1,2,3,4,5] => 0
[1,2,4,5,3] => [1,2,3,4,5] => 0
[1,2,5,3,4] => [1,2,3,5,4] => 1
[1,2,5,4,3] => [1,2,3,5,4] => 1
[1,3,2,4,5] => [1,2,3,4,5] => 0
[1,3,2,5,4] => [1,2,3,4,5] => 0
[1,3,4,2,5] => [1,2,3,4,5] => 0
[1,3,4,5,2] => [1,2,3,4,5] => 0
[1,3,5,2,4] => [1,2,3,5,4] => 1
[1,3,5,4,2] => [1,2,3,5,4] => 1
[1,4,2,3,5] => [1,2,4,3,5] => 1
[1,4,2,5,3] => [1,2,4,5,3] => 2
[1,4,3,2,5] => [1,2,4,3,5] => 1
[1,4,3,5,2] => [1,2,4,5,3] => 2
[1,4,5,2,3] => [1,2,4,3,5] => 1
Description
The number of inversions of a permutation.
This equals the minimal number of simple transpositions $(i,i+1)$ needed to write $\pi$. Thus, it is also the Coxeter length of $\pi$.
Matching statistic: St000446
(load all 17 compositions to match this statistic)
(load all 17 compositions to match this statistic)
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
St000446: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000446: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => 0
[1,2] => [1,2] => 0
[2,1] => [1,2] => 0
[1,2,3] => [1,2,3] => 0
[1,3,2] => [1,2,3] => 0
[2,1,3] => [1,2,3] => 0
[2,3,1] => [1,2,3] => 0
[3,1,2] => [1,3,2] => 1
[3,2,1] => [1,3,2] => 1
[1,2,3,4] => [1,2,3,4] => 0
[1,2,4,3] => [1,2,3,4] => 0
[1,3,2,4] => [1,2,3,4] => 0
[1,3,4,2] => [1,2,3,4] => 0
[1,4,2,3] => [1,2,4,3] => 1
[1,4,3,2] => [1,2,4,3] => 1
[2,1,3,4] => [1,2,3,4] => 0
[2,1,4,3] => [1,2,3,4] => 0
[2,3,1,4] => [1,2,3,4] => 0
[2,3,4,1] => [1,2,3,4] => 0
[2,4,1,3] => [1,2,4,3] => 1
[2,4,3,1] => [1,2,4,3] => 1
[3,1,2,4] => [1,3,2,4] => 2
[3,1,4,2] => [1,3,4,2] => 2
[3,2,1,4] => [1,3,2,4] => 2
[3,2,4,1] => [1,3,4,2] => 2
[3,4,1,2] => [1,3,2,4] => 2
[3,4,2,1] => [1,3,2,4] => 2
[4,1,2,3] => [1,4,3,2] => 3
[4,1,3,2] => [1,4,2,3] => 1
[4,2,1,3] => [1,4,3,2] => 3
[4,2,3,1] => [1,4,2,3] => 1
[4,3,1,2] => [1,4,2,3] => 1
[4,3,2,1] => [1,4,2,3] => 1
[1,2,3,4,5] => [1,2,3,4,5] => 0
[1,2,3,5,4] => [1,2,3,4,5] => 0
[1,2,4,3,5] => [1,2,3,4,5] => 0
[1,2,4,5,3] => [1,2,3,4,5] => 0
[1,2,5,3,4] => [1,2,3,5,4] => 1
[1,2,5,4,3] => [1,2,3,5,4] => 1
[1,3,2,4,5] => [1,2,3,4,5] => 0
[1,3,2,5,4] => [1,2,3,4,5] => 0
[1,3,4,2,5] => [1,2,3,4,5] => 0
[1,3,4,5,2] => [1,2,3,4,5] => 0
[1,3,5,2,4] => [1,2,3,5,4] => 1
[1,3,5,4,2] => [1,2,3,5,4] => 1
[1,4,2,3,5] => [1,2,4,3,5] => 2
[1,4,2,5,3] => [1,2,4,5,3] => 2
[1,4,3,2,5] => [1,2,4,3,5] => 2
[1,4,3,5,2] => [1,2,4,5,3] => 2
[1,4,5,2,3] => [1,2,4,3,5] => 2
Description
The disorder of a permutation.
Consider a permutation $\pi = [\pi_1,\ldots,\pi_n]$ and cyclically scanning $\pi$ from left to right and remove the elements $1$ through $n$ on this order one after the other. The '''disorder''' of $\pi$ is defined to be the number of times a position was not removed in this process.
For example, the disorder of $[3,5,2,1,4]$ is $8$ since on the first scan, 3,5,2 and 4 are not removed, on the second, 3,5 and 4, and on the third and last scan, 5 is once again not removed.
Matching statistic: St001579
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
St001579: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St001579: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => 0
[1,2] => [1,2] => 0
[2,1] => [1,2] => 0
[1,2,3] => [1,2,3] => 0
[1,3,2] => [1,2,3] => 0
[2,1,3] => [1,2,3] => 0
[2,3,1] => [1,2,3] => 0
[3,1,2] => [1,3,2] => 1
[3,2,1] => [1,3,2] => 1
[1,2,3,4] => [1,2,3,4] => 0
[1,2,4,3] => [1,2,3,4] => 0
[1,3,2,4] => [1,2,3,4] => 0
[1,3,4,2] => [1,2,3,4] => 0
[1,4,2,3] => [1,2,4,3] => 1
[1,4,3,2] => [1,2,4,3] => 1
[2,1,3,4] => [1,2,3,4] => 0
[2,1,4,3] => [1,2,3,4] => 0
[2,3,1,4] => [1,2,3,4] => 0
[2,3,4,1] => [1,2,3,4] => 0
[2,4,1,3] => [1,2,4,3] => 1
[2,4,3,1] => [1,2,4,3] => 1
[3,1,2,4] => [1,3,2,4] => 1
[3,1,4,2] => [1,3,4,2] => 2
[3,2,1,4] => [1,3,2,4] => 1
[3,2,4,1] => [1,3,4,2] => 2
[3,4,1,2] => [1,3,2,4] => 1
[3,4,2,1] => [1,3,2,4] => 1
[4,1,2,3] => [1,4,3,2] => 3
[4,1,3,2] => [1,4,2,3] => 2
[4,2,1,3] => [1,4,3,2] => 3
[4,2,3,1] => [1,4,2,3] => 2
[4,3,1,2] => [1,4,2,3] => 2
[4,3,2,1] => [1,4,2,3] => 2
[1,2,3,4,5] => [1,2,3,4,5] => 0
[1,2,3,5,4] => [1,2,3,4,5] => 0
[1,2,4,3,5] => [1,2,3,4,5] => 0
[1,2,4,5,3] => [1,2,3,4,5] => 0
[1,2,5,3,4] => [1,2,3,5,4] => 1
[1,2,5,4,3] => [1,2,3,5,4] => 1
[1,3,2,4,5] => [1,2,3,4,5] => 0
[1,3,2,5,4] => [1,2,3,4,5] => 0
[1,3,4,2,5] => [1,2,3,4,5] => 0
[1,3,4,5,2] => [1,2,3,4,5] => 0
[1,3,5,2,4] => [1,2,3,5,4] => 1
[1,3,5,4,2] => [1,2,3,5,4] => 1
[1,4,2,3,5] => [1,2,4,3,5] => 1
[1,4,2,5,3] => [1,2,4,5,3] => 2
[1,4,3,2,5] => [1,2,4,3,5] => 1
[1,4,3,5,2] => [1,2,4,5,3] => 2
[1,4,5,2,3] => [1,2,4,3,5] => 1
Description
The number of cyclically simple transpositions decreasing the number of cyclic descents needed to sort a permutation.
This is for a permutation $\sigma$ of length $n$ and the set $T = \{ (1,2), \dots, (n-1,n), (1,n) \}$ given by
$$\min\{ k \mid \sigma = t_1\dots t_k \text{ for } t_i \in T \text{ such that } t_1\dots t_j \text{ has more cyclic descents than } t_1\dots t_{j-1} \text{ for all } j\}.$$
Matching statistic: St000004
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00062: Permutations —Lehmer-code to major-code bijection⟶ Permutations
St000004: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00062: Permutations —Lehmer-code to major-code bijection⟶ Permutations
St000004: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1] => 0
[1,2] => [1,2] => [1,2] => 0
[2,1] => [1,2] => [1,2] => 0
[1,2,3] => [1,2,3] => [1,2,3] => 0
[1,3,2] => [1,2,3] => [1,2,3] => 0
[2,1,3] => [1,2,3] => [1,2,3] => 0
[2,3,1] => [1,2,3] => [1,2,3] => 0
[3,1,2] => [1,3,2] => [3,1,2] => 1
[3,2,1] => [1,3,2] => [3,1,2] => 1
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
[1,2,4,3] => [1,2,3,4] => [1,2,3,4] => 0
[1,3,2,4] => [1,2,3,4] => [1,2,3,4] => 0
[1,3,4,2] => [1,2,3,4] => [1,2,3,4] => 0
[1,4,2,3] => [1,2,4,3] => [4,1,2,3] => 1
[1,4,3,2] => [1,2,4,3] => [4,1,2,3] => 1
[2,1,3,4] => [1,2,3,4] => [1,2,3,4] => 0
[2,1,4,3] => [1,2,3,4] => [1,2,3,4] => 0
[2,3,1,4] => [1,2,3,4] => [1,2,3,4] => 0
[2,3,4,1] => [1,2,3,4] => [1,2,3,4] => 0
[2,4,1,3] => [1,2,4,3] => [4,1,2,3] => 1
[2,4,3,1] => [1,2,4,3] => [4,1,2,3] => 1
[3,1,2,4] => [1,3,2,4] => [3,1,2,4] => 1
[3,1,4,2] => [1,3,4,2] => [2,4,1,3] => 2
[3,2,1,4] => [1,3,2,4] => [3,1,2,4] => 1
[3,2,4,1] => [1,3,4,2] => [2,4,1,3] => 2
[3,4,1,2] => [1,3,2,4] => [3,1,2,4] => 1
[3,4,2,1] => [1,3,2,4] => [3,1,2,4] => 1
[4,1,2,3] => [1,4,3,2] => [4,3,1,2] => 3
[4,1,3,2] => [1,4,2,3] => [3,4,1,2] => 2
[4,2,1,3] => [1,4,3,2] => [4,3,1,2] => 3
[4,2,3,1] => [1,4,2,3] => [3,4,1,2] => 2
[4,3,1,2] => [1,4,2,3] => [3,4,1,2] => 2
[4,3,2,1] => [1,4,2,3] => [3,4,1,2] => 2
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,2,3,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,2,4,3,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,2,4,5,3] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,2,5,3,4] => [1,2,3,5,4] => [5,1,2,3,4] => 1
[1,2,5,4,3] => [1,2,3,5,4] => [5,1,2,3,4] => 1
[1,3,2,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,3,2,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,3,4,2,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,3,4,5,2] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,3,5,2,4] => [1,2,3,5,4] => [5,1,2,3,4] => 1
[1,3,5,4,2] => [1,2,3,5,4] => [5,1,2,3,4] => 1
[1,4,2,3,5] => [1,2,4,3,5] => [4,1,2,3,5] => 1
[1,4,2,5,3] => [1,2,4,5,3] => [3,5,1,2,4] => 2
[1,4,3,2,5] => [1,2,4,3,5] => [4,1,2,3,5] => 1
[1,4,3,5,2] => [1,2,4,5,3] => [3,5,1,2,4] => 2
[1,4,5,2,3] => [1,2,4,3,5] => [4,1,2,3,5] => 1
Description
The major index of a permutation.
This is the sum of the positions of its descents,
$$\operatorname{maj}(\sigma) = \sum_{\sigma(i) > \sigma(i+1)} i.$$
Its generating function is $[n]_q! = [1]_q \cdot [2]_q \dots [n]_q$ for $[k]_q = 1 + q + q^2 + \dots q^{k-1}$.
A statistic equidistributed with the major index is called '''Mahonian statistic'''.
Matching statistic: St000081
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000081: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00160: Permutations —graph of inversions⟶ Graphs
St000081: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => ([],1)
=> 0
[1,2] => [1,2] => ([],2)
=> 0
[2,1] => [1,2] => ([],2)
=> 0
[1,2,3] => [1,2,3] => ([],3)
=> 0
[1,3,2] => [1,2,3] => ([],3)
=> 0
[2,1,3] => [1,2,3] => ([],3)
=> 0
[2,3,1] => [1,2,3] => ([],3)
=> 0
[3,1,2] => [1,3,2] => ([(1,2)],3)
=> 1
[3,2,1] => [1,3,2] => ([(1,2)],3)
=> 1
[1,2,3,4] => [1,2,3,4] => ([],4)
=> 0
[1,2,4,3] => [1,2,3,4] => ([],4)
=> 0
[1,3,2,4] => [1,2,3,4] => ([],4)
=> 0
[1,3,4,2] => [1,2,3,4] => ([],4)
=> 0
[1,4,2,3] => [1,2,4,3] => ([(2,3)],4)
=> 1
[1,4,3,2] => [1,2,4,3] => ([(2,3)],4)
=> 1
[2,1,3,4] => [1,2,3,4] => ([],4)
=> 0
[2,1,4,3] => [1,2,3,4] => ([],4)
=> 0
[2,3,1,4] => [1,2,3,4] => ([],4)
=> 0
[2,3,4,1] => [1,2,3,4] => ([],4)
=> 0
[2,4,1,3] => [1,2,4,3] => ([(2,3)],4)
=> 1
[2,4,3,1] => [1,2,4,3] => ([(2,3)],4)
=> 1
[3,1,2,4] => [1,3,2,4] => ([(2,3)],4)
=> 1
[3,1,4,2] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> 2
[3,2,1,4] => [1,3,2,4] => ([(2,3)],4)
=> 1
[3,2,4,1] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> 2
[3,4,1,2] => [1,3,2,4] => ([(2,3)],4)
=> 1
[3,4,2,1] => [1,3,2,4] => ([(2,3)],4)
=> 1
[4,1,2,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
[4,1,3,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> 2
[4,2,1,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
[4,2,3,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> 2
[4,3,1,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> 2
[4,3,2,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> 2
[1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,2,3,5,4] => [1,2,3,4,5] => ([],5)
=> 0
[1,2,4,3,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,2,4,5,3] => [1,2,3,4,5] => ([],5)
=> 0
[1,2,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> 1
[1,2,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> 1
[1,3,2,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,3,2,5,4] => [1,2,3,4,5] => ([],5)
=> 0
[1,3,4,2,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,3,4,5,2] => [1,2,3,4,5] => ([],5)
=> 0
[1,3,5,2,4] => [1,2,3,5,4] => ([(3,4)],5)
=> 1
[1,3,5,4,2] => [1,2,3,5,4] => ([(3,4)],5)
=> 1
[1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
[1,4,2,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> 2
[1,4,3,2,5] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
[1,4,3,5,2] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> 2
[1,4,5,2,3] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
Description
The number of edges of a graph.
Matching statistic: St000169
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00059: Permutations —Robinson-Schensted insertion tableau⟶ Standard tableaux
St000169: Standard tableaux ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00059: Permutations —Robinson-Schensted insertion tableau⟶ Standard tableaux
St000169: Standard tableaux ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => [[1]]
=> 0
[1,2] => [1,2] => [[1,2]]
=> 0
[2,1] => [1,2] => [[1,2]]
=> 0
[1,2,3] => [1,2,3] => [[1,2,3]]
=> 0
[1,3,2] => [1,2,3] => [[1,2,3]]
=> 0
[2,1,3] => [1,2,3] => [[1,2,3]]
=> 0
[2,3,1] => [1,2,3] => [[1,2,3]]
=> 0
[3,1,2] => [1,3,2] => [[1,2],[3]]
=> 1
[3,2,1] => [1,3,2] => [[1,2],[3]]
=> 1
[1,2,3,4] => [1,2,3,4] => [[1,2,3,4]]
=> 0
[1,2,4,3] => [1,2,3,4] => [[1,2,3,4]]
=> 0
[1,3,2,4] => [1,2,3,4] => [[1,2,3,4]]
=> 0
[1,3,4,2] => [1,2,3,4] => [[1,2,3,4]]
=> 0
[1,4,2,3] => [1,2,4,3] => [[1,2,3],[4]]
=> 1
[1,4,3,2] => [1,2,4,3] => [[1,2,3],[4]]
=> 1
[2,1,3,4] => [1,2,3,4] => [[1,2,3,4]]
=> 0
[2,1,4,3] => [1,2,3,4] => [[1,2,3,4]]
=> 0
[2,3,1,4] => [1,2,3,4] => [[1,2,3,4]]
=> 0
[2,3,4,1] => [1,2,3,4] => [[1,2,3,4]]
=> 0
[2,4,1,3] => [1,2,4,3] => [[1,2,3],[4]]
=> 1
[2,4,3,1] => [1,2,4,3] => [[1,2,3],[4]]
=> 1
[3,1,2,4] => [1,3,2,4] => [[1,2,4],[3]]
=> 2
[3,1,4,2] => [1,3,4,2] => [[1,2,4],[3]]
=> 2
[3,2,1,4] => [1,3,2,4] => [[1,2,4],[3]]
=> 2
[3,2,4,1] => [1,3,4,2] => [[1,2,4],[3]]
=> 2
[3,4,1,2] => [1,3,2,4] => [[1,2,4],[3]]
=> 2
[3,4,2,1] => [1,3,2,4] => [[1,2,4],[3]]
=> 2
[4,1,2,3] => [1,4,3,2] => [[1,2],[3],[4]]
=> 3
[4,1,3,2] => [1,4,2,3] => [[1,2,3],[4]]
=> 1
[4,2,1,3] => [1,4,3,2] => [[1,2],[3],[4]]
=> 3
[4,2,3,1] => [1,4,2,3] => [[1,2,3],[4]]
=> 1
[4,3,1,2] => [1,4,2,3] => [[1,2,3],[4]]
=> 1
[4,3,2,1] => [1,4,2,3] => [[1,2,3],[4]]
=> 1
[1,2,3,4,5] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
[1,2,3,5,4] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
[1,2,4,3,5] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
[1,2,4,5,3] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
[1,2,5,3,4] => [1,2,3,5,4] => [[1,2,3,4],[5]]
=> 1
[1,2,5,4,3] => [1,2,3,5,4] => [[1,2,3,4],[5]]
=> 1
[1,3,2,4,5] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
[1,3,2,5,4] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
[1,3,4,2,5] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
[1,3,4,5,2] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
[1,3,5,2,4] => [1,2,3,5,4] => [[1,2,3,4],[5]]
=> 1
[1,3,5,4,2] => [1,2,3,5,4] => [[1,2,3,4],[5]]
=> 1
[1,4,2,3,5] => [1,2,4,3,5] => [[1,2,3,5],[4]]
=> 2
[1,4,2,5,3] => [1,2,4,5,3] => [[1,2,3,5],[4]]
=> 2
[1,4,3,2,5] => [1,2,4,3,5] => [[1,2,3,5],[4]]
=> 2
[1,4,3,5,2] => [1,2,4,5,3] => [[1,2,3,5],[4]]
=> 2
[1,4,5,2,3] => [1,2,4,3,5] => [[1,2,3,5],[4]]
=> 2
Description
The cocharge of a standard tableau.
The '''cocharge''' of a standard tableau $T$, denoted $\mathrm{cc}(T)$, is defined to be the cocharge of the reading word of the tableau. The cocharge of a permutation $w_1 w_2\cdots w_n$ can be computed by the following algorithm:
1) Starting from $w_n$, scan the entries right-to-left until finding the entry $1$ with a superscript $0$.
2) Continue scanning until the $2$ is found, and label this with a superscript $1$. Then scan until the $3$ is found, labeling with a $2$, and so on, incrementing the label each time, until the beginning of the word is reached. Then go back to the end and scan again from right to left, and *do not* increment the superscript label for the first number found in the next scan. Then continue scanning and labeling, each time incrementing the superscript only if we have not cycled around the word since the last labeling.
3) The cocharge is defined as the sum of the superscript labels on the letters.
Matching statistic: St000224
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00086: Permutations —first fundamental transformation⟶ Permutations
St000224: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00086: Permutations —first fundamental transformation⟶ Permutations
St000224: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1] => 0
[1,2] => [1,2] => [1,2] => 0
[2,1] => [1,2] => [1,2] => 0
[1,2,3] => [1,2,3] => [1,2,3] => 0
[1,3,2] => [1,2,3] => [1,2,3] => 0
[2,1,3] => [1,2,3] => [1,2,3] => 0
[2,3,1] => [1,2,3] => [1,2,3] => 0
[3,1,2] => [1,3,2] => [1,3,2] => 1
[3,2,1] => [1,3,2] => [1,3,2] => 1
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
[1,2,4,3] => [1,2,3,4] => [1,2,3,4] => 0
[1,3,2,4] => [1,2,3,4] => [1,2,3,4] => 0
[1,3,4,2] => [1,2,3,4] => [1,2,3,4] => 0
[1,4,2,3] => [1,2,4,3] => [1,2,4,3] => 1
[1,4,3,2] => [1,2,4,3] => [1,2,4,3] => 1
[2,1,3,4] => [1,2,3,4] => [1,2,3,4] => 0
[2,1,4,3] => [1,2,3,4] => [1,2,3,4] => 0
[2,3,1,4] => [1,2,3,4] => [1,2,3,4] => 0
[2,3,4,1] => [1,2,3,4] => [1,2,3,4] => 0
[2,4,1,3] => [1,2,4,3] => [1,2,4,3] => 1
[2,4,3,1] => [1,2,4,3] => [1,2,4,3] => 1
[3,1,2,4] => [1,3,2,4] => [1,3,2,4] => 1
[3,1,4,2] => [1,3,4,2] => [1,4,3,2] => 2
[3,2,1,4] => [1,3,2,4] => [1,3,2,4] => 1
[3,2,4,1] => [1,3,4,2] => [1,4,3,2] => 2
[3,4,1,2] => [1,3,2,4] => [1,3,2,4] => 1
[3,4,2,1] => [1,3,2,4] => [1,3,2,4] => 1
[4,1,2,3] => [1,4,3,2] => [1,4,2,3] => 3
[4,1,3,2] => [1,4,2,3] => [1,3,4,2] => 2
[4,2,1,3] => [1,4,3,2] => [1,4,2,3] => 3
[4,2,3,1] => [1,4,2,3] => [1,3,4,2] => 2
[4,3,1,2] => [1,4,2,3] => [1,3,4,2] => 2
[4,3,2,1] => [1,4,2,3] => [1,3,4,2] => 2
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,2,3,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,2,4,3,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,2,4,5,3] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,2,5,3,4] => [1,2,3,5,4] => [1,2,3,5,4] => 1
[1,2,5,4,3] => [1,2,3,5,4] => [1,2,3,5,4] => 1
[1,3,2,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,3,2,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,3,4,2,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,3,4,5,2] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,3,5,2,4] => [1,2,3,5,4] => [1,2,3,5,4] => 1
[1,3,5,4,2] => [1,2,3,5,4] => [1,2,3,5,4] => 1
[1,4,2,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => 1
[1,4,2,5,3] => [1,2,4,5,3] => [1,2,5,4,3] => 2
[1,4,3,2,5] => [1,2,4,3,5] => [1,2,4,3,5] => 1
[1,4,3,5,2] => [1,2,4,5,3] => [1,2,5,4,3] => 2
[1,4,5,2,3] => [1,2,4,3,5] => [1,2,4,3,5] => 1
Description
The sorting index of a permutation.
The sorting index counts the total distance that symbols move during a selection sort of a permutation. This sorting algorithm swaps symbol n into index n and then recursively sorts the first n-1 symbols.
Compare this to [[St000018]], the number of inversions of a permutation, which is also the total distance that elements move during a bubble sort.
Matching statistic: St000246
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00069: Permutations —complement⟶ Permutations
St000246: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00069: Permutations —complement⟶ Permutations
St000246: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1] => 0
[1,2] => [1,2] => [2,1] => 0
[2,1] => [1,2] => [2,1] => 0
[1,2,3] => [1,2,3] => [3,2,1] => 0
[1,3,2] => [1,2,3] => [3,2,1] => 0
[2,1,3] => [1,2,3] => [3,2,1] => 0
[2,3,1] => [1,2,3] => [3,2,1] => 0
[3,1,2] => [1,3,2] => [3,1,2] => 1
[3,2,1] => [1,3,2] => [3,1,2] => 1
[1,2,3,4] => [1,2,3,4] => [4,3,2,1] => 0
[1,2,4,3] => [1,2,3,4] => [4,3,2,1] => 0
[1,3,2,4] => [1,2,3,4] => [4,3,2,1] => 0
[1,3,4,2] => [1,2,3,4] => [4,3,2,1] => 0
[1,4,2,3] => [1,2,4,3] => [4,3,1,2] => 1
[1,4,3,2] => [1,2,4,3] => [4,3,1,2] => 1
[2,1,3,4] => [1,2,3,4] => [4,3,2,1] => 0
[2,1,4,3] => [1,2,3,4] => [4,3,2,1] => 0
[2,3,1,4] => [1,2,3,4] => [4,3,2,1] => 0
[2,3,4,1] => [1,2,3,4] => [4,3,2,1] => 0
[2,4,1,3] => [1,2,4,3] => [4,3,1,2] => 1
[2,4,3,1] => [1,2,4,3] => [4,3,1,2] => 1
[3,1,2,4] => [1,3,2,4] => [4,2,3,1] => 1
[3,1,4,2] => [1,3,4,2] => [4,2,1,3] => 2
[3,2,1,4] => [1,3,2,4] => [4,2,3,1] => 1
[3,2,4,1] => [1,3,4,2] => [4,2,1,3] => 2
[3,4,1,2] => [1,3,2,4] => [4,2,3,1] => 1
[3,4,2,1] => [1,3,2,4] => [4,2,3,1] => 1
[4,1,2,3] => [1,4,3,2] => [4,1,2,3] => 3
[4,1,3,2] => [1,4,2,3] => [4,1,3,2] => 2
[4,2,1,3] => [1,4,3,2] => [4,1,2,3] => 3
[4,2,3,1] => [1,4,2,3] => [4,1,3,2] => 2
[4,3,1,2] => [1,4,2,3] => [4,1,3,2] => 2
[4,3,2,1] => [1,4,2,3] => [4,1,3,2] => 2
[1,2,3,4,5] => [1,2,3,4,5] => [5,4,3,2,1] => 0
[1,2,3,5,4] => [1,2,3,4,5] => [5,4,3,2,1] => 0
[1,2,4,3,5] => [1,2,3,4,5] => [5,4,3,2,1] => 0
[1,2,4,5,3] => [1,2,3,4,5] => [5,4,3,2,1] => 0
[1,2,5,3,4] => [1,2,3,5,4] => [5,4,3,1,2] => 1
[1,2,5,4,3] => [1,2,3,5,4] => [5,4,3,1,2] => 1
[1,3,2,4,5] => [1,2,3,4,5] => [5,4,3,2,1] => 0
[1,3,2,5,4] => [1,2,3,4,5] => [5,4,3,2,1] => 0
[1,3,4,2,5] => [1,2,3,4,5] => [5,4,3,2,1] => 0
[1,3,4,5,2] => [1,2,3,4,5] => [5,4,3,2,1] => 0
[1,3,5,2,4] => [1,2,3,5,4] => [5,4,3,1,2] => 1
[1,3,5,4,2] => [1,2,3,5,4] => [5,4,3,1,2] => 1
[1,4,2,3,5] => [1,2,4,3,5] => [5,4,2,3,1] => 1
[1,4,2,5,3] => [1,2,4,5,3] => [5,4,2,1,3] => 2
[1,4,3,2,5] => [1,2,4,3,5] => [5,4,2,3,1] => 1
[1,4,3,5,2] => [1,2,4,5,3] => [5,4,2,1,3] => 2
[1,4,5,2,3] => [1,2,4,3,5] => [5,4,2,3,1] => 1
Description
The number of non-inversions of a permutation.
For a permutation of $\{1,\ldots,n\}$, this is given by $\operatorname{noninv}(\pi) = \binom{n}{2}-\operatorname{inv}(\pi)$.
Matching statistic: St000304
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00064: Permutations —reverse⟶ Permutations
St000304: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00064: Permutations —reverse⟶ Permutations
St000304: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1] => 0
[1,2] => [1,2] => [2,1] => 0
[2,1] => [1,2] => [2,1] => 0
[1,2,3] => [1,2,3] => [3,2,1] => 0
[1,3,2] => [1,2,3] => [3,2,1] => 0
[2,1,3] => [1,2,3] => [3,2,1] => 0
[2,3,1] => [1,2,3] => [3,2,1] => 0
[3,1,2] => [1,3,2] => [2,3,1] => 1
[3,2,1] => [1,3,2] => [2,3,1] => 1
[1,2,3,4] => [1,2,3,4] => [4,3,2,1] => 0
[1,2,4,3] => [1,2,3,4] => [4,3,2,1] => 0
[1,3,2,4] => [1,2,3,4] => [4,3,2,1] => 0
[1,3,4,2] => [1,2,3,4] => [4,3,2,1] => 0
[1,4,2,3] => [1,2,4,3] => [3,4,2,1] => 1
[1,4,3,2] => [1,2,4,3] => [3,4,2,1] => 1
[2,1,3,4] => [1,2,3,4] => [4,3,2,1] => 0
[2,1,4,3] => [1,2,3,4] => [4,3,2,1] => 0
[2,3,1,4] => [1,2,3,4] => [4,3,2,1] => 0
[2,3,4,1] => [1,2,3,4] => [4,3,2,1] => 0
[2,4,1,3] => [1,2,4,3] => [3,4,2,1] => 1
[2,4,3,1] => [1,2,4,3] => [3,4,2,1] => 1
[3,1,2,4] => [1,3,2,4] => [4,2,3,1] => 2
[3,1,4,2] => [1,3,4,2] => [2,4,3,1] => 2
[3,2,1,4] => [1,3,2,4] => [4,2,3,1] => 2
[3,2,4,1] => [1,3,4,2] => [2,4,3,1] => 2
[3,4,1,2] => [1,3,2,4] => [4,2,3,1] => 2
[3,4,2,1] => [1,3,2,4] => [4,2,3,1] => 2
[4,1,2,3] => [1,4,3,2] => [2,3,4,1] => 3
[4,1,3,2] => [1,4,2,3] => [3,2,4,1] => 1
[4,2,1,3] => [1,4,3,2] => [2,3,4,1] => 3
[4,2,3,1] => [1,4,2,3] => [3,2,4,1] => 1
[4,3,1,2] => [1,4,2,3] => [3,2,4,1] => 1
[4,3,2,1] => [1,4,2,3] => [3,2,4,1] => 1
[1,2,3,4,5] => [1,2,3,4,5] => [5,4,3,2,1] => 0
[1,2,3,5,4] => [1,2,3,4,5] => [5,4,3,2,1] => 0
[1,2,4,3,5] => [1,2,3,4,5] => [5,4,3,2,1] => 0
[1,2,4,5,3] => [1,2,3,4,5] => [5,4,3,2,1] => 0
[1,2,5,3,4] => [1,2,3,5,4] => [4,5,3,2,1] => 1
[1,2,5,4,3] => [1,2,3,5,4] => [4,5,3,2,1] => 1
[1,3,2,4,5] => [1,2,3,4,5] => [5,4,3,2,1] => 0
[1,3,2,5,4] => [1,2,3,4,5] => [5,4,3,2,1] => 0
[1,3,4,2,5] => [1,2,3,4,5] => [5,4,3,2,1] => 0
[1,3,4,5,2] => [1,2,3,4,5] => [5,4,3,2,1] => 0
[1,3,5,2,4] => [1,2,3,5,4] => [4,5,3,2,1] => 1
[1,3,5,4,2] => [1,2,3,5,4] => [4,5,3,2,1] => 1
[1,4,2,3,5] => [1,2,4,3,5] => [5,3,4,2,1] => 2
[1,4,2,5,3] => [1,2,4,5,3] => [3,5,4,2,1] => 2
[1,4,3,2,5] => [1,2,4,3,5] => [5,3,4,2,1] => 2
[1,4,3,5,2] => [1,2,4,5,3] => [3,5,4,2,1] => 2
[1,4,5,2,3] => [1,2,4,3,5] => [5,3,4,2,1] => 2
Description
The load of a permutation.
The definition of the load of a finite word in a totally ordered alphabet can be found in [1], for permutations, it is given by the major index [[St000004]] of the reverse [[Mp00064]] of the inverse [[Mp00066]] permutation.
Matching statistic: St000868
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00066: Permutations —inverse⟶ Permutations
St000868: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00066: Permutations —inverse⟶ Permutations
St000868: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1] => 0
[1,2] => [1,2] => [1,2] => 0
[2,1] => [1,2] => [1,2] => 0
[1,2,3] => [1,2,3] => [1,2,3] => 0
[1,3,2] => [1,2,3] => [1,2,3] => 0
[2,1,3] => [1,2,3] => [1,2,3] => 0
[2,3,1] => [1,2,3] => [1,2,3] => 0
[3,1,2] => [1,3,2] => [1,3,2] => 1
[3,2,1] => [1,3,2] => [1,3,2] => 1
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
[1,2,4,3] => [1,2,3,4] => [1,2,3,4] => 0
[1,3,2,4] => [1,2,3,4] => [1,2,3,4] => 0
[1,3,4,2] => [1,2,3,4] => [1,2,3,4] => 0
[1,4,2,3] => [1,2,4,3] => [1,2,4,3] => 1
[1,4,3,2] => [1,2,4,3] => [1,2,4,3] => 1
[2,1,3,4] => [1,2,3,4] => [1,2,3,4] => 0
[2,1,4,3] => [1,2,3,4] => [1,2,3,4] => 0
[2,3,1,4] => [1,2,3,4] => [1,2,3,4] => 0
[2,3,4,1] => [1,2,3,4] => [1,2,3,4] => 0
[2,4,1,3] => [1,2,4,3] => [1,2,4,3] => 1
[2,4,3,1] => [1,2,4,3] => [1,2,4,3] => 1
[3,1,2,4] => [1,3,2,4] => [1,3,2,4] => 2
[3,1,4,2] => [1,3,4,2] => [1,4,2,3] => 3
[3,2,1,4] => [1,3,2,4] => [1,3,2,4] => 2
[3,2,4,1] => [1,3,4,2] => [1,4,2,3] => 3
[3,4,1,2] => [1,3,2,4] => [1,3,2,4] => 2
[3,4,2,1] => [1,3,2,4] => [1,3,2,4] => 2
[4,1,2,3] => [1,4,3,2] => [1,4,3,2] => 2
[4,1,3,2] => [1,4,2,3] => [1,3,4,2] => 1
[4,2,1,3] => [1,4,3,2] => [1,4,3,2] => 2
[4,2,3,1] => [1,4,2,3] => [1,3,4,2] => 1
[4,3,1,2] => [1,4,2,3] => [1,3,4,2] => 1
[4,3,2,1] => [1,4,2,3] => [1,3,4,2] => 1
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,2,3,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,2,4,3,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,2,4,5,3] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,2,5,3,4] => [1,2,3,5,4] => [1,2,3,5,4] => 1
[1,2,5,4,3] => [1,2,3,5,4] => [1,2,3,5,4] => 1
[1,3,2,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,3,2,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,3,4,2,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,3,4,5,2] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,3,5,2,4] => [1,2,3,5,4] => [1,2,3,5,4] => 1
[1,3,5,4,2] => [1,2,3,5,4] => [1,2,3,5,4] => 1
[1,4,2,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => 2
[1,4,2,5,3] => [1,2,4,5,3] => [1,2,5,3,4] => 3
[1,4,3,2,5] => [1,2,4,3,5] => [1,2,4,3,5] => 2
[1,4,3,5,2] => [1,2,4,5,3] => [1,2,5,3,4] => 3
[1,4,5,2,3] => [1,2,4,3,5] => [1,2,4,3,5] => 2
Description
The aid statistic in the sense of Shareshian-Wachs.
This is the number of admissible inversions [[St000866]] plus the number of descents [[St000021]]. This statistic was introduced by John Shareshian and Michelle L. Wachs in [1]. Theorem 4.1 states that the aid statistic together with the descent statistic is Euler-Mahonian.
The following 102 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001341The number of edges in the center of a graph. St001397Number of pairs of incomparable elements in a finite poset. St001697The shifted natural comajor index of a standard Young tableau. St000008The major index of the composition. St000009The charge of a standard tableau. St000123The difference in Coxeter length of a permutation and its image under the Simion-Schmidt map. St000156The Denert index of a permutation. St000305The inverse major index of a permutation. St000330The (standard) major index of a standard tableau. St000448The number of pairs of vertices of a graph with distance 2. St001311The cyclomatic number of a graph. St001646The number of edges that can be added without increasing the maximal degree of a graph. St000450The number of edges minus the number of vertices plus 2 of a graph. St000456The monochromatic index of a connected graph. St000795The mad of a permutation. St000803The number of occurrences of the vincular pattern |132 in a permutation. St000801The number of occurrences of the vincular pattern |312 in a permutation. St000833The comajor index of a permutation. St000391The sum of the positions of the ones in a binary word. St000794The mak of a permutation. St000797The stat`` of a permutation. St000798The makl of a permutation. St000802The number of occurrences of the vincular pattern |321 in a permutation. St000804The number of occurrences of the vincular pattern |123 in a permutation. St001980The Castelnuovo-Mumford regularity of an alternating sign matrix. St000067The inversion number of the alternating sign matrix. St000332The positive inversions of an alternating sign matrix. St001428The number of B-inversions of a signed permutation. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000259The diameter of a connected graph. St000454The largest eigenvalue of a graph if it is integral. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000264The girth of a graph, which is not a tree. St000422The energy of a graph, if it is integral. St000260The radius of a connected graph. St001060The distinguishing index of a graph. St000225Difference between largest and smallest parts in a partition. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001978The codimension of the alternating sign matrix variety. St001862The number of crossings of a signed permutation. St001583The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order. St000668The least common multiple of the parts of the partition. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000933The number of multipartitions of sizes given by an integer partition. St000937The number of positive values of the symmetric group character corresponding to the partition. St000939The number of characters of the symmetric group whose value on the partition is positive. St000993The multiplicity of the largest part of an integer partition. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001881The number of factors of a lattice as a Cartesian product of lattices. St001877Number of indecomposable injective modules with projective dimension 2. St001769The reflection length of a signed permutation. St001861The number of Bruhat lower covers of a permutation. St001894The depth of a signed permutation. St000307The number of rowmotion orbits of a poset. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St000632The jump number of the poset. St000298The order dimension or Dushnik-Miller dimension of a poset. St001510The number of self-evacuating linear extensions of a finite poset. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St000640The rank of the largest boolean interval in a poset. St000910The number of maximal chains of minimal length in a poset. St001105The number of greedy linear extensions of a poset. St001106The number of supergreedy linear extensions of a poset. St000302The determinant of the distance matrix of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St001645The pebbling number of a connected graph. St001330The hat guessing number of a graph. St001875The number of simple modules with projective dimension at most 1. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001892The flag excedance statistic of a signed permutation. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St000850The number of 1/2-balanced pairs in a poset. St001095The number of non-isomorphic posets with precisely one further covering relation. St000136The dinv of a parking function. St000194The number of primary dinversion pairs of a labelled dyck path corresponding to a parking function. St001083The number of boxed occurrences of 132 in a permutation. St001171The vector space dimension of $Ext_A^1(I_o,A)$ when $I_o$ is the tilting module corresponding to the permutation $o$ in the Auslander algebra $A$ of $K[x]/(x^n)$. St001209The pmaj statistic of a parking function. St001433The flag major index of a signed permutation. St001772The number of occurrences of the signed pattern 12 in a signed permutation. St001821The sorting index of a signed permutation. St001822The number of alignments of a signed permutation. St001823The Stasinski-Voll length of a signed permutation. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001582The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St000408The number of occurrences of the pattern 4231 in a permutation. St000440The number of occurrences of the pattern 4132 or of the pattern 4231 in a permutation. St000036The evaluation at 1 of the Kazhdan-Lusztig polynomial with parameters given by the identity and the permutation. St001570The minimal number of edges to add to make a graph Hamiltonian.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!