searching the database
Your data matches 26 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000070
Values
([],1)
=> 2
([],2)
=> 4
([(0,1)],2)
=> 3
([],3)
=> 8
([(1,2)],3)
=> 6
([(0,1),(0,2)],3)
=> 5
([(0,2),(2,1)],3)
=> 4
([(0,2),(1,2)],3)
=> 5
([],4)
=> 16
([(2,3)],4)
=> 12
([(1,2),(1,3)],4)
=> 10
([(0,1),(0,2),(0,3)],4)
=> 9
([(0,2),(0,3),(3,1)],4)
=> 7
([(0,1),(0,2),(1,3),(2,3)],4)
=> 6
([(1,2),(2,3)],4)
=> 8
([(0,3),(3,1),(3,2)],4)
=> 6
([(1,3),(2,3)],4)
=> 10
([(0,3),(1,3),(3,2)],4)
=> 6
([(0,3),(1,3),(2,3)],4)
=> 9
([(0,3),(1,2)],4)
=> 9
([(0,3),(1,2),(1,3)],4)
=> 8
([(0,2),(0,3),(1,2),(1,3)],4)
=> 7
([(0,3),(2,1),(3,2)],4)
=> 5
([(0,3),(1,2),(2,3)],4)
=> 7
([],5)
=> 32
([(3,4)],5)
=> 24
([(2,3),(2,4)],5)
=> 20
([(1,2),(1,3),(1,4)],5)
=> 18
([(0,1),(0,2),(0,3),(0,4)],5)
=> 17
([(0,2),(0,3),(0,4),(4,1)],5)
=> 13
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> 11
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 10
([(1,3),(1,4),(4,2)],5)
=> 14
([(0,3),(0,4),(4,1),(4,2)],5)
=> 11
([(1,2),(1,3),(2,4),(3,4)],5)
=> 12
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 7
([(0,3),(0,4),(3,2),(4,1)],5)
=> 10
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> 9
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 8
([(2,3),(3,4)],5)
=> 16
([(1,4),(4,2),(4,3)],5)
=> 12
([(0,4),(4,1),(4,2),(4,3)],5)
=> 10
([(2,4),(3,4)],5)
=> 20
([(1,4),(2,4),(4,3)],5)
=> 12
([(0,4),(1,4),(4,2),(4,3)],5)
=> 8
([(1,4),(2,4),(3,4)],5)
=> 18
([(0,4),(1,4),(2,4),(4,3)],5)
=> 10
([(0,4),(1,4),(2,4),(3,4)],5)
=> 17
([(0,4),(1,4),(2,3)],5)
=> 15
([(0,4),(1,3),(2,3),(2,4)],5)
=> 13
Description
The number of antichains in a poset.
An antichain in a poset P is a subset of elements of P which are pairwise incomparable.
An order ideal is a subset I of P such that a∈I and b≤Pa implies b∈I. Since there is a one-to-one correspondence between antichains and order ideals, this statistic is also the number of order ideals in a poset.
Matching statistic: St000300
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([],1)
=> 2
([],2)
=> ([(0,1)],2)
=> ([],2)
=> 4
([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> 3
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 8
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 6
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 5
([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 4
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 5
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> 16
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 12
([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 10
([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 9
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 7
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 8
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 10
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 9
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> 9
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 8
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 7
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 5
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 7
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> 32
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(3,4)],5)
=> 24
([(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 20
([(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 18
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 17
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 13
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 11
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 10
([(1,3),(1,4),(4,2)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 14
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 11
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 12
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 7
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 10
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 9
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 8
([(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 16
([(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 12
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 10
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 20
([(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 12
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 8
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 18
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 10
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 17
([(0,4),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> 15
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 13
Description
The number of independent sets of vertices of a graph.
An independent set of vertices of a graph G is a subset U⊂V(G) such that no two vertices in U are adjacent.
This is also the number of vertex covers of G as the map U↦V(G)∖U is a bijection between independent sets of vertices and vertex covers.
The size of the largest independent set, also called independence number of G, is [[St000093]]
Matching statistic: St001279
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St001279: Integer partitions ⟶ ℤResult quality: 80% ●values known / values provided: 92%●distinct values known / distinct values provided: 80%
St001279: Integer partitions ⟶ ℤResult quality: 80% ●values known / values provided: 92%●distinct values known / distinct values provided: 80%
Values
([],1)
=> [2]
=> 2
([],2)
=> [2,2]
=> 4
([(0,1)],2)
=> [3]
=> 3
([],3)
=> [2,2,2,2]
=> 8
([(1,2)],3)
=> [6]
=> 6
([(0,1),(0,2)],3)
=> [3,2]
=> 5
([(0,2),(2,1)],3)
=> [4]
=> 4
([(0,2),(1,2)],3)
=> [3,2]
=> 5
([],4)
=> [2,2,2,2,2,2,2,2]
=> 16
([(2,3)],4)
=> [6,6]
=> 12
([(1,2),(1,3)],4)
=> [6,2,2]
=> 10
([(0,1),(0,2),(0,3)],4)
=> [3,2,2,2]
=> 9
([(0,2),(0,3),(3,1)],4)
=> [7]
=> 7
([(0,1),(0,2),(1,3),(2,3)],4)
=> [4,2]
=> 6
([(1,2),(2,3)],4)
=> [4,4]
=> 8
([(0,3),(3,1),(3,2)],4)
=> [4,2]
=> 6
([(1,3),(2,3)],4)
=> [6,2,2]
=> 10
([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 6
([(0,3),(1,3),(2,3)],4)
=> [3,2,2,2]
=> 9
([(0,3),(1,2)],4)
=> [3,3,3]
=> 9
([(0,3),(1,2),(1,3)],4)
=> [5,3]
=> 8
([(0,2),(0,3),(1,2),(1,3)],4)
=> [3,2,2]
=> 7
([(0,3),(2,1),(3,2)],4)
=> [5]
=> 5
([(0,3),(1,2),(2,3)],4)
=> [7]
=> 7
([],5)
=> [2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]
=> ? ∊ {18,18,18,20,20,24,32}
([(3,4)],5)
=> [6,6,6,6]
=> ? ∊ {18,18,18,20,20,24,32}
([(2,3),(2,4)],5)
=> [6,6,2,2,2,2]
=> ? ∊ {18,18,18,20,20,24,32}
([(1,2),(1,3),(1,4)],5)
=> [6,2,2,2,2,2,2]
=> ? ∊ {18,18,18,20,20,24,32}
([(0,1),(0,2),(0,3),(0,4)],5)
=> [3,2,2,2,2,2,2,2]
=> 17
([(0,2),(0,3),(0,4),(4,1)],5)
=> [7,6]
=> 13
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [7,2,2]
=> 11
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [4,2,2,2]
=> 10
([(1,3),(1,4),(4,2)],5)
=> [14]
=> 14
([(0,3),(0,4),(4,1),(4,2)],5)
=> [7,2,2]
=> 11
([(1,2),(1,3),(2,4),(3,4)],5)
=> [4,4,2,2]
=> 12
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [5,2]
=> 7
([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,3,3]
=> 10
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [5,4]
=> 9
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [4,2,2]
=> 8
([(2,3),(3,4)],5)
=> [4,4,4,4]
=> 16
([(1,4),(4,2),(4,3)],5)
=> [4,4,2,2]
=> 12
([(0,4),(4,1),(4,2),(4,3)],5)
=> [4,2,2,2]
=> 10
([(2,4),(3,4)],5)
=> [6,6,2,2,2,2]
=> ? ∊ {18,18,18,20,20,24,32}
([(1,4),(2,4),(4,3)],5)
=> [4,4,2,2]
=> 12
([(0,4),(1,4),(4,2),(4,3)],5)
=> [4,2,2]
=> 8
([(1,4),(2,4),(3,4)],5)
=> [6,2,2,2,2,2,2]
=> ? ∊ {18,18,18,20,20,24,32}
([(0,4),(1,4),(2,4),(4,3)],5)
=> [4,2,2,2]
=> 10
([(0,4),(1,4),(2,4),(3,4)],5)
=> [3,2,2,2,2,2,2,2]
=> 17
([(0,4),(1,4),(2,3)],5)
=> [6,3,3,3]
=> 15
([(0,4),(1,3),(2,3),(2,4)],5)
=> [8,3,2]
=> 13
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5,3,2,2]
=> 12
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2,2,2,2]
=> 11
([(0,4),(1,4),(2,3),(4,2)],5)
=> [5,2]
=> 7
([(0,4),(1,3),(2,3),(3,4)],5)
=> [7,2,2]
=> 11
([(0,4),(1,4),(2,3),(2,4)],5)
=> [6,5,3]
=> 14
([(0,4),(1,4),(2,3),(3,4)],5)
=> [7,6]
=> 13
([(1,4),(2,3)],5)
=> [6,6,6]
=> ? ∊ {18,18,18,20,20,24,32}
Description
The sum of the parts of an integer partition that are at least two.
Matching statistic: St001034
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001034: Dyck paths ⟶ ℤResult quality: 79% ●values known / values provided: 79%●distinct values known / distinct values provided: 85%
Mp00044: Integer partitions —conjugate⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001034: Dyck paths ⟶ ℤResult quality: 79% ●values known / values provided: 79%●distinct values known / distinct values provided: 85%
Values
([],1)
=> [2]
=> [1,1]
=> [1,1,0,0]
=> 2
([],2)
=> [2,2]
=> [2,2]
=> [1,1,1,0,0,0]
=> 4
([(0,1)],2)
=> [3]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 3
([],3)
=> [2,2,2,2]
=> [4,4]
=> [1,1,1,0,1,0,1,0,0,0]
=> 8
([(1,2)],3)
=> [6]
=> [1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 6
([(0,1),(0,2)],3)
=> [3,2]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 5
([(0,2),(2,1)],3)
=> [4]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 4
([(0,2),(1,2)],3)
=> [3,2]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 5
([],4)
=> [2,2,2,2,2,2,2,2]
=> [8,8]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> 16
([(2,3)],4)
=> [6,6]
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> 12
([(1,2),(1,3)],4)
=> [6,2,2]
=> [3,3,1,1,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,1,0,0]
=> 10
([(0,1),(0,2),(0,3)],4)
=> [3,2,2,2]
=> [4,4,1]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> 9
([(0,2),(0,3),(3,1)],4)
=> [7]
=> [1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> 7
([(0,1),(0,2),(1,3),(2,3)],4)
=> [4,2]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> 6
([(1,2),(2,3)],4)
=> [4,4]
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> 8
([(0,3),(3,1),(3,2)],4)
=> [4,2]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> 6
([(1,3),(2,3)],4)
=> [6,2,2]
=> [3,3,1,1,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,1,0,0]
=> 10
([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> 6
([(0,3),(1,3),(2,3)],4)
=> [3,2,2,2]
=> [4,4,1]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> 9
([(0,3),(1,2)],4)
=> [3,3,3]
=> [3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> 9
([(0,3),(1,2),(1,3)],4)
=> [5,3]
=> [2,2,2,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> 8
([(0,2),(0,3),(1,2),(1,3)],4)
=> [3,2,2]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 7
([(0,3),(2,1),(3,2)],4)
=> [5]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> 5
([(0,3),(1,2),(2,3)],4)
=> [7]
=> [1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> 7
([],5)
=> [2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]
=> [16,16]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> ? ∊ {11,11,12,12,13,13,14,14,14,14,15,15,16,18,18,20,20,32}
([(3,4)],5)
=> [6,6,6,6]
=> [4,4,4,4,4,4]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> 24
([(2,3),(2,4)],5)
=> [6,6,2,2,2,2]
=> [6,6,2,2,2,2]
=> [1,1,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0,0,0]
=> ? ∊ {11,11,12,12,13,13,14,14,14,14,15,15,16,18,18,20,20,32}
([(1,2),(1,3),(1,4)],5)
=> [6,2,2,2,2,2,2]
=> [7,7,1,1,1,1]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {11,11,12,12,13,13,14,14,14,14,15,15,16,18,18,20,20,32}
([(0,1),(0,2),(0,3),(0,4)],5)
=> [3,2,2,2,2,2,2,2]
=> [8,8,1]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> 17
([(0,2),(0,3),(0,4),(4,1)],5)
=> [7,6]
=> [2,2,2,2,2,2,1]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,1,0,0]
=> 13
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [7,2,2]
=> [3,3,1,1,1,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> 11
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [4,2,2,2]
=> [4,4,1,1]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,0]
=> 10
([(1,3),(1,4),(4,2)],5)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {11,11,12,12,13,13,14,14,14,14,15,15,16,18,18,20,20,32}
([(0,3),(0,4),(4,1),(4,2)],5)
=> [7,2,2]
=> [3,3,1,1,1,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> 11
([(1,2),(1,3),(2,4),(3,4)],5)
=> [4,4,2,2]
=> [4,4,2,2]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> 12
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [5,2]
=> [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 7
([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,3,3]
=> [3,3,3,1]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 10
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [5,4]
=> [2,2,2,2,1]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> 9
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [4,2,2]
=> [3,3,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> 8
([(2,3),(3,4)],5)
=> [4,4,4,4]
=> [4,4,4,4]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 16
([(1,4),(4,2),(4,3)],5)
=> [4,4,2,2]
=> [4,4,2,2]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> 12
([(0,4),(4,1),(4,2),(4,3)],5)
=> [4,2,2,2]
=> [4,4,1,1]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,0]
=> 10
([(2,4),(3,4)],5)
=> [6,6,2,2,2,2]
=> [6,6,2,2,2,2]
=> [1,1,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0,0,0]
=> ? ∊ {11,11,12,12,13,13,14,14,14,14,15,15,16,18,18,20,20,32}
([(1,4),(2,4),(4,3)],5)
=> [4,4,2,2]
=> [4,4,2,2]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> 12
([(0,4),(1,4),(4,2),(4,3)],5)
=> [4,2,2]
=> [3,3,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> 8
([(1,4),(2,4),(3,4)],5)
=> [6,2,2,2,2,2,2]
=> [7,7,1,1,1,1]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {11,11,12,12,13,13,14,14,14,14,15,15,16,18,18,20,20,32}
([(0,4),(1,4),(2,4),(4,3)],5)
=> [4,2,2,2]
=> [4,4,1,1]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,0]
=> 10
([(0,4),(1,4),(2,4),(3,4)],5)
=> [3,2,2,2,2,2,2,2]
=> [8,8,1]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> 17
([(0,4),(1,4),(2,3)],5)
=> [6,3,3,3]
=> [4,4,4,1,1,1]
=> [1,1,1,1,1,0,1,0,0,0,0,1,0,1,0,1,0,0]
=> ? ∊ {11,11,12,12,13,13,14,14,14,14,15,15,16,18,18,20,20,32}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [8,3,2]
=> [3,3,2,1,1,1,1,1]
=> [1,1,1,0,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {11,11,12,12,13,13,14,14,14,14,15,15,16,18,18,20,20,32}
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5,3,2,2]
=> [4,4,2,1,1]
=> [1,1,1,0,1,0,1,1,0,0,0,1,0,1,0,0]
=> 12
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2,2,2,2]
=> [5,5,1]
=> [1,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> 11
([(0,4),(1,4),(2,3),(4,2)],5)
=> [5,2]
=> [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 7
([(0,4),(1,3),(2,3),(3,4)],5)
=> [7,2,2]
=> [3,3,1,1,1,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> 11
([(0,4),(1,4),(2,3),(2,4)],5)
=> [6,5,3]
=> [3,3,3,2,2,1]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,1,0,0]
=> ? ∊ {11,11,12,12,13,13,14,14,14,14,15,15,16,18,18,20,20,32}
([(0,4),(1,4),(2,3),(3,4)],5)
=> [7,6]
=> [2,2,2,2,2,2,1]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,1,0,0]
=> 13
([(1,4),(2,3)],5)
=> [6,6,6]
=> [3,3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> 18
([(1,4),(2,3),(2,4)],5)
=> [10,6]
=> [2,2,2,2,2,2,1,1,1,1]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {11,11,12,12,13,13,14,14,14,14,15,15,16,18,18,20,20,32}
([(0,4),(1,2),(1,4),(2,3)],5)
=> [8,3]
=> [2,2,2,1,1,1,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {11,11,12,12,13,13,14,14,14,14,15,15,16,18,18,20,20,32}
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [5,4]
=> [2,2,2,2,1]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> 9
([(1,3),(1,4),(2,3),(2,4)],5)
=> [6,2,2,2,2]
=> [5,5,1,1,1,1]
=> [1,1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0,0]
=> 14
([(0,4),(1,2),(1,3)],5)
=> [6,3,3,3]
=> [4,4,4,1,1,1]
=> [1,1,1,1,1,0,1,0,0,0,0,1,0,1,0,1,0,0]
=> ? ∊ {11,11,12,12,13,13,14,14,14,14,15,15,16,18,18,20,20,32}
([(0,4),(1,2),(1,3),(1,4)],5)
=> [6,5,3]
=> [3,3,3,2,2,1]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,1,0,0]
=> ? ∊ {11,11,12,12,13,13,14,14,14,14,15,15,16,18,18,20,20,32}
([(0,4),(1,2),(1,3),(3,4)],5)
=> [10,2]
=> [2,2,1,1,1,1,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {11,11,12,12,13,13,14,14,14,14,15,15,16,18,18,20,20,32}
([(0,3),(0,4),(1,2),(1,4)],5)
=> [8,3,2]
=> [3,3,2,1,1,1,1,1]
=> [1,1,1,0,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {11,11,12,12,13,13,14,14,14,14,15,15,16,18,18,20,20,32}
([(0,3),(1,2),(1,4),(3,4)],5)
=> [8,3]
=> [2,2,2,1,1,1,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {11,11,12,12,13,13,14,14,14,14,15,15,16,18,18,20,20,32}
([(1,4),(2,3),(3,4)],5)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {11,11,12,12,13,13,14,14,14,14,15,15,16,18,18,20,20,32}
([(0,3),(1,4),(4,2)],5)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {11,11,12,12,13,13,14,14,14,14,15,15,16,18,18,20,20,32}
Description
The area of the parallelogram polyomino associated with the Dyck path.
The (bivariate) generating function is given in [1].
Matching statistic: St000293
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
Mp00095: Integer partitions —to binary word⟶ Binary words
St000293: Binary words ⟶ ℤResult quality: 74% ●values known / values provided: 74%●distinct values known / distinct values provided: 75%
Mp00044: Integer partitions —conjugate⟶ Integer partitions
Mp00095: Integer partitions —to binary word⟶ Binary words
St000293: Binary words ⟶ ℤResult quality: 74% ●values known / values provided: 74%●distinct values known / distinct values provided: 75%
Values
([],1)
=> [2]
=> [1,1]
=> 110 => 2
([],2)
=> [2,2]
=> [2,2]
=> 1100 => 4
([(0,1)],2)
=> [3]
=> [1,1,1]
=> 1110 => 3
([],3)
=> [2,2,2,2]
=> [4,4]
=> 110000 => 8
([(1,2)],3)
=> [6]
=> [1,1,1,1,1,1]
=> 1111110 => 6
([(0,1),(0,2)],3)
=> [3,2]
=> [2,2,1]
=> 11010 => 5
([(0,2),(2,1)],3)
=> [4]
=> [1,1,1,1]
=> 11110 => 4
([(0,2),(1,2)],3)
=> [3,2]
=> [2,2,1]
=> 11010 => 5
([],4)
=> [2,2,2,2,2,2,2,2]
=> [8,8]
=> 1100000000 => ? = 16
([(2,3)],4)
=> [6,6]
=> [2,2,2,2,2,2]
=> 11111100 => 12
([(1,2),(1,3)],4)
=> [6,2,2]
=> [3,3,1,1,1,1]
=> 110011110 => 10
([(0,1),(0,2),(0,3)],4)
=> [3,2,2,2]
=> [4,4,1]
=> 1100010 => 9
([(0,2),(0,3),(3,1)],4)
=> [7]
=> [1,1,1,1,1,1,1]
=> 11111110 => 7
([(0,1),(0,2),(1,3),(2,3)],4)
=> [4,2]
=> [2,2,1,1]
=> 110110 => 6
([(1,2),(2,3)],4)
=> [4,4]
=> [2,2,2,2]
=> 111100 => 8
([(0,3),(3,1),(3,2)],4)
=> [4,2]
=> [2,2,1,1]
=> 110110 => 6
([(1,3),(2,3)],4)
=> [6,2,2]
=> [3,3,1,1,1,1]
=> 110011110 => 10
([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> [2,2,1,1]
=> 110110 => 6
([(0,3),(1,3),(2,3)],4)
=> [3,2,2,2]
=> [4,4,1]
=> 1100010 => 9
([(0,3),(1,2)],4)
=> [3,3,3]
=> [3,3,3]
=> 111000 => 9
([(0,3),(1,2),(1,3)],4)
=> [5,3]
=> [2,2,2,1,1]
=> 1110110 => 8
([(0,2),(0,3),(1,2),(1,3)],4)
=> [3,2,2]
=> [3,3,1]
=> 110010 => 7
([(0,3),(2,1),(3,2)],4)
=> [5]
=> [1,1,1,1,1]
=> 111110 => 5
([(0,3),(1,2),(2,3)],4)
=> [7]
=> [1,1,1,1,1,1,1]
=> 11111110 => 7
([],5)
=> [2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]
=> [16,16]
=> 110000000000000000 => ? ∊ {11,11,11,11,12,12,13,13,14,14,14,15,15,16,17,17,18,18,20,20,24,32}
([(3,4)],5)
=> [6,6,6,6]
=> [4,4,4,4,4,4]
=> 1111110000 => ? ∊ {11,11,11,11,12,12,13,13,14,14,14,15,15,16,17,17,18,18,20,20,24,32}
([(2,3),(2,4)],5)
=> [6,6,2,2,2,2]
=> [6,6,2,2,2,2]
=> 110000111100 => ? ∊ {11,11,11,11,12,12,13,13,14,14,14,15,15,16,17,17,18,18,20,20,24,32}
([(1,2),(1,3),(1,4)],5)
=> [6,2,2,2,2,2,2]
=> [7,7,1,1,1,1]
=> 1100000011110 => ? ∊ {11,11,11,11,12,12,13,13,14,14,14,15,15,16,17,17,18,18,20,20,24,32}
([(0,1),(0,2),(0,3),(0,4)],5)
=> [3,2,2,2,2,2,2,2]
=> [8,8,1]
=> 11000000010 => ? ∊ {11,11,11,11,12,12,13,13,14,14,14,15,15,16,17,17,18,18,20,20,24,32}
([(0,2),(0,3),(0,4),(4,1)],5)
=> [7,6]
=> [2,2,2,2,2,2,1]
=> 111111010 => 13
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [7,2,2]
=> [3,3,1,1,1,1,1]
=> 1100111110 => ? ∊ {11,11,11,11,12,12,13,13,14,14,14,15,15,16,17,17,18,18,20,20,24,32}
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [4,2,2,2]
=> [4,4,1,1]
=> 11000110 => 10
([(1,3),(1,4),(4,2)],5)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> 111111111111110 => ? ∊ {11,11,11,11,12,12,13,13,14,14,14,15,15,16,17,17,18,18,20,20,24,32}
([(0,3),(0,4),(4,1),(4,2)],5)
=> [7,2,2]
=> [3,3,1,1,1,1,1]
=> 1100111110 => ? ∊ {11,11,11,11,12,12,13,13,14,14,14,15,15,16,17,17,18,18,20,20,24,32}
([(1,2),(1,3),(2,4),(3,4)],5)
=> [4,4,2,2]
=> [4,4,2,2]
=> 11001100 => 12
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [5,2]
=> [2,2,1,1,1]
=> 1101110 => 7
([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,3,3]
=> [3,3,3,1]
=> 1110010 => 10
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [5,4]
=> [2,2,2,2,1]
=> 1111010 => 9
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [4,2,2]
=> [3,3,1,1]
=> 1100110 => 8
([(2,3),(3,4)],5)
=> [4,4,4,4]
=> [4,4,4,4]
=> 11110000 => 16
([(1,4),(4,2),(4,3)],5)
=> [4,4,2,2]
=> [4,4,2,2]
=> 11001100 => 12
([(0,4),(4,1),(4,2),(4,3)],5)
=> [4,2,2,2]
=> [4,4,1,1]
=> 11000110 => 10
([(2,4),(3,4)],5)
=> [6,6,2,2,2,2]
=> [6,6,2,2,2,2]
=> 110000111100 => ? ∊ {11,11,11,11,12,12,13,13,14,14,14,15,15,16,17,17,18,18,20,20,24,32}
([(1,4),(2,4),(4,3)],5)
=> [4,4,2,2]
=> [4,4,2,2]
=> 11001100 => 12
([(0,4),(1,4),(4,2),(4,3)],5)
=> [4,2,2]
=> [3,3,1,1]
=> 1100110 => 8
([(1,4),(2,4),(3,4)],5)
=> [6,2,2,2,2,2,2]
=> [7,7,1,1,1,1]
=> 1100000011110 => ? ∊ {11,11,11,11,12,12,13,13,14,14,14,15,15,16,17,17,18,18,20,20,24,32}
([(0,4),(1,4),(2,4),(4,3)],5)
=> [4,2,2,2]
=> [4,4,1,1]
=> 11000110 => 10
([(0,4),(1,4),(2,4),(3,4)],5)
=> [3,2,2,2,2,2,2,2]
=> [8,8,1]
=> 11000000010 => ? ∊ {11,11,11,11,12,12,13,13,14,14,14,15,15,16,17,17,18,18,20,20,24,32}
([(0,4),(1,4),(2,3)],5)
=> [6,3,3,3]
=> [4,4,4,1,1,1]
=> 1110001110 => ? ∊ {11,11,11,11,12,12,13,13,14,14,14,15,15,16,17,17,18,18,20,20,24,32}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [8,3,2]
=> [3,3,2,1,1,1,1,1]
=> 11010111110 => ? ∊ {11,11,11,11,12,12,13,13,14,14,14,15,15,16,17,17,18,18,20,20,24,32}
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5,3,2,2]
=> [4,4,2,1,1]
=> 110010110 => 12
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2,2,2,2]
=> [5,5,1]
=> 11000010 => 11
([(0,4),(1,4),(2,3),(4,2)],5)
=> [5,2]
=> [2,2,1,1,1]
=> 1101110 => 7
([(0,4),(1,3),(2,3),(3,4)],5)
=> [7,2,2]
=> [3,3,1,1,1,1,1]
=> 1100111110 => ? ∊ {11,11,11,11,12,12,13,13,14,14,14,15,15,16,17,17,18,18,20,20,24,32}
([(0,4),(1,4),(2,3),(2,4)],5)
=> [6,5,3]
=> [3,3,3,2,2,1]
=> 111011010 => 14
([(0,4),(1,4),(2,3),(3,4)],5)
=> [7,6]
=> [2,2,2,2,2,2,1]
=> 111111010 => 13
([(1,4),(2,3)],5)
=> [6,6,6]
=> [3,3,3,3,3,3]
=> 111111000 => 18
([(1,4),(2,3),(2,4)],5)
=> [10,6]
=> [2,2,2,2,2,2,1,1,1,1]
=> 111111011110 => ? ∊ {11,11,11,11,12,12,13,13,14,14,14,15,15,16,17,17,18,18,20,20,24,32}
([(0,4),(1,2),(1,4),(2,3)],5)
=> [8,3]
=> [2,2,2,1,1,1,1,1]
=> 1110111110 => 11
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [5,4]
=> [2,2,2,2,1]
=> 1111010 => 9
([(1,3),(1,4),(2,3),(2,4)],5)
=> [6,2,2,2,2]
=> [5,5,1,1,1,1]
=> 11000011110 => ? ∊ {11,11,11,11,12,12,13,13,14,14,14,15,15,16,17,17,18,18,20,20,24,32}
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> [7,2]
=> [2,2,1,1,1,1,1]
=> 110111110 => 9
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [4,2,2]
=> [3,3,1,1]
=> 1100110 => 8
([(0,4),(1,2),(1,4),(4,3)],5)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1]
=> 11111111110 => 10
([(0,4),(1,2),(1,3)],5)
=> [6,3,3,3]
=> [4,4,4,1,1,1]
=> 1110001110 => ? ∊ {11,11,11,11,12,12,13,13,14,14,14,15,15,16,17,17,18,18,20,20,24,32}
([(0,4),(1,2),(1,3),(1,4)],5)
=> [6,5,3]
=> [3,3,3,2,2,1]
=> 111011010 => 14
([(0,2),(0,4),(3,1),(4,3)],5)
=> [5,4]
=> [2,2,2,2,1]
=> 1111010 => 9
([(0,4),(1,2),(1,3),(3,4)],5)
=> [10,2]
=> [2,2,1,1,1,1,1,1,1,1]
=> 110111111110 => ? ∊ {11,11,11,11,12,12,13,13,14,14,14,15,15,16,17,17,18,18,20,20,24,32}
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> 111111110 => 8
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [7,2,2]
=> [3,3,1,1,1,1,1]
=> 1100111110 => ? ∊ {11,11,11,11,12,12,13,13,14,14,14,15,15,16,17,17,18,18,20,20,24,32}
([(0,3),(0,4),(1,2),(1,4)],5)
=> [8,3,2]
=> [3,3,2,1,1,1,1,1]
=> 11010111110 => ? ∊ {11,11,11,11,12,12,13,13,14,14,14,15,15,16,17,17,18,18,20,20,24,32}
([(1,4),(2,3),(3,4)],5)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> 111111111111110 => ? ∊ {11,11,11,11,12,12,13,13,14,14,14,15,15,16,17,17,18,18,20,20,24,32}
([(0,3),(1,4),(4,2)],5)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> 1111111111110 => ? ∊ {11,11,11,11,12,12,13,13,14,14,14,15,15,16,17,17,18,18,20,20,24,32}
Description
The number of inversions of a binary word.
Matching statistic: St000290
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
Mp00095: Integer partitions —to binary word⟶ Binary words
Mp00316: Binary words —inverse Foata bijection⟶ Binary words
St000290: Binary words ⟶ ℤResult quality: 71% ●values known / values provided: 71%●distinct values known / distinct values provided: 75%
Mp00095: Integer partitions —to binary word⟶ Binary words
Mp00316: Binary words —inverse Foata bijection⟶ Binary words
St000290: Binary words ⟶ ℤResult quality: 71% ●values known / values provided: 71%●distinct values known / distinct values provided: 75%
Values
([],1)
=> [2]
=> 100 => 010 => 2
([],2)
=> [2,2]
=> 1100 => 1010 => 4
([(0,1)],2)
=> [3]
=> 1000 => 0010 => 3
([],3)
=> [2,2,2,2]
=> 111100 => 111010 => 8
([(1,2)],3)
=> [6]
=> 1000000 => 0000010 => 6
([(0,1),(0,2)],3)
=> [3,2]
=> 10100 => 10010 => 5
([(0,2),(2,1)],3)
=> [4]
=> 10000 => 00010 => 4
([(0,2),(1,2)],3)
=> [3,2]
=> 10100 => 10010 => 5
([],4)
=> [2,2,2,2,2,2,2,2]
=> 1111111100 => ? => ? = 16
([(2,3)],4)
=> [6,6]
=> 11000000 => 00001010 => 12
([(1,2),(1,3)],4)
=> [6,2,2]
=> 100001100 => 110000010 => 10
([(0,1),(0,2),(0,3)],4)
=> [3,2,2,2]
=> 1011100 => 1110010 => 9
([(0,2),(0,3),(3,1)],4)
=> [7]
=> 10000000 => 00000010 => 7
([(0,1),(0,2),(1,3),(2,3)],4)
=> [4,2]
=> 100100 => 100010 => 6
([(1,2),(2,3)],4)
=> [4,4]
=> 110000 => 001010 => 8
([(0,3),(3,1),(3,2)],4)
=> [4,2]
=> 100100 => 100010 => 6
([(1,3),(2,3)],4)
=> [6,2,2]
=> 100001100 => 110000010 => 10
([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 100100 => 100010 => 6
([(0,3),(1,3),(2,3)],4)
=> [3,2,2,2]
=> 1011100 => 1110010 => 9
([(0,3),(1,2)],4)
=> [3,3,3]
=> 111000 => 101010 => 9
([(0,3),(1,2),(1,3)],4)
=> [5,3]
=> 1001000 => 0100010 => 8
([(0,2),(0,3),(1,2),(1,3)],4)
=> [3,2,2]
=> 101100 => 110010 => 7
([(0,3),(2,1),(3,2)],4)
=> [5]
=> 100000 => 000010 => 5
([(0,3),(1,2),(2,3)],4)
=> [7]
=> 10000000 => 00000010 => 7
([],5)
=> [2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]
=> 111111111111111100 => ? => ? ∊ {11,11,11,11,11,11,12,12,13,13,14,14,14,15,15,16,17,17,18,18,20,20,24,32}
([(3,4)],5)
=> [6,6,6,6]
=> 1111000000 => ? => ? ∊ {11,11,11,11,11,11,12,12,13,13,14,14,14,15,15,16,17,17,18,18,20,20,24,32}
([(2,3),(2,4)],5)
=> [6,6,2,2,2,2]
=> 110000111100 => ? => ? ∊ {11,11,11,11,11,11,12,12,13,13,14,14,14,15,15,16,17,17,18,18,20,20,24,32}
([(1,2),(1,3),(1,4)],5)
=> [6,2,2,2,2,2,2]
=> 1000011111100 => ? => ? ∊ {11,11,11,11,11,11,12,12,13,13,14,14,14,15,15,16,17,17,18,18,20,20,24,32}
([(0,1),(0,2),(0,3),(0,4)],5)
=> [3,2,2,2,2,2,2,2]
=> 10111111100 => ? => ? ∊ {11,11,11,11,11,11,12,12,13,13,14,14,14,15,15,16,17,17,18,18,20,20,24,32}
([(0,2),(0,3),(0,4),(4,1)],5)
=> [7,6]
=> 101000000 => 000010010 => 13
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [7,2,2]
=> 1000001100 => ? => ? ∊ {11,11,11,11,11,11,12,12,13,13,14,14,14,15,15,16,17,17,18,18,20,20,24,32}
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [4,2,2,2]
=> 10011100 => 11100010 => 10
([(1,3),(1,4),(4,2)],5)
=> [14]
=> 100000000000000 => ? => ? ∊ {11,11,11,11,11,11,12,12,13,13,14,14,14,15,15,16,17,17,18,18,20,20,24,32}
([(0,3),(0,4),(4,1),(4,2)],5)
=> [7,2,2]
=> 1000001100 => ? => ? ∊ {11,11,11,11,11,11,12,12,13,13,14,14,14,15,15,16,17,17,18,18,20,20,24,32}
([(1,2),(1,3),(2,4),(3,4)],5)
=> [4,4,2,2]
=> 11001100 => 00111010 => 12
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [5,2]
=> 1000100 => 1000010 => 7
([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,3,3]
=> 1011000 => 1010010 => 10
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [5,4]
=> 1010000 => 0010010 => 9
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [4,2,2]
=> 1001100 => 1100010 => 8
([(2,3),(3,4)],5)
=> [4,4,4,4]
=> 11110000 => 10101010 => 16
([(1,4),(4,2),(4,3)],5)
=> [4,4,2,2]
=> 11001100 => 00111010 => 12
([(0,4),(4,1),(4,2),(4,3)],5)
=> [4,2,2,2]
=> 10011100 => 11100010 => 10
([(2,4),(3,4)],5)
=> [6,6,2,2,2,2]
=> 110000111100 => ? => ? ∊ {11,11,11,11,11,11,12,12,13,13,14,14,14,15,15,16,17,17,18,18,20,20,24,32}
([(1,4),(2,4),(4,3)],5)
=> [4,4,2,2]
=> 11001100 => 00111010 => 12
([(0,4),(1,4),(4,2),(4,3)],5)
=> [4,2,2]
=> 1001100 => 1100010 => 8
([(1,4),(2,4),(3,4)],5)
=> [6,2,2,2,2,2,2]
=> 1000011111100 => ? => ? ∊ {11,11,11,11,11,11,12,12,13,13,14,14,14,15,15,16,17,17,18,18,20,20,24,32}
([(0,4),(1,4),(2,4),(4,3)],5)
=> [4,2,2,2]
=> 10011100 => 11100010 => 10
([(0,4),(1,4),(2,4),(3,4)],5)
=> [3,2,2,2,2,2,2,2]
=> 10111111100 => ? => ? ∊ {11,11,11,11,11,11,12,12,13,13,14,14,14,15,15,16,17,17,18,18,20,20,24,32}
([(0,4),(1,4),(2,3)],5)
=> [6,3,3,3]
=> 1000111000 => ? => ? ∊ {11,11,11,11,11,11,12,12,13,13,14,14,14,15,15,16,17,17,18,18,20,20,24,32}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [8,3,2]
=> 10000010100 => ? => ? ∊ {11,11,11,11,11,11,12,12,13,13,14,14,14,15,15,16,17,17,18,18,20,20,24,32}
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5,3,2,2]
=> 100101100 => 011100010 => 12
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2,2,2,2]
=> 10111100 => 11110010 => 11
([(0,4),(1,4),(2,3),(4,2)],5)
=> [5,2]
=> 1000100 => 1000010 => 7
([(0,4),(1,3),(2,3),(3,4)],5)
=> [7,2,2]
=> 1000001100 => ? => ? ∊ {11,11,11,11,11,11,12,12,13,13,14,14,14,15,15,16,17,17,18,18,20,20,24,32}
([(0,4),(1,4),(2,3),(2,4)],5)
=> [6,5,3]
=> 101001000 => 100010010 => 14
([(0,4),(1,4),(2,3),(3,4)],5)
=> [7,6]
=> 101000000 => 000010010 => 13
([(1,4),(2,3)],5)
=> [6,6,6]
=> 111000000 => 000101010 => 18
([(1,4),(2,3),(2,4)],5)
=> [10,6]
=> 100001000000 => ? => ? ∊ {11,11,11,11,11,11,12,12,13,13,14,14,14,15,15,16,17,17,18,18,20,20,24,32}
([(0,4),(1,2),(1,4),(2,3)],5)
=> [8,3]
=> 1000001000 => ? => ? ∊ {11,11,11,11,11,11,12,12,13,13,14,14,14,15,15,16,17,17,18,18,20,20,24,32}
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [5,4]
=> 1010000 => 0010010 => 9
([(1,3),(1,4),(2,3),(2,4)],5)
=> [6,2,2,2,2]
=> 10000111100 => ? => ? ∊ {11,11,11,11,11,11,12,12,13,13,14,14,14,15,15,16,17,17,18,18,20,20,24,32}
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> [7,2]
=> 100000100 => 100000010 => 9
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [4,2,2]
=> 1001100 => 1100010 => 8
([(0,4),(1,2),(1,4),(4,3)],5)
=> [10]
=> 10000000000 => 00000000010 => 10
([(0,4),(1,2),(1,3)],5)
=> [6,3,3,3]
=> 1000111000 => ? => ? ∊ {11,11,11,11,11,11,12,12,13,13,14,14,14,15,15,16,17,17,18,18,20,20,24,32}
([(0,4),(1,2),(1,3),(1,4)],5)
=> [6,5,3]
=> 101001000 => 100010010 => 14
([(0,2),(0,4),(3,1),(4,3)],5)
=> [5,4]
=> 1010000 => 0010010 => 9
([(0,4),(1,2),(1,3),(3,4)],5)
=> [10,2]
=> 100000000100 => ? => ? ∊ {11,11,11,11,11,11,12,12,13,13,14,14,14,15,15,16,17,17,18,18,20,20,24,32}
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [8]
=> 100000000 => 000000010 => 8
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [7,2,2]
=> 1000001100 => ? => ? ∊ {11,11,11,11,11,11,12,12,13,13,14,14,14,15,15,16,17,17,18,18,20,20,24,32}
([(0,3),(0,4),(1,2),(1,4)],5)
=> [8,3,2]
=> 10000010100 => ? => ? ∊ {11,11,11,11,11,11,12,12,13,13,14,14,14,15,15,16,17,17,18,18,20,20,24,32}
([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [5,3,2,2]
=> 100101100 => 011100010 => 12
([(0,3),(1,2),(1,4),(3,4)],5)
=> [8,3]
=> 1000001000 => ? => ? ∊ {11,11,11,11,11,11,12,12,13,13,14,14,14,15,15,16,17,17,18,18,20,20,24,32}
([(1,4),(2,3),(3,4)],5)
=> [14]
=> 100000000000000 => ? => ? ∊ {11,11,11,11,11,11,12,12,13,13,14,14,14,15,15,16,17,17,18,18,20,20,24,32}
([(0,3),(1,4),(4,2)],5)
=> [12]
=> 1000000000000 => ? => ? ∊ {11,11,11,11,11,11,12,12,13,13,14,14,14,15,15,16,17,17,18,18,20,20,24,32}
Description
The major index of a binary word.
This is the sum of the positions of descents, i.e., a one followed by a zero.
For words of length n with a zeros, the generating function for the major index is the q-binomial coefficient \binom{n}{a}_q.
Matching statistic: St000228
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000228: Integer partitions ⟶ ℤResult quality: 45% ●values known / values provided: 55%●distinct values known / distinct values provided: 45%
St000228: Integer partitions ⟶ ℤResult quality: 45% ●values known / values provided: 55%●distinct values known / distinct values provided: 45%
Values
([],1)
=> [2]
=> 2
([],2)
=> [2,2]
=> 4
([(0,1)],2)
=> [3]
=> 3
([],3)
=> [2,2,2,2]
=> 8
([(1,2)],3)
=> [6]
=> 6
([(0,1),(0,2)],3)
=> [3,2]
=> 5
([(0,2),(2,1)],3)
=> [4]
=> 4
([(0,2),(1,2)],3)
=> [3,2]
=> 5
([],4)
=> [2,2,2,2,2,2,2,2]
=> ? ∊ {12,16}
([(2,3)],4)
=> [6,6]
=> ? ∊ {12,16}
([(1,2),(1,3)],4)
=> [6,2,2]
=> 10
([(0,1),(0,2),(0,3)],4)
=> [3,2,2,2]
=> 9
([(0,2),(0,3),(3,1)],4)
=> [7]
=> 7
([(0,1),(0,2),(1,3),(2,3)],4)
=> [4,2]
=> 6
([(1,2),(2,3)],4)
=> [4,4]
=> 8
([(0,3),(3,1),(3,2)],4)
=> [4,2]
=> 6
([(1,3),(2,3)],4)
=> [6,2,2]
=> 10
([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 6
([(0,3),(1,3),(2,3)],4)
=> [3,2,2,2]
=> 9
([(0,3),(1,2)],4)
=> [3,3,3]
=> 9
([(0,3),(1,2),(1,3)],4)
=> [5,3]
=> 8
([(0,2),(0,3),(1,2),(1,3)],4)
=> [3,2,2]
=> 7
([(0,3),(2,1),(3,2)],4)
=> [5]
=> 5
([(0,3),(1,2),(2,3)],4)
=> [7]
=> 7
([],5)
=> [2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]
=> ? ∊ {11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(3,4)],5)
=> [6,6,6,6]
=> ? ∊ {11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(2,3),(2,4)],5)
=> [6,6,2,2,2,2]
=> ? ∊ {11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(1,2),(1,3),(1,4)],5)
=> [6,2,2,2,2,2,2]
=> ? ∊ {11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,1),(0,2),(0,3),(0,4)],5)
=> [3,2,2,2,2,2,2,2]
=> ? ∊ {11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,2),(0,3),(0,4),(4,1)],5)
=> [7,6]
=> ? ∊ {11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [7,2,2]
=> ? ∊ {11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [4,2,2,2]
=> 10
([(1,3),(1,4),(4,2)],5)
=> [14]
=> ? ∊ {11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,3),(0,4),(4,1),(4,2)],5)
=> [7,2,2]
=> ? ∊ {11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(1,2),(1,3),(2,4),(3,4)],5)
=> [4,4,2,2]
=> ? ∊ {11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [5,2]
=> 7
([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,3,3]
=> 10
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [5,4]
=> 9
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [4,2,2]
=> 8
([(2,3),(3,4)],5)
=> [4,4,4,4]
=> ? ∊ {11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(1,4),(4,2),(4,3)],5)
=> [4,4,2,2]
=> ? ∊ {11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,4),(4,1),(4,2),(4,3)],5)
=> [4,2,2,2]
=> 10
([(2,4),(3,4)],5)
=> [6,6,2,2,2,2]
=> ? ∊ {11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(1,4),(2,4),(4,3)],5)
=> [4,4,2,2]
=> ? ∊ {11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,4),(4,2),(4,3)],5)
=> [4,2,2]
=> 8
([(1,4),(2,4),(3,4)],5)
=> [6,2,2,2,2,2,2]
=> ? ∊ {11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,4),(2,4),(4,3)],5)
=> [4,2,2,2]
=> 10
([(0,4),(1,4),(2,4),(3,4)],5)
=> [3,2,2,2,2,2,2,2]
=> ? ∊ {11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,4),(2,3)],5)
=> [6,3,3,3]
=> ? ∊ {11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [8,3,2]
=> ? ∊ {11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5,3,2,2]
=> ? ∊ {11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2,2,2,2]
=> ? ∊ {11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,4),(2,3),(4,2)],5)
=> [5,2]
=> 7
([(0,4),(1,3),(2,3),(3,4)],5)
=> [7,2,2]
=> ? ∊ {11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,4),(2,3),(2,4)],5)
=> [6,5,3]
=> ? ∊ {11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,4),(2,3),(3,4)],5)
=> [7,6]
=> ? ∊ {11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(1,4),(2,3)],5)
=> [6,6,6]
=> ? ∊ {11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(1,4),(2,3),(2,4)],5)
=> [10,6]
=> ? ∊ {11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,2),(1,4),(2,3)],5)
=> [8,3]
=> ? ∊ {11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [5,4]
=> 9
([(1,3),(1,4),(2,3),(2,4)],5)
=> [6,2,2,2,2]
=> ? ∊ {11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> [7,2]
=> 9
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [4,2,2]
=> 8
([(0,4),(1,2),(1,4),(4,3)],5)
=> [10]
=> 10
([(0,4),(1,2),(1,3)],5)
=> [6,3,3,3]
=> ? ∊ {11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,2),(1,3),(1,4)],5)
=> [6,5,3]
=> ? ∊ {11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,2),(0,4),(3,1),(4,3)],5)
=> [5,4]
=> 9
([(0,4),(1,2),(1,3),(3,4)],5)
=> [10,2]
=> ? ∊ {11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [8]
=> 8
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [7,2,2]
=> ? ∊ {11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,3),(0,4),(1,2),(1,4)],5)
=> [8,3,2]
=> ? ∊ {11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [5,3,2,2]
=> ? ∊ {11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [3,2,2,2,2]
=> ? ∊ {11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> [10]
=> 10
([(0,3),(1,2),(1,4),(3,4)],5)
=> [8,3]
=> ? ∊ {11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> [7,2]
=> 9
([(1,4),(3,2),(4,3)],5)
=> [10]
=> 10
([(0,3),(3,4),(4,1),(4,2)],5)
=> [5,2]
=> 7
([(1,4),(2,3),(3,4)],5)
=> [14]
=> ? ∊ {11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,2),(2,4),(4,3)],5)
=> [8]
=> 8
([(0,3),(1,4),(4,2)],5)
=> [12]
=> ? ∊ {11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,4),(3,2),(4,1),(4,3)],5)
=> [8]
=> 8
([(0,4),(1,2),(2,3),(2,4)],5)
=> [10]
=> 10
([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 6
([(0,3),(1,2),(2,4),(3,4)],5)
=> [4,3,3]
=> 10
([(0,4),(1,2),(2,3),(3,4)],5)
=> [5,4]
=> 9
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [5,2]
=> 7
Description
The size of a partition.
This statistic is the constant statistic of the level sets.
Matching statistic: St000395
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00227: Dyck paths —Delest-Viennot-inverse⟶ Dyck paths
St000395: Dyck paths ⟶ ℤResult quality: 51% ●values known / values provided: 51%●distinct values known / distinct values provided: 60%
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00227: Dyck paths —Delest-Viennot-inverse⟶ Dyck paths
St000395: Dyck paths ⟶ ℤResult quality: 51% ●values known / values provided: 51%●distinct values known / distinct values provided: 60%
Values
([],1)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 2
([],2)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 4
([(0,1)],2)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 3
([],3)
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 8
([(1,2)],3)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 6
([(0,1),(0,2)],3)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 5
([(0,2),(2,1)],3)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 4
([(0,2),(1,2)],3)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 5
([],4)
=> [2,2,2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {10,10,16}
([(2,3)],4)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 12
([(1,2),(1,3)],4)
=> [6,2,2]
=> [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,1,0,0]
=> ? ∊ {10,10,16}
([(0,1),(0,2),(0,3)],4)
=> [3,2,2,2]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 9
([(0,2),(0,3),(3,1)],4)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 7
([(0,1),(0,2),(1,3),(2,3)],4)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 6
([(1,2),(2,3)],4)
=> [4,4]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 8
([(0,3),(3,1),(3,2)],4)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 6
([(1,3),(2,3)],4)
=> [6,2,2]
=> [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,1,0,0]
=> ? ∊ {10,10,16}
([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 6
([(0,3),(1,3),(2,3)],4)
=> [3,2,2,2]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 9
([(0,3),(1,2)],4)
=> [3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 9
([(0,3),(1,2),(1,3)],4)
=> [5,3]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 8
([(0,2),(0,3),(1,2),(1,3)],4)
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 7
([(0,3),(2,1),(3,2)],4)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 5
([(0,3),(1,2),(2,3)],4)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 7
([],5)
=> [2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {8,8,8,9,9,10,10,10,10,11,11,11,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,17,17,18,18,18,20,20,24,32}
([(3,4)],5)
=> [6,6,6,6]
=> [1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0,0]
=> ? ∊ {8,8,8,9,9,10,10,10,10,11,11,11,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,17,17,18,18,18,20,20,24,32}
([(2,3),(2,4)],5)
=> [6,6,2,2,2,2]
=> [1,1,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {8,8,8,9,9,10,10,10,10,11,11,11,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,17,17,18,18,18,20,20,24,32}
([(1,2),(1,3),(1,4)],5)
=> [6,2,2,2,2,2,2]
=> [1,0,1,0,1,0,1,0,1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {8,8,8,9,9,10,10,10,10,11,11,11,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,17,17,18,18,18,20,20,24,32}
([(0,1),(0,2),(0,3),(0,4)],5)
=> [3,2,2,2,2,2,2,2]
=> [1,0,1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {8,8,8,9,9,10,10,10,10,11,11,11,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,17,17,18,18,18,20,20,24,32}
([(0,2),(0,3),(0,4),(4,1)],5)
=> [7,6]
=> [1,0,1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> ? ∊ {8,8,8,9,9,10,10,10,10,11,11,11,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,17,17,18,18,18,20,20,24,32}
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [7,2,2]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0,0]
=> ? ∊ {8,8,8,9,9,10,10,10,10,11,11,11,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,17,17,18,18,18,20,20,24,32}
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [4,2,2,2]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> 10
([(1,3),(1,4),(4,2)],5)
=> [14]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
=> ? ∊ {8,8,8,9,9,10,10,10,10,11,11,11,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,17,17,18,18,18,20,20,24,32}
([(0,3),(0,4),(4,1),(4,2)],5)
=> [7,2,2]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0,0]
=> ? ∊ {8,8,8,9,9,10,10,10,10,11,11,11,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,17,17,18,18,18,20,20,24,32}
([(1,2),(1,3),(2,4),(3,4)],5)
=> [4,4,2,2]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> 12
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 7
([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,3,3]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> 10
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [5,4]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 9
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> 8
([(2,3),(3,4)],5)
=> [4,4,4,4]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> 16
([(1,4),(4,2),(4,3)],5)
=> [4,4,2,2]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> 12
([(0,4),(4,1),(4,2),(4,3)],5)
=> [4,2,2,2]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> 10
([(2,4),(3,4)],5)
=> [6,6,2,2,2,2]
=> [1,1,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {8,8,8,9,9,10,10,10,10,11,11,11,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,17,17,18,18,18,20,20,24,32}
([(1,4),(2,4),(4,3)],5)
=> [4,4,2,2]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> 12
([(0,4),(1,4),(4,2),(4,3)],5)
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> 8
([(1,4),(2,4),(3,4)],5)
=> [6,2,2,2,2,2,2]
=> [1,0,1,0,1,0,1,0,1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {8,8,8,9,9,10,10,10,10,11,11,11,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,4),(2,4),(4,3)],5)
=> [4,2,2,2]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> 10
([(0,4),(1,4),(2,4),(3,4)],5)
=> [3,2,2,2,2,2,2,2]
=> [1,0,1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {8,8,8,9,9,10,10,10,10,11,11,11,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,4),(2,3)],5)
=> [6,3,3,3]
=> [1,0,1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,1,0,1,0,0,0]
=> ? ∊ {8,8,8,9,9,10,10,10,10,11,11,11,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [8,3,2]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0,1,0,0]
=> ? ∊ {8,8,8,9,9,10,10,10,10,11,11,11,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5,3,2,2]
=> [1,0,1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,1,0,0]
=> ? ∊ {8,8,8,9,9,10,10,10,10,11,11,11,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,17,17,18,18,18,20,20,24,32}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2,2,2,2]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> 11
([(0,4),(1,4),(2,3),(4,2)],5)
=> [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 7
([(0,4),(1,3),(2,3),(3,4)],5)
=> [7,2,2]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0,0]
=> ? ∊ {8,8,8,9,9,10,10,10,10,11,11,11,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,4),(2,3),(2,4)],5)
=> [6,5,3]
=> [1,0,1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,1,0,0,0]
=> ? ∊ {8,8,8,9,9,10,10,10,10,11,11,11,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,4),(2,3),(3,4)],5)
=> [7,6]
=> [1,0,1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> ? ∊ {8,8,8,9,9,10,10,10,10,11,11,11,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,17,17,18,18,18,20,20,24,32}
([(1,4),(2,3)],5)
=> [6,6,6]
=> [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> ? ∊ {8,8,8,9,9,10,10,10,10,11,11,11,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,17,17,18,18,18,20,20,24,32}
([(1,4),(2,3),(2,4)],5)
=> [10,6]
=> [1,0,1,0,1,0,1,0,1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0]
=> ? ∊ {8,8,8,9,9,10,10,10,10,11,11,11,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,2),(1,4),(2,3)],5)
=> [8,3]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0,0]
=> ? ∊ {8,8,8,9,9,10,10,10,10,11,11,11,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,17,17,18,18,18,20,20,24,32}
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [5,4]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 9
([(1,3),(1,4),(2,3),(2,4)],5)
=> [6,2,2,2,2]
=> [1,0,1,0,1,0,1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {8,8,8,9,9,10,10,10,10,11,11,11,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,17,17,18,18,18,20,20,24,32}
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> [7,2]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> ? ∊ {8,8,8,9,9,10,10,10,10,11,11,11,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,17,17,18,18,18,20,20,24,32}
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> 8
([(0,4),(1,2),(1,4),(4,3)],5)
=> [10]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> ? ∊ {8,8,8,9,9,10,10,10,10,11,11,11,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,2),(1,3)],5)
=> [6,3,3,3]
=> [1,0,1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,1,0,1,0,0,0]
=> ? ∊ {8,8,8,9,9,10,10,10,10,11,11,11,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,2),(1,3),(1,4)],5)
=> [6,5,3]
=> [1,0,1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,1,0,0,0]
=> ? ∊ {8,8,8,9,9,10,10,10,10,11,11,11,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,17,17,18,18,18,20,20,24,32}
([(0,2),(0,4),(3,1),(4,3)],5)
=> [5,4]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 9
([(0,4),(1,2),(1,3),(3,4)],5)
=> [10,2]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,0]
=> ? ∊ {8,8,8,9,9,10,10,10,10,11,11,11,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,17,17,18,18,18,20,20,24,32}
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? ∊ {8,8,8,9,9,10,10,10,10,11,11,11,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [7,2,2]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0,0]
=> ? ∊ {8,8,8,9,9,10,10,10,10,11,11,11,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,17,17,18,18,18,20,20,24,32}
([(0,3),(0,4),(1,2),(1,4)],5)
=> [8,3,2]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0,1,0,0]
=> ? ∊ {8,8,8,9,9,10,10,10,10,11,11,11,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,17,17,18,18,18,20,20,24,32}
([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [5,3,2,2]
=> [1,0,1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,1,0,0]
=> ? ∊ {8,8,8,9,9,10,10,10,10,11,11,11,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,17,17,18,18,18,20,20,24,32}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [3,2,2,2,2]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> 11
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> [10]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> ? ∊ {8,8,8,9,9,10,10,10,10,11,11,11,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,17,17,18,18,18,20,20,24,32}
([(0,3),(1,2),(1,4),(3,4)],5)
=> [8,3]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0,0]
=> ? ∊ {8,8,8,9,9,10,10,10,10,11,11,11,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,17,17,18,18,18,20,20,24,32}
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> [7,2]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> ? ∊ {8,8,8,9,9,10,10,10,10,11,11,11,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,17,17,18,18,18,20,20,24,32}
([(1,4),(3,2),(4,3)],5)
=> [10]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> ? ∊ {8,8,8,9,9,10,10,10,10,11,11,11,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,17,17,18,18,18,20,20,24,32}
([(0,3),(3,4),(4,1),(4,2)],5)
=> [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 7
([(1,4),(2,3),(3,4)],5)
=> [14]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
=> ? ∊ {8,8,8,9,9,10,10,10,10,11,11,11,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,2),(2,4),(4,3)],5)
=> [8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? ∊ {8,8,8,9,9,10,10,10,10,11,11,11,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,17,17,18,18,18,20,20,24,32}
([(0,3),(1,4),(4,2)],5)
=> [12]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0]
=> ? ∊ {8,8,8,9,9,10,10,10,10,11,11,11,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,17,17,18,18,18,20,20,24,32}
([(0,4),(3,2),(4,1),(4,3)],5)
=> [8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? ∊ {8,8,8,9,9,10,10,10,10,11,11,11,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,2),(2,3),(2,4)],5)
=> [10]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> ? ∊ {8,8,8,9,9,10,10,10,10,11,11,11,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,17,17,18,18,18,20,20,24,32}
([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 6
([(0,3),(1,2),(2,4),(3,4)],5)
=> [4,3,3]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> 10
([(0,4),(1,2),(2,3),(3,4)],5)
=> [5,4]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 9
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 7
Description
The sum of the heights of the peaks of a Dyck path.
Matching statistic: St001616
Values
([],1)
=> ([(0,1)],2)
=> 2
([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 3
([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 8
([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
([(0,1),(0,2)],3)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 5
([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 5
([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? ∊ {10,10,12,16}
([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? ∊ {10,10,12,16}
([(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? ∊ {10,10,12,16}
([(0,1),(0,2),(0,3)],4)
=> ([(0,4),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,1),(4,2),(4,3),(5,8),(6,8),(7,8)],9)
=> 9
([(0,2),(0,3),(3,1)],4)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> 7
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 6
([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 8
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 6
([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? ∊ {10,10,12,16}
([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 6
([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> 9
([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> 9
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> 8
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> 7
([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 7
([],5)
=> ?
=> ? ∊ {10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(3,4)],5)
=> ?
=> ? ∊ {10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(1,11),(1,13),(2,11),(2,12),(3,4),(3,5),(3,12),(3,13),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,15),(6,17),(7,15),(7,18),(8,16),(8,17),(9,16),(9,18),(10,15),(10,16),(11,14),(12,6),(12,7),(12,14),(13,8),(13,9),(13,14),(14,17),(14,18),(15,19),(16,19),(17,19),(18,19)],20)
=> ? ∊ {10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(1,2),(1,3),(1,4)],5)
=> ([(0,1),(0,2),(1,12),(2,3),(2,4),(2,5),(2,12),(3,8),(3,10),(3,11),(4,7),(4,9),(4,11),(5,6),(5,9),(5,10),(6,13),(6,14),(7,13),(7,15),(8,14),(8,15),(9,13),(9,16),(10,14),(10,16),(11,15),(11,16),(12,6),(12,7),(12,8),(13,17),(14,17),(15,17),(16,17)],18)
=> ? ∊ {10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,1),(1,2),(1,3),(1,4),(1,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16)],17)
=> ? ∊ {10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,5),(1,9),(1,10),(2,6),(2,8),(3,6),(3,7),(4,1),(4,7),(4,8),(5,2),(5,3),(5,4),(6,12),(7,9),(7,12),(8,10),(8,12),(9,11),(10,11),(12,11)],13)
=> ? ∊ {10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,5),(1,8),(2,7),(2,9),(3,6),(3,9),(4,6),(4,7),(5,2),(5,3),(5,4),(6,10),(7,10),(9,1),(9,10),(10,8)],11)
=> ? ∊ {10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
=> ? ∊ {10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(1,3),(1,4),(4,2)],5)
=> ([(0,1),(0,2),(1,11),(2,3),(2,4),(2,11),(3,8),(3,10),(4,5),(4,9),(4,10),(5,6),(5,7),(6,13),(7,13),(8,12),(9,7),(9,12),(10,6),(10,12),(11,8),(11,9),(12,13)],14)
=> ? ∊ {10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,2),(4,3),(4,6),(5,1),(5,4),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> ? ∊ {10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,9),(1,10),(2,8),(2,10),(3,7),(4,6),(5,1),(5,2),(5,6),(6,8),(6,9),(8,11),(9,11),(10,3),(10,11),(11,7)],12)
=> ? ∊ {10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 7
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ? ∊ {10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> 9
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> 8
([(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,6),(1,7),(2,1),(2,9),(2,10),(3,8),(3,12),(4,8),(4,11),(5,2),(5,11),(5,12),(6,14),(7,14),(8,13),(9,6),(9,15),(10,7),(10,15),(11,9),(11,13),(12,10),(12,13),(13,15),(15,14)],16)
=> ? ∊ {10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(1,4),(4,2),(4,3)],5)
=> ([(0,3),(0,4),(1,6),(1,9),(2,6),(2,8),(3,7),(4,5),(4,7),(5,1),(5,2),(5,10),(6,11),(7,10),(8,11),(9,11),(10,8),(10,9)],12)
=> ? ∊ {10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,7),(1,8),(2,6),(2,8),(3,6),(3,7),(4,5),(5,1),(5,2),(5,3),(6,9),(7,9),(8,9)],10)
=> ? ∊ {10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,6),(1,7),(2,11),(2,12),(2,13),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,16),(7,16),(8,1),(8,17),(8,18),(9,14),(9,17),(10,15),(10,17),(11,14),(11,18),(12,15),(12,18),(13,14),(13,15),(14,19),(15,19),(17,6),(17,19),(18,7),(18,19),(19,16)],20)
=> ? ∊ {10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(1,4),(2,4),(4,3)],5)
=> ([(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(3,7),(3,8),(4,6),(4,8),(5,1),(5,9),(6,11),(7,11),(8,5),(8,11),(9,10),(11,9)],12)
=> ? ∊ {10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8)
=> 8
([(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,6),(2,7),(2,8),(2,9),(3,9),(3,11),(3,12),(4,8),(4,10),(4,12),(5,7),(5,10),(5,11),(7,13),(7,14),(8,13),(8,15),(9,14),(9,15),(10,13),(10,16),(11,14),(11,16),(12,15),(12,16),(13,17),(14,17),(15,17),(16,1),(16,17),(17,6)],18)
=> ? ∊ {10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(0,3),(0,4),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,1),(6,9),(7,9),(8,9),(9,5)],10)
=> ? ∊ {10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16),(16,1)],17)
=> ? ∊ {10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,10),(2,7),(2,8),(3,9),(3,12),(4,9),(4,11),(5,2),(5,11),(5,12),(7,14),(8,14),(9,1),(9,13),(10,6),(11,7),(11,13),(12,8),(12,13),(13,10),(13,14),(14,6)],15)
=> ? ∊ {10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,11),(2,10),(3,8),(3,9),(4,7),(4,8),(5,7),(5,9),(7,12),(8,2),(8,12),(9,1),(9,12),(10,6),(11,6),(12,10),(12,11)],13)
=> ? ∊ {10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(3,10),(4,6),(4,10),(5,6),(5,7),(6,11),(7,11),(8,9),(10,2),(10,11),(11,1),(11,8)],12)
=> ? ∊ {10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(3,9),(4,7),(4,9),(5,7),(5,8),(7,10),(8,10),(9,10),(10,1),(10,2)],11)
=> ? ∊ {10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 7
([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ? ∊ {10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,8),(2,6),(2,7),(3,9),(3,11),(4,9),(4,10),(5,2),(5,10),(5,11),(6,13),(7,13),(9,12),(10,6),(10,12),(11,7),(11,12),(12,1),(12,13),(13,8)],14)
=> ? ∊ {10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(2,10),(3,6),(3,8),(4,6),(4,7),(5,2),(5,7),(5,8),(6,11),(7,9),(7,11),(8,10),(8,11),(9,12),(10,12),(11,12),(12,1)],13)
=> ? ∊ {10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,8),(1,10),(2,7),(2,9),(3,11),(3,12),(4,2),(4,11),(4,13),(5,1),(5,12),(5,13),(6,17),(7,15),(8,16),(9,6),(9,15),(10,6),(10,16),(11,7),(11,14),(12,8),(12,14),(13,9),(13,10),(13,14),(14,15),(14,16),(15,17),(16,17)],18)
=> ? ∊ {10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,6),(1,7),(2,8),(2,10),(3,9),(3,11),(4,9),(4,12),(5,2),(5,11),(5,12),(6,14),(7,14),(8,13),(9,15),(10,6),(10,13),(11,8),(11,15),(12,1),(12,10),(12,15),(13,14),(15,7),(15,13)],16)
=> ? ∊ {10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,5),(1,7),(2,8),(3,10),(4,2),(4,6),(5,4),(5,10),(6,7),(6,8),(7,9),(8,9),(10,1),(10,6)],11)
=> ? ∊ {10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9)
=> 9
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,6),(1,8),(2,6),(2,7),(3,10),(3,11),(4,9),(4,11),(5,9),(5,10),(6,12),(7,12),(8,12),(9,13),(10,13),(11,1),(11,2),(11,13),(13,7),(13,8)],14)
=> ? ∊ {10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9)
=> 9
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8)
=> 8
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,1),(5,6),(6,4),(6,8),(8,9),(9,7)],10)
=> ? ∊ {10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,2),(1,3)],5)
=> ([(0,2),(0,3),(1,11),(2,1),(2,12),(3,4),(3,5),(3,12),(4,8),(4,10),(5,8),(5,9),(6,14),(7,14),(8,13),(9,6),(9,13),(10,7),(10,13),(11,6),(11,7),(12,9),(12,10),(12,11),(13,14)],15)
=> ? ∊ {10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1),(0,2),(1,11),(2,4),(2,5),(2,11),(3,6),(3,7),(4,8),(4,10),(5,8),(5,9),(6,13),(7,13),(8,12),(9,6),(9,12),(10,7),(10,12),(11,3),(11,9),(11,10),(12,13)],14)
=> ? ∊ {10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> 9
([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(0,5),(1,8),(2,7),(2,9),(3,7),(3,10),(4,6),(5,2),(5,3),(5,6),(6,9),(6,10),(7,11),(9,11),(10,1),(10,11),(11,8)],12)
=> ? ∊ {10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> 8
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,7),(2,9),(3,7),(3,8),(4,6),(5,2),(5,3),(5,6),(6,8),(6,9),(7,10),(8,10),(9,10),(10,1)],11)
=> ? ∊ {10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,3),(0,4),(1,2),(1,4)],5)
=> ([(0,3),(0,4),(1,11),(2,10),(3,2),(3,9),(4,1),(4,9),(5,7),(5,8),(6,12),(7,12),(8,12),(9,5),(9,10),(9,11),(10,6),(10,7),(11,6),(11,8)],13)
=> ? ∊ {10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,4),(0,5),(1,7),(1,9),(2,7),(2,8),(3,6),(4,10),(5,3),(5,10),(6,8),(6,9),(7,11),(8,11),(9,11),(10,1),(10,2),(10,6)],12)
=> ? ∊ {10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,4),(0,5),(1,7),(1,8),(2,6),(2,8),(3,6),(3,7),(4,9),(5,9),(6,10),(7,10),(8,10),(9,1),(9,2),(9,3)],11)
=> ? ∊ {10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,4),(0,5),(1,7),(2,9),(3,6),(4,8),(5,2),(5,8),(6,7),(8,3),(8,9),(9,1),(9,6)],10)
=> ? ∊ {10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,4),(0,5),(1,10),(2,7),(3,8),(4,3),(4,6),(5,1),(5,6),(6,8),(6,10),(8,9),(9,7),(10,2),(10,9)],11)
=> ? ∊ {10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9)
=> 9
([(1,4),(3,2),(4,3)],5)
=> ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? ∊ {10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> 7
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,8),(2,6),(2,7),(3,9),(3,10),(4,9),(4,11),(5,2),(5,10),(5,11),(6,13),(7,1),(7,13),(9,12),(10,6),(10,12),(11,7),(11,12),(12,13),(13,8)],14)
=> ? ∊ {10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> 8
([(0,3),(1,4),(4,2)],5)
=> ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? ∊ {10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> 8
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,4),(5,6),(6,9),(7,8),(9,1),(9,7)],10)
=> ? ∊ {10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? ∊ {10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> 9
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 7
Description
The number of neutral elements in a lattice.
An element e of the lattice L is neutral if the sublattice generated by e, x and y is distributive for all x, y \in L.
Matching statistic: St000479
Values
([],1)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 2
([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 4
([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6)],8)
=> ? = 8
([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 6
([(0,1),(0,2)],3)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 5
([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> 5
([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ([(2,5),(2,7),(2,8),(2,9),(2,11),(2,14),(2,15),(3,4),(3,6),(3,7),(3,9),(3,11),(3,13),(3,15),(4,6),(4,7),(4,8),(4,11),(4,12),(4,14),(5,6),(5,8),(5,9),(5,11),(5,12),(5,13),(6,7),(6,10),(6,14),(6,15),(7,10),(7,12),(7,13),(8,9),(8,10),(8,13),(8,15),(9,10),(9,12),(9,14),(10,11),(10,12),(10,13),(10,14),(10,15),(11,12),(11,13),(11,14),(11,15),(12,13),(12,14),(12,15),(13,14),(13,15),(14,15)],16)
=> ? ∊ {8,8,9,9,9,10,10,12,16}
([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(2,8),(2,9),(2,11),(3,6),(3,7),(3,10),(4,5),(4,7),(4,9),(4,10),(4,11),(5,6),(5,8),(5,10),(5,11),(6,7),(6,9),(6,11),(7,8),(7,11),(8,9),(8,10),(9,10),(10,11)],12)
=> ? ∊ {8,8,9,9,9,10,10,12,16}
([(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(2,9),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,6),(5,8),(6,7),(6,9),(7,9),(8,9)],10)
=> ? ∊ {8,8,9,9,9,10,10,12,16}
([(0,1),(0,2),(0,3)],4)
=> ([(0,4),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,1),(4,2),(4,3),(5,8),(6,8),(7,8)],9)
=> ([(0,4),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,1),(4,2),(4,3),(5,8),(6,8),(7,8)],9)
=> ([(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,6),(5,8),(6,7)],9)
=> ? ∊ {8,8,9,9,9,10,10,12,16}
([(0,2),(0,3),(3,1)],4)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> 7
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> 6
([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? ∊ {8,8,9,9,9,10,10,12,16}
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> 6
([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ([(2,9),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,6),(5,8),(6,7),(6,9),(7,9),(8,9)],10)
=> ? ∊ {8,8,9,9,9,10,10,12,16}
([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(4,5)],6)
=> 6
([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> ([(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,6),(5,8),(6,7)],9)
=> ? ∊ {8,8,9,9,9,10,10,12,16}
([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,5),(2,8),(3,4),(3,8),(4,7),(5,7),(6,7),(6,8),(7,8)],9)
=> ? ∊ {8,8,9,9,9,10,10,12,16}
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(2,7),(3,6),(4,5),(5,7),(6,7)],8)
=> ? ∊ {8,8,9,9,9,10,10,12,16}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(3,6),(4,5)],7)
=> 7
([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> 7
([],5)
=> ?
=> ?
=> ?
=> ? ∊ {9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(3,4)],5)
=> ?
=> ?
=> ?
=> ? ∊ {9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(1,11),(1,13),(2,11),(2,12),(3,4),(3,5),(3,12),(3,13),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,15),(6,17),(7,15),(7,18),(8,16),(8,17),(9,16),(9,18),(10,15),(10,16),(11,14),(12,6),(12,7),(12,14),(13,8),(13,9),(13,14),(14,17),(14,18),(15,19),(16,19),(17,19),(18,19)],20)
=> ([(0,1),(0,2),(0,3),(1,11),(1,13),(2,11),(2,12),(3,4),(3,5),(3,12),(3,13),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,15),(6,17),(7,15),(7,18),(8,16),(8,17),(9,16),(9,18),(10,15),(10,16),(11,14),(12,6),(12,7),(12,14),(13,8),(13,9),(13,14),(14,17),(14,18),(15,19),(16,19),(17,19),(18,19)],20)
=> ([(2,10),(2,11),(2,19),(3,4),(3,8),(3,9),(3,13),(3,16),(3,17),(3,18),(4,8),(4,9),(4,12),(4,14),(4,15),(4,18),(5,6),(5,9),(5,11),(5,12),(5,13),(5,15),(5,17),(5,18),(5,19),(6,8),(6,10),(6,12),(6,13),(6,14),(6,16),(6,18),(6,19),(7,8),(7,9),(7,12),(7,13),(7,14),(7,15),(7,16),(7,17),(7,18),(8,9),(8,11),(8,15),(8,17),(8,19),(9,10),(9,14),(9,16),(9,19),(10,11),(10,12),(10,13),(10,15),(10,17),(10,18),(11,12),(11,13),(11,14),(11,16),(11,18),(12,13),(12,16),(12,17),(12,19),(13,14),(13,15),(13,19),(14,15),(14,16),(14,17),(14,18),(14,19),(15,16),(15,17),(15,18),(15,19),(16,17),(16,18),(16,19),(17,18),(17,19),(18,19)],20)
=> ? ∊ {9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(1,2),(1,3),(1,4)],5)
=> ([(0,1),(0,2),(1,12),(2,3),(2,4),(2,5),(2,12),(3,8),(3,10),(3,11),(4,7),(4,9),(4,11),(5,6),(5,9),(5,10),(6,13),(6,14),(7,13),(7,15),(8,14),(8,15),(9,13),(9,16),(10,14),(10,16),(11,15),(11,16),(12,6),(12,7),(12,8),(13,17),(14,17),(15,17),(16,17)],18)
=> ([(0,1),(0,2),(1,12),(2,3),(2,4),(2,5),(2,12),(3,8),(3,10),(3,11),(4,7),(4,9),(4,11),(5,6),(5,9),(5,10),(6,13),(6,14),(7,13),(7,15),(8,14),(8,15),(9,13),(9,16),(10,14),(10,16),(11,15),(11,16),(12,6),(12,7),(12,8),(13,17),(14,17),(15,17),(16,17)],18)
=> ([(2,11),(3,7),(3,8),(3,9),(3,10),(3,15),(3,16),(3,17),(4,5),(4,6),(4,9),(4,10),(4,14),(4,16),(4,17),(5,6),(5,8),(5,10),(5,13),(5,15),(5,17),(6,7),(6,10),(6,12),(6,15),(6,16),(7,8),(7,9),(7,11),(7,13),(7,14),(7,17),(8,9),(8,11),(8,12),(8,14),(8,16),(9,11),(9,12),(9,13),(9,15),(10,11),(10,12),(10,13),(10,14),(11,15),(11,16),(11,17),(12,13),(12,14),(12,15),(12,16),(12,17),(13,14),(13,15),(13,16),(13,17),(14,15),(14,16),(14,17),(15,16),(15,17),(16,17)],18)
=> ? ∊ {9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,1),(1,2),(1,3),(1,4),(1,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16)],17)
=> ([(0,1),(1,2),(1,3),(1,4),(1,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16)],17)
=> ([(3,6),(3,8),(3,9),(3,10),(3,12),(3,15),(3,16),(4,5),(4,7),(4,8),(4,10),(4,12),(4,14),(4,16),(5,7),(5,8),(5,9),(5,12),(5,13),(5,15),(6,7),(6,9),(6,10),(6,12),(6,13),(6,14),(7,8),(7,11),(7,15),(7,16),(8,11),(8,13),(8,14),(9,10),(9,11),(9,14),(9,16),(10,11),(10,13),(10,15),(11,12),(11,13),(11,14),(11,15),(11,16),(12,13),(12,14),(12,15),(12,16),(13,14),(13,15),(13,16),(14,15),(14,16),(15,16)],17)
=> ? ∊ {9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,5),(1,9),(1,10),(2,6),(2,8),(3,6),(3,7),(4,1),(4,7),(4,8),(5,2),(5,3),(5,4),(6,12),(7,9),(7,12),(8,10),(8,12),(9,11),(10,11),(12,11)],13)
=> ([(0,5),(1,9),(1,10),(2,6),(2,8),(3,6),(3,7),(4,1),(4,7),(4,8),(5,2),(5,3),(5,4),(6,12),(7,9),(7,12),(8,10),(8,12),(9,11),(10,11),(12,11)],13)
=> ([(3,9),(3,10),(3,12),(4,7),(4,8),(4,11),(5,6),(5,8),(5,10),(5,11),(5,12),(6,7),(6,9),(6,11),(6,12),(7,8),(7,10),(7,12),(8,9),(8,12),(9,10),(9,11),(10,11),(11,12)],13)
=> ? ∊ {9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,5),(1,8),(2,7),(2,9),(3,6),(3,9),(4,6),(4,7),(5,2),(5,3),(5,4),(6,10),(7,10),(9,1),(9,10),(10,8)],11)
=> ([(0,5),(1,8),(2,7),(2,9),(3,6),(3,9),(4,6),(4,7),(5,2),(5,3),(5,4),(6,10),(7,10),(9,1),(9,10),(10,8)],11)
=> ([(3,10),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(6,7),(6,9),(7,8),(7,10),(8,10),(9,10)],11)
=> ? ∊ {9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
=> ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
=> ([(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(6,7),(6,9),(7,8)],10)
=> ? ∊ {9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(1,3),(1,4),(4,2)],5)
=> ([(0,1),(0,2),(1,11),(2,3),(2,4),(2,11),(3,8),(3,10),(4,5),(4,9),(4,10),(5,6),(5,7),(6,13),(7,13),(8,12),(9,7),(9,12),(10,6),(10,12),(11,8),(11,9),(12,13)],14)
=> ([(0,1),(0,2),(1,11),(2,3),(2,4),(2,11),(3,8),(3,10),(4,5),(4,9),(4,10),(5,6),(5,7),(6,13),(7,13),(8,12),(9,7),(9,12),(10,6),(10,12),(11,8),(11,9),(12,13)],14)
=> ([(2,12),(3,7),(3,11),(3,13),(4,6),(4,9),(4,10),(4,12),(5,8),(5,9),(5,10),(5,11),(5,13),(6,8),(6,10),(6,11),(6,13),(7,8),(7,9),(7,10),(7,11),(8,9),(8,12),(8,13),(9,11),(9,13),(10,12),(10,13),(11,12),(12,13)],14)
=> ? ∊ {9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,2),(4,3),(4,6),(5,1),(5,4),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> ([(0,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,2),(4,3),(4,6),(5,1),(5,4),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> ([(3,10),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(6,7),(6,9),(7,8),(7,10),(8,10),(9,10)],11)
=> ? ∊ {9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,9),(1,10),(2,8),(2,10),(3,7),(4,6),(5,1),(5,2),(5,6),(6,8),(6,9),(8,11),(9,11),(10,3),(10,11),(11,7)],12)
=> ([(0,4),(0,5),(1,9),(1,10),(2,8),(2,10),(3,7),(4,6),(5,1),(5,2),(5,6),(6,8),(6,9),(8,11),(9,11),(10,3),(10,11),(11,7)],12)
=> ([(2,11),(3,10),(4,5),(4,7),(4,9),(4,10),(5,7),(5,8),(5,10),(6,7),(6,8),(6,9),(6,10),(7,11),(8,9),(8,11),(9,11),(10,11)],12)
=> ? ∊ {9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(5,6)],7)
=> 7
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(3,6),(3,9),(4,5),(4,9),(5,8),(6,8),(7,8),(7,9),(8,9)],10)
=> ? ∊ {9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? ∊ {9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ([(4,7),(5,6)],8)
=> 8
([(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,6),(1,7),(2,1),(2,9),(2,10),(3,8),(3,12),(4,8),(4,11),(5,2),(5,11),(5,12),(6,14),(7,14),(8,13),(9,6),(9,15),(10,7),(10,15),(11,9),(11,13),(12,10),(12,13),(13,15),(15,14)],16)
=> ([(0,3),(0,4),(0,5),(1,6),(1,7),(2,1),(2,9),(2,10),(3,8),(3,12),(4,8),(4,11),(5,2),(5,11),(5,12),(6,14),(7,14),(8,13),(9,6),(9,15),(10,7),(10,15),(11,9),(11,13),(12,10),(12,13),(13,15),(15,14)],16)
=> ([(2,12),(2,13),(2,15),(3,10),(3,11),(3,14),(4,5),(4,6),(4,7),(4,10),(4,11),(4,14),(5,8),(5,9),(5,12),(5,13),(5,15),(6,7),(6,9),(6,11),(6,13),(6,14),(6,15),(7,8),(7,10),(7,12),(7,14),(7,15),(8,9),(8,11),(8,13),(8,14),(8,15),(9,10),(9,12),(9,14),(9,15),(10,11),(10,13),(10,15),(11,12),(11,15),(12,13),(12,14),(13,14),(14,15)],16)
=> ? ∊ {9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(1,4),(4,2),(4,3)],5)
=> ([(0,3),(0,4),(1,6),(1,9),(2,6),(2,8),(3,7),(4,5),(4,7),(5,1),(5,2),(5,10),(6,11),(7,10),(8,11),(9,11),(10,8),(10,9)],12)
=> ([(0,3),(0,4),(1,6),(1,9),(2,6),(2,8),(3,7),(4,5),(4,7),(5,1),(5,2),(5,10),(6,11),(7,10),(8,11),(9,11),(10,8),(10,9)],12)
=> ([(2,11),(3,7),(3,11),(4,8),(4,9),(4,10),(5,6),(5,9),(5,10),(6,8),(6,10),(7,8),(7,9),(7,10),(8,9),(8,11),(9,11),(10,11)],12)
=> ? ∊ {9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,7),(1,8),(2,6),(2,8),(3,6),(3,7),(4,5),(5,1),(5,2),(5,3),(6,9),(7,9),(8,9)],10)
=> ([(0,4),(1,7),(1,8),(2,6),(2,8),(3,6),(3,7),(4,5),(5,1),(5,2),(5,3),(6,9),(7,9),(8,9)],10)
=> ([(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(6,7),(6,9),(7,8)],10)
=> ? ∊ {9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,6),(1,7),(2,11),(2,12),(2,13),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,16),(7,16),(8,1),(8,17),(8,18),(9,14),(9,17),(10,15),(10,17),(11,14),(11,18),(12,15),(12,18),(13,14),(13,15),(14,19),(15,19),(17,6),(17,19),(18,7),(18,19),(19,16)],20)
=> ([(0,2),(0,3),(0,4),(0,5),(1,6),(1,7),(2,11),(2,12),(2,13),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,16),(7,16),(8,1),(8,17),(8,18),(9,14),(9,17),(10,15),(10,17),(11,14),(11,18),(12,15),(12,18),(13,14),(13,15),(14,19),(15,19),(17,6),(17,19),(18,7),(18,19),(19,16)],20)
=> ([(2,10),(2,11),(2,19),(3,4),(3,8),(3,9),(3,13),(3,16),(3,17),(3,18),(4,8),(4,9),(4,12),(4,14),(4,15),(4,18),(5,6),(5,9),(5,11),(5,12),(5,13),(5,15),(5,17),(5,18),(5,19),(6,8),(6,10),(6,12),(6,13),(6,14),(6,16),(6,18),(6,19),(7,8),(7,9),(7,12),(7,13),(7,14),(7,15),(7,16),(7,17),(7,18),(8,9),(8,11),(8,15),(8,17),(8,19),(9,10),(9,14),(9,16),(9,19),(10,11),(10,12),(10,13),(10,15),(10,17),(10,18),(11,12),(11,13),(11,14),(11,16),(11,18),(12,13),(12,16),(12,17),(12,19),(13,14),(13,15),(13,19),(14,15),(14,16),(14,17),(14,18),(14,19),(15,16),(15,17),(15,18),(15,19),(16,17),(16,18),(16,19),(17,18),(17,19),(18,19)],20)
=> ? ∊ {9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(1,4),(2,4),(4,3)],5)
=> ([(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(3,7),(3,8),(4,6),(4,8),(5,1),(5,9),(6,11),(7,11),(8,5),(8,11),(9,10),(11,9)],12)
=> ([(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(3,7),(3,8),(4,6),(4,8),(5,1),(5,9),(6,11),(7,11),(8,5),(8,11),(9,10),(11,9)],12)
=> ([(2,11),(3,7),(3,11),(4,8),(4,9),(4,10),(5,6),(5,9),(5,10),(6,8),(6,10),(7,8),(7,9),(7,10),(8,9),(8,11),(9,11),(10,11)],12)
=> ? ∊ {9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8)
=> ([(4,7),(5,6)],8)
=> 8
([(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,6),(2,7),(2,8),(2,9),(3,9),(3,11),(3,12),(4,8),(4,10),(4,12),(5,7),(5,10),(5,11),(7,13),(7,14),(8,13),(8,15),(9,14),(9,15),(10,13),(10,16),(11,14),(11,16),(12,15),(12,16),(13,17),(14,17),(15,17),(16,1),(16,17),(17,6)],18)
=> ([(0,2),(0,3),(0,4),(0,5),(1,6),(2,7),(2,8),(2,9),(3,9),(3,11),(3,12),(4,8),(4,10),(4,12),(5,7),(5,10),(5,11),(7,13),(7,14),(8,13),(8,15),(9,14),(9,15),(10,13),(10,16),(11,14),(11,16),(12,15),(12,16),(13,17),(14,17),(15,17),(16,1),(16,17),(17,6)],18)
=> ([(2,11),(3,7),(3,8),(3,9),(3,10),(3,15),(3,16),(3,17),(4,5),(4,6),(4,9),(4,10),(4,14),(4,16),(4,17),(5,6),(5,8),(5,10),(5,13),(5,15),(5,17),(6,7),(6,10),(6,12),(6,15),(6,16),(7,8),(7,9),(7,11),(7,13),(7,14),(7,17),(8,9),(8,11),(8,12),(8,14),(8,16),(9,11),(9,12),(9,13),(9,15),(10,11),(10,12),(10,13),(10,14),(11,15),(11,16),(11,17),(12,13),(12,14),(12,15),(12,16),(12,17),(13,14),(13,15),(13,16),(13,17),(14,15),(14,16),(14,17),(15,16),(15,17),(16,17)],18)
=> ? ∊ {9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(0,3),(0,4),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,1),(6,9),(7,9),(8,9),(9,5)],10)
=> ([(0,2),(0,3),(0,4),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,1),(6,9),(7,9),(8,9),(9,5)],10)
=> ([(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(6,7),(6,9),(7,8)],10)
=> ? ∊ {9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16),(16,1)],17)
=> ([(0,2),(0,3),(0,4),(0,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16),(16,1)],17)
=> ([(3,6),(3,8),(3,9),(3,10),(3,12),(3,15),(3,16),(4,5),(4,7),(4,8),(4,10),(4,12),(4,14),(4,16),(5,7),(5,8),(5,9),(5,12),(5,13),(5,15),(6,7),(6,9),(6,10),(6,12),(6,13),(6,14),(7,8),(7,11),(7,15),(7,16),(8,11),(8,13),(8,14),(9,10),(9,11),(9,14),(9,16),(10,11),(10,13),(10,15),(11,12),(11,13),(11,14),(11,15),(11,16),(12,13),(12,14),(12,15),(12,16),(13,14),(13,15),(13,16),(14,15),(14,16),(15,16)],17)
=> ? ∊ {9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,10),(2,7),(2,8),(3,9),(3,12),(4,9),(4,11),(5,2),(5,11),(5,12),(7,14),(8,14),(9,1),(9,13),(10,6),(11,7),(11,13),(12,8),(12,13),(13,10),(13,14),(14,6)],15)
=> ([(0,3),(0,4),(0,5),(1,10),(2,7),(2,8),(3,9),(3,12),(4,9),(4,11),(5,2),(5,11),(5,12),(7,14),(8,14),(9,1),(9,13),(10,6),(11,7),(11,13),(12,8),(12,13),(13,10),(13,14),(14,6)],15)
=> ([(2,5),(2,14),(3,11),(3,12),(3,13),(3,14),(4,6),(4,7),(4,8),(4,14),(5,11),(5,12),(5,13),(6,7),(6,10),(6,12),(6,13),(7,9),(7,11),(7,13),(8,9),(8,10),(8,11),(8,12),(8,13),(9,10),(9,12),(9,13),(9,14),(10,11),(10,13),(10,14),(11,12),(11,14),(12,14),(13,14)],15)
=> ? ∊ {9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,11),(2,10),(3,8),(3,9),(4,7),(4,8),(5,7),(5,9),(7,12),(8,2),(8,12),(9,1),(9,12),(10,6),(11,6),(12,10),(12,11)],13)
=> ([(0,3),(0,4),(0,5),(1,11),(2,10),(3,8),(3,9),(4,7),(4,8),(5,7),(5,9),(7,12),(8,2),(8,12),(9,1),(9,12),(10,6),(11,6),(12,10),(12,11)],13)
=> ([(2,11),(2,12),(3,4),(3,12),(4,11),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(6,11),(7,8),(7,10),(7,12),(8,9),(8,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? ∊ {9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(3,10),(4,6),(4,10),(5,6),(5,7),(6,11),(7,11),(8,9),(10,2),(10,11),(11,1),(11,8)],12)
=> ([(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(3,10),(4,6),(4,10),(5,6),(5,7),(6,11),(7,11),(8,9),(10,2),(10,11),(11,1),(11,8)],12)
=> ([(2,11),(3,4),(4,11),(5,6),(5,8),(5,10),(6,8),(6,9),(7,8),(7,9),(7,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? ∊ {9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(3,9),(4,7),(4,9),(5,7),(5,8),(7,10),(8,10),(9,10),(10,1),(10,2)],11)
=> ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(3,9),(4,7),(4,9),(5,7),(5,8),(7,10),(8,10),(9,10),(10,1),(10,2)],11)
=> ([(3,4),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,9)],11)
=> ? ∊ {9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(5,6)],7)
=> 7
([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ([(3,10),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(6,7),(6,9),(7,8),(7,10),(8,10),(9,10)],11)
=> ? ∊ {9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,8),(2,6),(2,7),(3,9),(3,11),(4,9),(4,10),(5,2),(5,10),(5,11),(6,13),(7,13),(9,12),(10,6),(10,12),(11,7),(11,12),(12,1),(12,13),(13,8)],14)
=> ([(0,3),(0,4),(0,5),(1,8),(2,6),(2,7),(3,9),(3,11),(4,9),(4,10),(5,2),(5,10),(5,11),(6,13),(7,13),(9,12),(10,6),(10,12),(11,7),(11,12),(12,1),(12,13),(13,8)],14)
=> ([(2,5),(3,8),(3,9),(3,10),(4,11),(4,12),(4,13),(5,11),(5,12),(5,13),(6,7),(6,9),(6,10),(6,12),(6,13),(7,8),(7,10),(7,11),(7,13),(8,9),(8,12),(8,13),(9,11),(9,13),(10,11),(10,12),(10,13),(11,12)],14)
=> ? ∊ {9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(2,10),(3,6),(3,8),(4,6),(4,7),(5,2),(5,7),(5,8),(6,11),(7,9),(7,11),(8,10),(8,11),(9,12),(10,12),(11,12),(12,1)],13)
=> ([(0,3),(0,4),(0,5),(2,9),(2,10),(3,6),(3,8),(4,6),(4,7),(5,2),(5,7),(5,8),(6,11),(7,9),(7,11),(8,10),(8,11),(9,12),(10,12),(11,12),(12,1)],13)
=> ([(3,9),(3,10),(3,12),(4,7),(4,8),(4,11),(5,6),(5,8),(5,10),(5,11),(5,12),(6,7),(6,9),(6,11),(6,12),(7,8),(7,10),(7,12),(8,9),(8,12),(9,10),(9,11),(10,11),(11,12)],13)
=> ? ∊ {9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,8),(1,10),(2,7),(2,9),(3,11),(3,12),(4,2),(4,11),(4,13),(5,1),(5,12),(5,13),(6,17),(7,15),(8,16),(9,6),(9,15),(10,6),(10,16),(11,7),(11,14),(12,8),(12,14),(13,9),(13,10),(13,14),(14,15),(14,16),(15,17),(16,17)],18)
=> ([(0,3),(0,4),(0,5),(1,8),(1,10),(2,7),(2,9),(3,11),(3,12),(4,2),(4,11),(4,13),(5,1),(5,12),(5,13),(6,17),(7,15),(8,16),(9,6),(9,15),(10,6),(10,16),(11,7),(11,14),(12,8),(12,14),(13,9),(13,10),(13,14),(14,15),(14,16),(15,17),(16,17)],18)
=> ([(2,3),(2,8),(2,11),(2,15),(2,17),(3,8),(3,10),(3,14),(3,16),(4,5),(4,9),(4,13),(4,14),(4,16),(5,9),(5,12),(5,15),(5,17),(6,9),(6,12),(6,13),(6,14),(6,15),(6,16),(6,17),(7,8),(7,10),(7,11),(7,14),(7,15),(7,16),(7,17),(8,9),(8,12),(8,13),(8,14),(8,15),(9,10),(9,11),(9,16),(9,17),(10,11),(10,12),(10,13),(10,14),(10,15),(10,17),(11,12),(11,13),(11,14),(11,15),(11,16),(12,13),(12,14),(12,16),(12,17),(13,15),(13,16),(13,17),(14,15),(14,17),(15,16),(16,17)],18)
=> ? ∊ {9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,6),(1,7),(2,8),(2,10),(3,9),(3,11),(4,9),(4,12),(5,2),(5,11),(5,12),(6,14),(7,14),(8,13),(9,15),(10,6),(10,13),(11,8),(11,15),(12,1),(12,10),(12,15),(13,14),(15,7),(15,13)],16)
=> ([(0,3),(0,4),(0,5),(1,6),(1,7),(2,8),(2,10),(3,9),(3,11),(4,9),(4,12),(5,2),(5,11),(5,12),(6,14),(7,14),(8,13),(9,15),(10,6),(10,13),(11,8),(11,15),(12,1),(12,10),(12,15),(13,14),(15,7),(15,13)],16)
=> ([(2,7),(2,11),(2,15),(3,6),(3,10),(3,14),(4,8),(4,10),(4,12),(4,13),(4,14),(5,9),(5,11),(5,12),(5,13),(5,15),(6,8),(6,10),(6,12),(6,13),(7,9),(7,11),(7,12),(7,13),(8,9),(8,11),(8,12),(8,14),(8,15),(9,10),(9,13),(9,14),(9,15),(10,11),(10,12),(10,15),(11,13),(11,14),(12,14),(12,15),(13,14),(13,15),(14,15)],16)
=> ? ∊ {9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,5),(1,7),(2,8),(3,10),(4,2),(4,6),(5,4),(5,10),(6,7),(6,8),(7,9),(8,9),(10,1),(10,6)],11)
=> ([(0,3),(0,5),(1,7),(2,8),(3,10),(4,2),(4,6),(5,4),(5,10),(6,7),(6,8),(7,9),(8,9),(10,1),(10,6)],11)
=> ([(2,8),(3,4),(3,10),(4,9),(5,9),(5,10),(6,7),(6,10),(7,8),(7,9),(8,10),(9,10)],11)
=> ? ∊ {9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9)
=> ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? ∊ {9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,6),(1,8),(2,6),(2,7),(3,10),(3,11),(4,9),(4,11),(5,9),(5,10),(6,12),(7,12),(8,12),(9,13),(10,13),(11,1),(11,2),(11,13),(13,7),(13,8)],14)
=> ([(0,3),(0,4),(0,5),(1,6),(1,8),(2,6),(2,7),(3,10),(3,11),(4,9),(4,11),(5,9),(5,10),(6,12),(7,12),(8,12),(9,13),(10,13),(11,1),(11,2),(11,13),(13,7),(13,8)],14)
=> ([(2,3),(2,8),(2,11),(3,8),(3,10),(4,5),(4,9),(4,13),(5,9),(5,12),(6,9),(6,12),(6,13),(7,8),(7,10),(7,11),(8,9),(8,12),(8,13),(9,10),(9,11),(10,11),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? ∊ {9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9)
=> ([(3,4),(5,8),(6,7),(7,8)],9)
=> 9
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8)
=> ([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8)
=> ([(4,7),(5,6)],8)
=> 8
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,1),(5,6),(6,4),(6,8),(8,9),(9,7)],10)
=> ([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,1),(5,6),(6,4),(6,8),(8,9),(9,7)],10)
=> ([(2,9),(3,8),(4,5),(5,9),(6,7),(6,9),(7,8),(8,9)],10)
=> ? ∊ {9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,2),(1,3)],5)
=> ([(0,2),(0,3),(1,11),(2,1),(2,12),(3,4),(3,5),(3,12),(4,8),(4,10),(5,8),(5,9),(6,14),(7,14),(8,13),(9,6),(9,13),(10,7),(10,13),(11,6),(11,7),(12,9),(12,10),(12,11),(13,14)],15)
=> ([(0,2),(0,3),(1,11),(2,1),(2,12),(3,4),(3,5),(3,12),(4,8),(4,10),(5,8),(5,9),(6,14),(7,14),(8,13),(9,6),(9,13),(10,7),(10,13),(11,6),(11,7),(12,9),(12,10),(12,11),(13,14)],15)
=> ([(2,5),(2,14),(3,11),(3,12),(3,13),(3,14),(4,6),(4,7),(4,8),(4,14),(5,11),(5,12),(5,13),(6,7),(6,10),(6,12),(6,13),(7,9),(7,11),(7,13),(8,9),(8,10),(8,11),(8,12),(8,13),(9,10),(9,12),(9,13),(9,14),(10,11),(10,13),(10,14),(11,12),(11,14),(12,14),(13,14)],15)
=> ? ∊ {9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1),(0,2),(1,11),(2,4),(2,5),(2,11),(3,6),(3,7),(4,8),(4,10),(5,8),(5,9),(6,13),(7,13),(8,12),(9,6),(9,12),(10,7),(10,12),(11,3),(11,9),(11,10),(12,13)],14)
=> ([(0,1),(0,2),(1,11),(2,4),(2,5),(2,11),(3,6),(3,7),(4,8),(4,10),(5,8),(5,9),(6,13),(7,13),(8,12),(9,6),(9,12),(10,7),(10,12),(11,3),(11,9),(11,10),(12,13)],14)
=> ([(2,5),(3,8),(3,9),(3,10),(4,11),(4,12),(4,13),(5,11),(5,12),(5,13),(6,7),(6,9),(6,10),(6,12),(6,13),(7,8),(7,10),(7,11),(7,13),(8,9),(8,12),(8,13),(9,11),(9,13),(10,11),(10,12),(10,13),(11,12)],14)
=> ? ∊ {9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(3,8),(4,7),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(0,5),(1,8),(2,7),(2,9),(3,7),(3,10),(4,6),(5,2),(5,3),(5,6),(6,9),(6,10),(7,11),(9,11),(10,1),(10,11),(11,8)],12)
=> ([(0,4),(0,5),(1,8),(2,7),(2,9),(3,7),(3,10),(4,6),(5,2),(5,3),(5,6),(6,9),(6,10),(7,11),(9,11),(10,1),(10,11),(11,8)],12)
=> ([(2,9),(3,8),(4,6),(4,10),(4,11),(5,7),(5,10),(5,11),(6,7),(6,8),(6,10),(7,9),(7,11),(8,10),(8,11),(9,10),(9,11)],12)
=> ? ∊ {9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(4,7),(5,6),(6,7)],8)
=> 8
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,7),(2,9),(3,7),(3,8),(4,6),(5,2),(5,3),(5,6),(6,8),(6,9),(7,10),(8,10),(9,10),(10,1)],11)
=> ([(0,4),(0,5),(2,7),(2,9),(3,7),(3,8),(4,6),(5,2),(5,3),(5,6),(6,8),(6,9),(7,10),(8,10),(9,10),(10,1)],11)
=> ([(3,10),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(6,7),(6,9),(7,8),(7,10),(8,10),(9,10)],11)
=> ? ∊ {9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,3),(0,4),(1,2),(1,4)],5)
=> ([(0,3),(0,4),(1,11),(2,10),(3,2),(3,9),(4,1),(4,9),(5,7),(5,8),(6,12),(7,12),(8,12),(9,5),(9,10),(9,11),(10,6),(10,7),(11,6),(11,8)],13)
=> ([(0,3),(0,4),(1,11),(2,10),(3,2),(3,9),(4,1),(4,9),(5,7),(5,8),(6,12),(7,12),(8,12),(9,5),(9,10),(9,11),(10,6),(10,7),(11,6),(11,8)],13)
=> ([(2,11),(2,12),(3,4),(3,12),(4,11),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(6,11),(7,8),(7,10),(7,12),(8,9),(8,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? ∊ {9,9,9,9,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,13,13,13,13,14,14,14,14,14,15,15,16,16,17,17,18,18,18,20,20,24,32}
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9)
=> ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9)
=> ([(3,4),(5,8),(6,7),(7,8)],9)
=> 9
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(5,6)],7)
=> 7
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(4,7),(5,6),(6,7)],8)
=> 8
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(4,7),(5,6),(6,7)],8)
=> 8
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 6
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(5,6)],7)
=> 7
Description
The Ramsey number of a graph.
This is the smallest integer n such that every two-colouring of the edges of the complete graph K_n contains a (not necessarily induced) monochromatic copy of the given graph. [1]
Thus, the Ramsey number of the complete graph K_n is the ordinary Ramsey number R(n,n). Very few of these numbers are known, in particular, it is only known that 43\leq R(5,5)\leq 48. [2,3,4,5]
The following 16 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001622The number of join-irreducible elements of a lattice. St000550The number of modular elements of a lattice. St000551The number of left modular elements of a lattice. St001614The cyclic permutation representation number of a skew partition. St001318The number of vertices of the largest induced subforest with the same number of connected components of a graph. St001321The number of vertices of the largest induced subforest of a graph. St001342The number of vertices in the center of a graph. St000987The number of positive eigenvalues of the Laplacian matrix of the graph. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St000656The number of cuts of a poset. St001717The largest size of an interval in a poset. St001300The rank of the boundary operator in degree 1 of the chain complex of the order complex of the poset. St001615The number of join prime elements of a lattice. St001617The dimension of the space of valuations of a lattice. St000189The number of elements in the poset. St001875The number of simple modules with projective dimension at most 1.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!