searching the database
Your data matches 40 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000078
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
St000078: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000078: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => 1
[1,2] => [1,2] => 1
[2,1] => [1,2] => 1
[1,2,3] => [1,2,3] => 1
[1,3,2] => [1,2,3] => 1
[2,1,3] => [1,2,3] => 1
[2,3,1] => [1,2,3] => 1
[3,1,2] => [1,3,2] => 2
[3,2,1] => [1,3,2] => 2
[1,2,3,4] => [1,2,3,4] => 1
[1,2,4,3] => [1,2,3,4] => 1
[1,3,2,4] => [1,2,3,4] => 1
[1,3,4,2] => [1,2,3,4] => 1
[1,4,2,3] => [1,2,4,3] => 3
[1,4,3,2] => [1,2,4,3] => 3
[2,1,3,4] => [1,2,3,4] => 1
[2,1,4,3] => [1,2,3,4] => 1
[2,3,1,4] => [1,2,3,4] => 1
[2,3,4,1] => [1,2,3,4] => 1
[2,4,1,3] => [1,2,4,3] => 3
[2,4,3,1] => [1,2,4,3] => 3
[3,1,2,4] => [1,3,2,4] => 2
[3,1,4,2] => [1,3,4,2] => 3
[3,2,1,4] => [1,3,2,4] => 2
[3,2,4,1] => [1,3,4,2] => 3
[3,4,1,2] => [1,3,2,4] => 2
[3,4,2,1] => [1,3,2,4] => 2
[4,1,2,3] => [1,4,3,2] => 5
[4,1,3,2] => [1,4,2,3] => 3
[4,2,1,3] => [1,4,3,2] => 5
[4,2,3,1] => [1,4,2,3] => 3
[4,3,1,2] => [1,4,2,3] => 3
[4,3,2,1] => [1,4,2,3] => 3
[1,2,3,4,5] => [1,2,3,4,5] => 1
[1,2,3,5,4] => [1,2,3,4,5] => 1
[1,2,4,3,5] => [1,2,3,4,5] => 1
[1,2,4,5,3] => [1,2,3,4,5] => 1
[1,2,5,3,4] => [1,2,3,5,4] => 4
[1,2,5,4,3] => [1,2,3,5,4] => 4
[1,3,2,4,5] => [1,2,3,4,5] => 1
[1,3,2,5,4] => [1,2,3,4,5] => 1
[1,3,4,2,5] => [1,2,3,4,5] => 1
[1,3,4,5,2] => [1,2,3,4,5] => 1
[1,3,5,2,4] => [1,2,3,5,4] => 4
[1,3,5,4,2] => [1,2,3,5,4] => 4
[1,4,2,3,5] => [1,2,4,3,5] => 3
[1,4,2,5,3] => [1,2,4,5,3] => 6
[1,4,3,2,5] => [1,2,4,3,5] => 3
[1,4,3,5,2] => [1,2,4,5,3] => 6
[1,4,5,2,3] => [1,2,4,3,5] => 3
Description
The number of alternating sign matrices whose left key is the permutation.
The left key of an alternating sign matrix was defined by Lascoux
in [2] and is obtained by successively removing all the `-1`'s until what remains is a permutation matrix. This notion corresponds to the notion of left key for semistandard tableaux.
Matching statistic: St000454
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00062: Permutations —Lehmer-code to major-code bijection⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 2% ●values known / values provided: 6%●distinct values known / distinct values provided: 2%
Mp00062: Permutations —Lehmer-code to major-code bijection⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 2% ●values known / values provided: 6%●distinct values known / distinct values provided: 2%
Values
[1] => [1] => [1] => ([],1)
=> 0 = 1 - 1
[1,2] => [1,2] => [1,2] => ([],2)
=> 0 = 1 - 1
[2,1] => [1,2] => [1,2] => ([],2)
=> 0 = 1 - 1
[1,2,3] => [1,2,3] => [1,2,3] => ([],3)
=> 0 = 1 - 1
[1,3,2] => [1,2,3] => [1,2,3] => ([],3)
=> 0 = 1 - 1
[2,1,3] => [1,2,3] => [1,2,3] => ([],3)
=> 0 = 1 - 1
[2,3,1] => [1,2,3] => [1,2,3] => ([],3)
=> 0 = 1 - 1
[3,1,2] => [1,3,2] => [3,1,2] => ([(0,2),(1,2)],3)
=> ? ∊ {2,2} - 1
[3,2,1] => [1,3,2] => [3,1,2] => ([(0,2),(1,2)],3)
=> ? ∊ {2,2} - 1
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> 0 = 1 - 1
[1,2,4,3] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> 0 = 1 - 1
[1,3,2,4] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> 0 = 1 - 1
[1,3,4,2] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> 0 = 1 - 1
[1,4,2,3] => [1,2,4,3] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,5,5} - 1
[1,4,3,2] => [1,2,4,3] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,5,5} - 1
[2,1,3,4] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> 0 = 1 - 1
[2,1,4,3] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> 0 = 1 - 1
[2,3,1,4] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> 0 = 1 - 1
[2,3,4,1] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> 0 = 1 - 1
[2,4,1,3] => [1,2,4,3] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,5,5} - 1
[2,4,3,1] => [1,2,4,3] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,5,5} - 1
[3,1,2,4] => [1,3,2,4] => [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,5,5} - 1
[3,1,4,2] => [1,3,4,2] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,5,5} - 1
[3,2,1,4] => [1,3,2,4] => [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,5,5} - 1
[3,2,4,1] => [1,3,4,2] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,5,5} - 1
[3,4,1,2] => [1,3,2,4] => [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,5,5} - 1
[3,4,2,1] => [1,3,2,4] => [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,5,5} - 1
[4,1,2,3] => [1,4,3,2] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,5,5} - 1
[4,1,3,2] => [1,4,2,3] => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 3 - 1
[4,2,1,3] => [1,4,3,2] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,5,5} - 1
[4,2,3,1] => [1,4,2,3] => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 3 - 1
[4,3,1,2] => [1,4,2,3] => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 3 - 1
[4,3,2,1] => [1,4,2,3] => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 3 - 1
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0 = 1 - 1
[1,2,3,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0 = 1 - 1
[1,2,4,3,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0 = 1 - 1
[1,2,4,5,3] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0 = 1 - 1
[1,2,5,3,4] => [1,2,3,5,4] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,2,5,4,3] => [1,2,3,5,4] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,3,2,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0 = 1 - 1
[1,3,2,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0 = 1 - 1
[1,3,4,2,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0 = 1 - 1
[1,3,4,5,2] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0 = 1 - 1
[1,3,5,2,4] => [1,2,3,5,4] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,3,5,4,2] => [1,2,3,5,4] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,4,2,3,5] => [1,2,4,3,5] => [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[1,4,2,5,3] => [1,2,4,5,3] => [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[1,4,3,2,5] => [1,2,4,3,5] => [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[1,4,3,5,2] => [1,2,4,5,3] => [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[1,4,5,2,3] => [1,2,4,3,5] => [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[1,4,5,3,2] => [1,2,4,3,5] => [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[1,5,2,3,4] => [1,2,5,4,3] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,5,2,4,3] => [1,2,5,3,4] => [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[1,5,3,2,4] => [1,2,5,4,3] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,5,3,4,2] => [1,2,5,3,4] => [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[1,5,4,2,3] => [1,2,5,3,4] => [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[1,5,4,3,2] => [1,2,5,3,4] => [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[2,1,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0 = 1 - 1
[2,1,3,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0 = 1 - 1
[2,1,4,3,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0 = 1 - 1
[2,1,4,5,3] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0 = 1 - 1
[2,1,5,3,4] => [1,2,3,5,4] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[2,1,5,4,3] => [1,2,3,5,4] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[2,3,1,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0 = 1 - 1
[2,3,1,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0 = 1 - 1
[2,3,4,1,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0 = 1 - 1
[2,3,4,5,1] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0 = 1 - 1
[2,3,5,1,4] => [1,2,3,5,4] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[2,3,5,4,1] => [1,2,3,5,4] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[2,4,1,3,5] => [1,2,4,3,5] => [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[2,4,1,5,3] => [1,2,4,5,3] => [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[2,4,3,1,5] => [1,2,4,3,5] => [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[2,4,3,5,1] => [1,2,4,5,3] => [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[2,4,5,1,3] => [1,2,4,3,5] => [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[2,4,5,3,1] => [1,2,4,3,5] => [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[2,5,1,3,4] => [1,2,5,4,3] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[2,5,1,4,3] => [1,2,5,3,4] => [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[2,5,3,1,4] => [1,2,5,4,3] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[2,5,3,4,1] => [1,2,5,3,4] => [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[2,5,4,1,3] => [1,2,5,3,4] => [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[2,5,4,3,1] => [1,2,5,3,4] => [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[3,1,2,4,5] => [1,3,2,4,5] => [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[3,1,2,5,4] => [1,3,2,4,5] => [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[3,1,4,2,5] => [1,3,4,2,5] => [2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[3,1,4,5,2] => [1,3,4,5,2] => [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[3,1,5,2,4] => [1,3,5,4,2] => [5,2,4,1,3] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[3,1,5,4,2] => [1,3,5,2,4] => [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[3,2,1,4,5] => [1,3,2,4,5] => [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[3,2,1,5,4] => [1,3,2,4,5] => [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[3,2,4,1,5] => [1,3,4,2,5] => [2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[3,2,4,5,1] => [1,3,4,5,2] => [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[3,2,5,1,4] => [1,3,5,4,2] => [5,2,4,1,3] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[3,2,5,4,1] => [1,3,5,2,4] => [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[3,4,1,2,5] => [1,3,2,4,5] => [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[3,4,1,5,2] => [1,3,2,4,5] => [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[3,4,2,1,5] => [1,3,2,4,5] => [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[3,4,2,5,1] => [1,3,2,4,5] => [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[4,1,3,2,5] => [1,4,2,3,5] => [3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 2 = 3 - 1
[4,1,5,2,3] => [1,4,2,3,5] => [3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 2 = 3 - 1
[4,2,3,1,5] => [1,4,2,3,5] => [3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 2 = 3 - 1
Description
The largest eigenvalue of a graph if it is integral.
If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St001633
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
Mp00209: Permutations —pattern poset⟶ Posets
St001633: Posets ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 2%
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
Mp00209: Permutations —pattern poset⟶ Posets
St001633: Posets ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 2%
Values
[1] => [1] => [1] => ([],1)
=> 0 = 1 - 1
[1,2] => [1,2] => [1,2] => ([(0,1)],2)
=> 0 = 1 - 1
[2,1] => [1,2] => [1,2] => ([(0,1)],2)
=> 0 = 1 - 1
[1,2,3] => [1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[1,3,2] => [1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[2,1,3] => [1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[2,3,1] => [1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[3,1,2] => [1,3,2] => [1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[3,2,1] => [1,3,2] => [1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[1,2,4,3] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[1,3,2,4] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[1,3,4,2] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[1,4,2,3] => [1,2,4,3] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 3 - 1
[1,4,3,2] => [1,2,4,3] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 3 - 1
[2,1,3,4] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[2,1,4,3] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[2,3,1,4] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[2,3,4,1] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[2,4,1,3] => [1,2,4,3] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 3 - 1
[2,4,3,1] => [1,2,4,3] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 3 - 1
[3,1,2,4] => [1,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? ∊ {2,2,2,2,3,3,5,5} - 1
[3,1,4,2] => [1,3,4,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? ∊ {2,2,2,2,3,3,5,5} - 1
[3,2,1,4] => [1,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? ∊ {2,2,2,2,3,3,5,5} - 1
[3,2,4,1] => [1,3,4,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? ∊ {2,2,2,2,3,3,5,5} - 1
[3,4,1,2] => [1,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? ∊ {2,2,2,2,3,3,5,5} - 1
[3,4,2,1] => [1,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? ∊ {2,2,2,2,3,3,5,5} - 1
[4,1,2,3] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? ∊ {2,2,2,2,3,3,5,5} - 1
[4,1,3,2] => [1,4,2,3] => [1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 3 - 1
[4,2,1,3] => [1,4,3,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? ∊ {2,2,2,2,3,3,5,5} - 1
[4,2,3,1] => [1,4,2,3] => [1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 3 - 1
[4,3,1,2] => [1,4,2,3] => [1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 3 - 1
[4,3,2,1] => [1,4,2,3] => [1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 3 - 1
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[1,2,3,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[1,2,4,3,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[1,2,4,5,3] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[1,2,5,3,4] => [1,2,3,5,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[1,2,5,4,3] => [1,2,3,5,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[1,3,2,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[1,3,2,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[1,3,4,2,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[1,3,4,5,2] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[1,3,5,2,4] => [1,2,3,5,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[1,3,5,4,2] => [1,2,3,5,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[1,4,2,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[1,4,2,5,3] => [1,2,4,5,3] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[1,4,3,2,5] => [1,2,4,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[1,4,3,5,2] => [1,2,4,5,3] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[1,4,5,2,3] => [1,2,4,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[1,4,5,3,2] => [1,2,4,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[1,5,2,3,4] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[1,5,2,4,3] => [1,2,5,3,4] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[1,5,3,2,4] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[1,5,3,4,2] => [1,2,5,3,4] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[1,5,4,2,3] => [1,2,5,3,4] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[1,5,4,3,2] => [1,2,5,3,4] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[2,1,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[2,1,3,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[2,1,4,3,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[2,1,4,5,3] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[2,1,5,3,4] => [1,2,3,5,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[2,1,5,4,3] => [1,2,3,5,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[2,3,1,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[2,3,1,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[2,3,4,1,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[2,3,4,5,1] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[2,3,5,1,4] => [1,2,3,5,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[2,3,5,4,1] => [1,2,3,5,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[2,4,1,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[2,4,1,5,3] => [1,2,4,5,3] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[2,4,3,1,5] => [1,2,4,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[2,4,3,5,1] => [1,2,4,5,3] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[2,4,5,1,3] => [1,2,4,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[2,4,5,3,1] => [1,2,4,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[2,5,1,3,4] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[2,5,1,4,3] => [1,2,5,3,4] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[2,5,3,1,4] => [1,2,5,4,3] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[2,5,3,4,1] => [1,2,5,3,4] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[2,5,4,1,3] => [1,2,5,3,4] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[2,5,4,3,1] => [1,2,5,3,4] => [1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[3,1,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[3,1,2,5,4] => [1,3,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[3,1,4,2,5] => [1,3,4,2,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[3,1,4,5,2] => [1,3,4,5,2] => [1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[3,1,5,2,4] => [1,3,5,4,2] => [1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[3,1,5,4,2] => [1,3,5,2,4] => [1,5,4,2,3] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[3,2,1,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[3,2,1,5,4] => [1,3,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[3,2,4,1,5] => [1,3,4,2,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[3,2,4,5,1] => [1,3,4,5,2] => [1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[1,2,3,4,6,5] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[1,2,3,5,4,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[1,2,3,5,6,4] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[1,2,4,3,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[1,2,4,3,6,5] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[1,2,4,5,3,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[1,2,4,5,6,3] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[1,3,2,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
Description
The number of simple modules with projective dimension two in the incidence algebra of the poset.
Matching statistic: St000307
Mp00223: Permutations —runsort⟶ Permutations
Mp00209: Permutations —pattern poset⟶ Posets
St000307: Posets ⟶ ℤResult quality: 1% ●values known / values provided: 2%●distinct values known / distinct values provided: 1%
Mp00209: Permutations —pattern poset⟶ Posets
St000307: Posets ⟶ ℤResult quality: 1% ●values known / values provided: 2%●distinct values known / distinct values provided: 1%
Values
[1] => [1] => ([],1)
=> 1
[1,2] => [1,2] => ([(0,1)],2)
=> 1
[2,1] => [1,2] => ([(0,1)],2)
=> 1
[1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 1
[1,3,2] => [1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,1,3] => [1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,3,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 1
[3,1,2] => [1,2,3] => ([(0,2),(2,1)],3)
=> 1
[3,2,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 1
[1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1
[1,2,4,3] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[1,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,5,5}
[1,3,4,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,5,5}
[1,4,2,3] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,5,5}
[1,4,3,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,5,5}
[2,1,3,4] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,5,5}
[2,1,4,3] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,5,5}
[2,3,1,4] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,5,5}
[2,3,4,1] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1
[2,4,1,3] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,5,5}
[2,4,3,1] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[3,1,2,4] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[3,1,4,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,5,5}
[3,2,1,4] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,5,5}
[3,2,4,1] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[3,4,1,2] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1
[3,4,2,1] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1
[4,1,2,3] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1
[4,1,3,2] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,5,5}
[4,2,1,3] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,5,5}
[4,2,3,1] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1
[4,3,1,2] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1
[4,3,2,1] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1
[1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[1,2,3,5,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,2,4,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,2,4,5,3] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,2,5,3,4] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,2,5,4,3] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,3,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,3,2,5,4] => [1,3,2,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,3,4,2,5] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,3,4,5,2] => [1,3,4,5,2] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,3,5,2,4] => [1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,3,5,4,2] => [1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,4,2,3,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,4,2,5,3] => [1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,4,3,2,5] => [1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,4,3,5,2] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,4,5,2,3] => [1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,4,5,3,2] => [1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,5,2,3,4] => [1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,5,2,4,3] => [1,5,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,5,3,2,4] => [1,5,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,5,3,4,2] => [1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,5,4,2,3] => [1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,5,4,3,2] => [1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,1,3,4,5] => [1,3,4,5,2] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,1,3,5,4] => [1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,1,4,3,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,1,4,5,3] => [1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,1,5,3,4] => [1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,1,5,4,3] => [1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,3,1,4,5] => [1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,3,1,5,4] => [1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,3,4,1,5] => [1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,3,4,5,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[2,3,5,1,4] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,3,5,4,1] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,4,1,3,5] => [1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,4,1,5,3] => [1,5,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,4,3,1,5] => [1,5,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,4,3,5,1] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[3,4,5,1,2] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,4,5,2,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,5,1,2,3] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,5,2,3,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,5,3,1,2] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,5,3,2,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,1,2,3,4] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,2,3,4,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,3,4,1,2] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,3,4,2,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,4,1,2,3] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,4,2,3,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,4,3,1,2] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,4,3,2,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[2,3,4,5,6,1] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[3,4,5,6,1,2] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[3,4,5,6,2,1] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[4,5,6,1,2,3] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[4,5,6,2,3,1] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[4,5,6,3,1,2] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[4,5,6,3,2,1] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[5,6,1,2,3,4] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[5,6,2,3,4,1] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[5,6,3,4,1,2] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[5,6,3,4,2,1] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[5,6,4,1,2,3] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
Description
The number of rowmotion orbits of a poset.
Rowmotion is an operation on order ideals in a poset $P$. It sends an order ideal $I$ to the order ideal generated by the minimal antichain of $P \setminus I$.
Matching statistic: St001632
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00223: Permutations —runsort⟶ Permutations
Mp00209: Permutations —pattern poset⟶ Posets
St001632: Posets ⟶ ℤResult quality: 1% ●values known / values provided: 2%●distinct values known / distinct values provided: 1%
Mp00209: Permutations —pattern poset⟶ Posets
St001632: Posets ⟶ ℤResult quality: 1% ●values known / values provided: 2%●distinct values known / distinct values provided: 1%
Values
[1] => [1] => ([],1)
=> ? = 1
[1,2] => [1,2] => ([(0,1)],2)
=> 1
[2,1] => [1,2] => ([(0,1)],2)
=> 1
[1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 1
[1,3,2] => [1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,1,3] => [1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,3,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 1
[3,1,2] => [1,2,3] => ([(0,2),(2,1)],3)
=> 1
[3,2,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 1
[1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1
[1,2,4,3] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[1,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,5,5}
[1,3,4,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,5,5}
[1,4,2,3] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,5,5}
[1,4,3,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,5,5}
[2,1,3,4] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,5,5}
[2,1,4,3] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,5,5}
[2,3,1,4] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,5,5}
[2,3,4,1] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1
[2,4,1,3] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,5,5}
[2,4,3,1] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[3,1,2,4] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[3,1,4,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,5,5}
[3,2,1,4] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,5,5}
[3,2,4,1] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[3,4,1,2] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1
[3,4,2,1] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1
[4,1,2,3] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1
[4,1,3,2] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,5,5}
[4,2,1,3] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,5,5}
[4,2,3,1] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1
[4,3,1,2] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1
[4,3,2,1] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1
[1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[1,2,3,5,4] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,2,4,3,5] => [1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,2,4,5,3] => [1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,2,5,3,4] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,2,5,4,3] => [1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,3,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,3,2,5,4] => [1,3,2,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,3,4,2,5] => [1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,3,4,5,2] => [1,3,4,5,2] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,3,5,2,4] => [1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,3,5,4,2] => [1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,4,2,3,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,4,2,5,3] => [1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,4,3,2,5] => [1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,4,3,5,2] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,4,5,2,3] => [1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,4,5,3,2] => [1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,5,2,3,4] => [1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,5,2,4,3] => [1,5,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,5,3,2,4] => [1,5,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,5,3,4,2] => [1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,5,4,2,3] => [1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,5,4,3,2] => [1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,1,3,4,5] => [1,3,4,5,2] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,1,3,5,4] => [1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,1,4,3,5] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,1,4,5,3] => [1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,1,5,3,4] => [1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,1,5,4,3] => [1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,3,1,4,5] => [1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,3,1,5,4] => [1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,3,4,1,5] => [1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,3,4,5,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[2,3,5,1,4] => [1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,3,5,4,1] => [1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,4,1,3,5] => [1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,4,1,5,3] => [1,5,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,4,3,1,5] => [1,5,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[3,4,5,1,2] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,4,5,2,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,5,1,2,3] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,5,2,3,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,5,3,1,2] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,5,3,2,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,1,2,3,4] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,2,3,4,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,3,4,1,2] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,3,4,2,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,4,1,2,3] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,4,2,3,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,4,3,1,2] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,4,3,2,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[2,3,4,5,6,1] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[3,4,5,6,1,2] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[3,4,5,6,2,1] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[4,5,6,1,2,3] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[4,5,6,2,3,1] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[4,5,6,3,1,2] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[4,5,6,3,2,1] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[5,6,1,2,3,4] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[5,6,2,3,4,1] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[5,6,3,4,1,2] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[5,6,3,4,2,1] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[5,6,4,1,2,3] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[5,6,4,2,3,1] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
Description
The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset.
Matching statistic: St000771
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St000771: Graphs ⟶ ℤResult quality: 1% ●values known / values provided: 2%●distinct values known / distinct values provided: 1%
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St000771: Graphs ⟶ ℤResult quality: 1% ●values known / values provided: 2%●distinct values known / distinct values provided: 1%
Values
[1] => [1] => ([],1)
=> ([],1)
=> 1
[1,2] => [1,2] => ([],2)
=> ([],1)
=> 1
[2,1] => [1,2] => ([],2)
=> ([],1)
=> 1
[1,2,3] => [1,2,3] => ([],3)
=> ([],1)
=> 1
[1,3,2] => [1,2,3] => ([],3)
=> ([],1)
=> 1
[2,1,3] => [1,2,3] => ([],3)
=> ([],1)
=> 1
[2,3,1] => [1,2,3] => ([],3)
=> ([],1)
=> 1
[3,1,2] => [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {2,2}
[3,2,1] => [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {2,2}
[1,2,3,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1
[1,2,4,3] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1
[1,3,2,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1
[1,3,4,2] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1
[1,4,2,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[1,4,3,2] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[2,1,3,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1
[2,1,4,3] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1
[2,3,1,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1
[2,3,4,1] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1
[2,4,1,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[2,4,3,1] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[3,1,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[3,1,4,2] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[3,2,1,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[3,2,4,1] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[3,4,1,2] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[3,4,2,1] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[4,1,2,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[4,1,3,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[4,2,1,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[4,2,3,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[4,3,1,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[4,3,2,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[1,2,3,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[1,2,4,3,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[1,2,4,5,3] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[1,2,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,2,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,3,2,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[1,3,2,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[1,3,4,2,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[1,3,4,5,2] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[1,3,5,2,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,3,5,4,2] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,4,2,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,4,3,2,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,4,3,5,2] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,4,5,2,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,4,5,3,2] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,5,2,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,5,2,4,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,5,3,2,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,5,3,4,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,5,4,2,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,5,4,3,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,1,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[2,1,3,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[2,1,4,3,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[2,1,4,5,3] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[2,1,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,1,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,3,1,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[2,3,1,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[2,3,4,1,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[2,3,4,5,1] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[2,3,5,1,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,3,5,4,1] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,4,1,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,4,1,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,4,3,1,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,4,3,5,1] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,4,5,1,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,4,5,3,1] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,5,1,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,5,1,4,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,5,3,1,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,5,3,4,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,5,4,1,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,5,4,3,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,2,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,2,3,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,2,3,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,2,3,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,2,4,3,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,2,4,3,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,2,4,5,3,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,2,4,5,6,3] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,3,2,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,3,2,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,3,2,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,3,2,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,3,4,2,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,3,4,2,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,3,4,5,2,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,3,4,5,6,2] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[2,1,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[2,1,3,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[2,1,3,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$
\left(\begin{array}{rrrr}
4 & -1 & -2 & -1 \\
-1 & 4 & -1 & -2 \\
-2 & -1 & 4 & -1 \\
-1 & -2 & -1 & 4
\end{array}\right).
$$
Its eigenvalues are $0,4,4,6$, so the statistic is $2$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
Matching statistic: St000772
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St000772: Graphs ⟶ ℤResult quality: 1% ●values known / values provided: 2%●distinct values known / distinct values provided: 1%
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St000772: Graphs ⟶ ℤResult quality: 1% ●values known / values provided: 2%●distinct values known / distinct values provided: 1%
Values
[1] => [1] => ([],1)
=> ([],1)
=> 1
[1,2] => [1,2] => ([],2)
=> ([],1)
=> 1
[2,1] => [1,2] => ([],2)
=> ([],1)
=> 1
[1,2,3] => [1,2,3] => ([],3)
=> ([],1)
=> 1
[1,3,2] => [1,2,3] => ([],3)
=> ([],1)
=> 1
[2,1,3] => [1,2,3] => ([],3)
=> ([],1)
=> 1
[2,3,1] => [1,2,3] => ([],3)
=> ([],1)
=> 1
[3,1,2] => [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {2,2}
[3,2,1] => [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {2,2}
[1,2,3,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1
[1,2,4,3] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1
[1,3,2,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1
[1,3,4,2] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1
[1,4,2,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[1,4,3,2] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[2,1,3,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1
[2,1,4,3] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1
[2,3,1,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1
[2,3,4,1] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1
[2,4,1,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[2,4,3,1] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[3,1,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[3,1,4,2] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[3,2,1,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[3,2,4,1] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[3,4,1,2] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[3,4,2,1] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[4,1,2,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[4,1,3,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[4,2,1,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[4,2,3,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[4,3,1,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[4,3,2,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[1,2,3,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[1,2,4,3,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[1,2,4,5,3] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[1,2,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,2,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,3,2,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[1,3,2,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[1,3,4,2,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[1,3,4,5,2] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[1,3,5,2,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,3,5,4,2] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,4,2,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,4,3,2,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,4,3,5,2] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,4,5,2,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,4,5,3,2] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,5,2,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,5,2,4,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,5,3,2,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,5,3,4,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,5,4,2,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,5,4,3,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,1,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[2,1,3,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[2,1,4,3,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[2,1,4,5,3] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[2,1,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,1,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,3,1,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[2,3,1,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[2,3,4,1,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[2,3,4,5,1] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[2,3,5,1,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,3,5,4,1] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,4,1,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,4,1,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,4,3,1,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,4,3,5,1] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,4,5,1,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,4,5,3,1] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,5,1,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,5,1,4,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,5,3,1,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,5,3,4,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,5,4,1,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,5,4,3,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,2,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,2,3,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,2,3,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,2,3,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,2,4,3,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,2,4,3,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,2,4,5,3,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,2,4,5,6,3] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,3,2,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,3,2,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,3,2,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,3,2,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,3,4,2,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,3,4,2,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,3,4,5,2,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,3,4,5,6,2] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[2,1,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[2,1,3,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[2,1,3,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$
\left(\begin{array}{rrrr}
4 & -1 & -2 & -1 \\
-1 & 4 & -1 & -2 \\
-2 & -1 & 4 & -1 \\
-1 & -2 & -1 & 4
\end{array}\right).
$$
Its eigenvalues are $0,4,4,6$, so the statistic is $1$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore also statistic $1$.
The graphs with statistic $n-1$, $n-2$ and $n-3$ have been characterised, see [1].
Matching statistic: St000777
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St000777: Graphs ⟶ ℤResult quality: 1% ●values known / values provided: 2%●distinct values known / distinct values provided: 1%
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St000777: Graphs ⟶ ℤResult quality: 1% ●values known / values provided: 2%●distinct values known / distinct values provided: 1%
Values
[1] => [1] => ([],1)
=> ([],1)
=> 1
[1,2] => [1,2] => ([],2)
=> ([],1)
=> 1
[2,1] => [1,2] => ([],2)
=> ([],1)
=> 1
[1,2,3] => [1,2,3] => ([],3)
=> ([],1)
=> 1
[1,3,2] => [1,2,3] => ([],3)
=> ([],1)
=> 1
[2,1,3] => [1,2,3] => ([],3)
=> ([],1)
=> 1
[2,3,1] => [1,2,3] => ([],3)
=> ([],1)
=> 1
[3,1,2] => [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {2,2}
[3,2,1] => [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {2,2}
[1,2,3,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1
[1,2,4,3] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1
[1,3,2,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1
[1,3,4,2] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1
[1,4,2,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[1,4,3,2] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[2,1,3,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1
[2,1,4,3] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1
[2,3,1,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1
[2,3,4,1] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1
[2,4,1,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[2,4,3,1] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[3,1,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[3,1,4,2] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[3,2,1,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[3,2,4,1] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[3,4,1,2] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[3,4,2,1] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[4,1,2,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[4,1,3,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[4,2,1,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[4,2,3,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[4,3,1,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[4,3,2,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[1,2,3,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[1,2,4,3,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[1,2,4,5,3] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[1,2,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,2,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,3,2,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[1,3,2,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[1,3,4,2,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[1,3,4,5,2] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[1,3,5,2,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,3,5,4,2] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,4,2,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,4,3,2,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,4,3,5,2] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,4,5,2,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,4,5,3,2] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,5,2,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,5,2,4,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,5,3,2,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,5,3,4,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,5,4,2,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,5,4,3,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,1,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[2,1,3,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[2,1,4,3,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[2,1,4,5,3] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[2,1,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,1,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,3,1,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[2,3,1,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[2,3,4,1,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[2,3,4,5,1] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[2,3,5,1,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,3,5,4,1] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,4,1,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,4,1,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,4,3,1,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,4,3,5,1] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,4,5,1,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,4,5,3,1] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,5,1,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,5,1,4,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,5,3,1,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,5,3,4,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,5,4,1,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,5,4,3,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,2,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,2,3,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,2,3,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,2,3,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,2,4,3,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,2,4,3,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,2,4,5,3,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,2,4,5,6,3] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,3,2,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,3,2,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,3,2,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,3,2,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,3,4,2,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,3,4,2,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,3,4,5,2,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,3,4,5,6,2] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[2,1,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[2,1,3,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[2,1,3,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
Description
The number of distinct eigenvalues of the distance Laplacian of a connected graph.
Matching statistic: St001645
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St001645: Graphs ⟶ ℤResult quality: 1% ●values known / values provided: 2%●distinct values known / distinct values provided: 1%
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St001645: Graphs ⟶ ℤResult quality: 1% ●values known / values provided: 2%●distinct values known / distinct values provided: 1%
Values
[1] => [1] => ([],1)
=> ([],1)
=> 1
[1,2] => [1,2] => ([],2)
=> ([],1)
=> 1
[2,1] => [1,2] => ([],2)
=> ([],1)
=> 1
[1,2,3] => [1,2,3] => ([],3)
=> ([],1)
=> 1
[1,3,2] => [1,2,3] => ([],3)
=> ([],1)
=> 1
[2,1,3] => [1,2,3] => ([],3)
=> ([],1)
=> 1
[2,3,1] => [1,2,3] => ([],3)
=> ([],1)
=> 1
[3,1,2] => [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {2,2}
[3,2,1] => [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {2,2}
[1,2,3,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1
[1,2,4,3] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1
[1,3,2,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1
[1,3,4,2] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1
[1,4,2,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[1,4,3,2] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[2,1,3,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1
[2,1,4,3] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1
[2,3,1,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1
[2,3,4,1] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1
[2,4,1,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[2,4,3,1] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[3,1,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[3,1,4,2] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[3,2,1,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[3,2,4,1] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[3,4,1,2] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[3,4,2,1] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[4,1,2,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[4,1,3,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[4,2,1,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[4,2,3,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[4,3,1,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[4,3,2,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5}
[1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[1,2,3,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[1,2,4,3,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[1,2,4,5,3] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[1,2,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,2,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,3,2,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[1,3,2,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[1,3,4,2,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[1,3,4,5,2] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[1,3,5,2,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,3,5,4,2] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,4,2,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,4,3,2,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,4,3,5,2] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,4,5,2,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,4,5,3,2] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,5,2,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,5,2,4,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,5,3,2,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,5,3,4,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,5,4,2,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,5,4,3,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,1,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[2,1,3,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[2,1,4,3,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[2,1,4,5,3] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[2,1,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,1,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,3,1,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[2,3,1,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[2,3,4,1,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[2,3,4,5,1] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[2,3,5,1,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,3,5,4,1] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,4,1,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,4,1,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,4,3,1,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,4,3,5,1] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,4,5,1,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,4,5,3,1] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,5,1,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,5,1,4,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,5,3,1,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,5,3,4,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,5,4,1,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[2,5,4,3,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14}
[1,2,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,2,3,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,2,3,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,2,3,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,2,4,3,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,2,4,3,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,2,4,5,3,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,2,4,5,6,3] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,3,2,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,3,2,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,3,2,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,3,2,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,3,4,2,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,3,4,2,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,3,4,5,2,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[1,3,4,5,6,2] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[2,1,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[2,1,3,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
[2,1,3,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1
Description
The pebbling number of a connected graph.
Matching statistic: St000259
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St000259: Graphs ⟶ ℤResult quality: 1% ●values known / values provided: 2%●distinct values known / distinct values provided: 1%
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St000259: Graphs ⟶ ℤResult quality: 1% ●values known / values provided: 2%●distinct values known / distinct values provided: 1%
Values
[1] => [1] => ([],1)
=> ([],1)
=> 0 = 1 - 1
[1,2] => [1,2] => ([],2)
=> ([],1)
=> 0 = 1 - 1
[2,1] => [1,2] => ([],2)
=> ([],1)
=> 0 = 1 - 1
[1,2,3] => [1,2,3] => ([],3)
=> ([],1)
=> 0 = 1 - 1
[1,3,2] => [1,2,3] => ([],3)
=> ([],1)
=> 0 = 1 - 1
[2,1,3] => [1,2,3] => ([],3)
=> ([],1)
=> 0 = 1 - 1
[2,3,1] => [1,2,3] => ([],3)
=> ([],1)
=> 0 = 1 - 1
[3,1,2] => [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {2,2} - 1
[3,2,1] => [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {2,2} - 1
[1,2,3,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0 = 1 - 1
[1,2,4,3] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0 = 1 - 1
[1,3,2,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0 = 1 - 1
[1,3,4,2] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0 = 1 - 1
[1,4,2,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5} - 1
[1,4,3,2] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5} - 1
[2,1,3,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0 = 1 - 1
[2,1,4,3] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0 = 1 - 1
[2,3,1,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0 = 1 - 1
[2,3,4,1] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0 = 1 - 1
[2,4,1,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5} - 1
[2,4,3,1] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5} - 1
[3,1,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5} - 1
[3,1,4,2] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5} - 1
[3,2,1,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5} - 1
[3,2,4,1] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5} - 1
[3,4,1,2] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5} - 1
[3,4,2,1] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5} - 1
[4,1,2,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5} - 1
[4,1,3,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5} - 1
[4,2,1,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5} - 1
[4,2,3,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5} - 1
[4,3,1,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5} - 1
[4,3,2,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,3,3,3,3,3,3,3,5,5} - 1
[1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0 = 1 - 1
[1,2,3,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0 = 1 - 1
[1,2,4,3,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0 = 1 - 1
[1,2,4,5,3] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0 = 1 - 1
[1,2,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[1,2,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[1,3,2,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0 = 1 - 1
[1,3,2,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0 = 1 - 1
[1,3,4,2,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0 = 1 - 1
[1,3,4,5,2] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0 = 1 - 1
[1,3,5,2,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[1,3,5,4,2] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[1,4,2,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[1,4,3,2,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[1,4,3,5,2] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[1,4,5,2,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[1,4,5,3,2] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[1,5,2,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[1,5,2,4,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[1,5,3,2,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[1,5,3,4,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[1,5,4,2,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[1,5,4,3,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[2,1,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0 = 1 - 1
[2,1,3,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0 = 1 - 1
[2,1,4,3,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0 = 1 - 1
[2,1,4,5,3] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0 = 1 - 1
[2,1,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[2,1,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[2,3,1,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0 = 1 - 1
[2,3,1,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0 = 1 - 1
[2,3,4,1,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0 = 1 - 1
[2,3,4,5,1] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0 = 1 - 1
[2,3,5,1,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[2,3,5,4,1] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[2,4,1,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[2,4,1,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[2,4,3,1,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[2,4,3,5,1] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[2,4,5,1,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[2,4,5,3,1] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[2,5,1,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[2,5,1,4,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[2,5,3,1,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[2,5,3,4,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[2,5,4,1,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[2,5,4,3,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,9,10,10,11,11,11,11,11,11,13,13,13,13,14,14,14,14,14,14} - 1
[1,2,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0 = 1 - 1
[1,2,3,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0 = 1 - 1
[1,2,3,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0 = 1 - 1
[1,2,3,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0 = 1 - 1
[1,2,4,3,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0 = 1 - 1
[1,2,4,3,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0 = 1 - 1
[1,2,4,5,3,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0 = 1 - 1
[1,2,4,5,6,3] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0 = 1 - 1
[1,3,2,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0 = 1 - 1
[1,3,2,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0 = 1 - 1
[1,3,2,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0 = 1 - 1
[1,3,2,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0 = 1 - 1
[1,3,4,2,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0 = 1 - 1
[1,3,4,2,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0 = 1 - 1
[1,3,4,5,2,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0 = 1 - 1
[1,3,4,5,6,2] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0 = 1 - 1
[2,1,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0 = 1 - 1
[2,1,3,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0 = 1 - 1
[2,1,3,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0 = 1 - 1
Description
The diameter of a connected graph.
This is the greatest distance between any pair of vertices.
The following 30 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000260The radius of a connected graph. St000302The determinant of the distance matrix of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St001330The hat guessing number of a graph. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001510The number of self-evacuating linear extensions of a finite poset. St000910The number of maximal chains of minimal length in a poset. St001105The number of greedy linear extensions of a poset. St001106The number of supergreedy linear extensions of a poset. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St000100The number of linear extensions of a poset. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001875The number of simple modules with projective dimension at most 1. St000524The number of posets with the same order polynomial. St000525The number of posets with the same zeta polynomial. St000526The number of posets with combinatorially isomorphic order polytopes. St000633The size of the automorphism group of a poset. St000640The rank of the largest boolean interval in a poset. St000914The sum of the values of the Möbius function of a poset. St001890The maximum magnitude of the Möbius function of a poset. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St000036The evaluation at 1 of the Kazhdan-Lusztig polynomial with parameters given by the identity and the permutation. St000408The number of occurrences of the pattern 4231 in a permutation. St000440The number of occurrences of the pattern 4132 or of the pattern 4231 in a permutation. St001570The minimal number of edges to add to make a graph Hamiltonian. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!