Your data matches 41 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000090: Integer compositions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => 0
[1,1] => 0
[2] => 0
[1,1,1] => 0
[1,2] => 1
[2,1] => -1
[3] => 0
[1,1,1,1] => 0
[1,1,2] => 1
[1,2,1] => 0
[1,3] => 2
[2,1,1] => -1
[2,2] => 0
[3,1] => -2
[4] => 0
[1,1,1,1,1] => 0
[1,1,1,2] => 1
[1,1,2,1] => 0
[1,1,3] => 2
[1,2,1,1] => 0
[1,2,2] => 1
[1,3,1] => 0
[1,4] => 3
[2,1,1,1] => -1
[2,1,2] => 0
[2,2,1] => -1
[2,3] => 1
[3,1,1] => -2
[3,2] => -1
[4,1] => -3
[5] => 0
[1,1,1,1,1,1] => 0
[1,1,1,1,2] => 1
[1,1,1,2,1] => 0
[1,1,1,3] => 2
[1,1,2,1,1] => 0
[1,1,2,2] => 1
[1,1,3,1] => 0
[1,1,4] => 3
[1,2,1,1,1] => 0
[1,2,1,2] => 1
[1,2,2,1] => 0
[1,2,3] => 2
[1,3,1,1] => 0
[1,3,2] => 1
[1,4,1] => 0
[1,5] => 4
[2,1,1,1,1] => -1
[2,1,1,2] => 0
[2,1,2,1] => -1
Description
The variation of a composition.
Matching statistic: St000878
Mp00231: Integer compositions bounce pathDyck paths
Mp00027: Dyck paths to partitionInteger partitions
Mp00095: Integer partitions to binary wordBinary words
St000878: Binary words ⟶ ℤResult quality: 63% values known / values provided: 63%distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> []
=> => ? = 0
[1,1] => [1,0,1,0]
=> [1]
=> 10 => 0
[2] => [1,1,0,0]
=> []
=> => ? = 0
[1,1,1] => [1,0,1,0,1,0]
=> [2,1]
=> 1010 => 0
[1,2] => [1,0,1,1,0,0]
=> [1,1]
=> 110 => 1
[2,1] => [1,1,0,0,1,0]
=> [2]
=> 100 => -1
[3] => [1,1,1,0,0,0]
=> []
=> => ? = 0
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 101010 => 0
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 11010 => 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> 100110 => 0
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1110 => 2
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [3,2]
=> 10100 => -1
[2,2] => [1,1,0,0,1,1,0,0]
=> [2,2]
=> 1100 => 0
[3,1] => [1,1,1,0,0,0,1,0]
=> [3]
=> 1000 => -2
[4] => [1,1,1,1,0,0,0,0]
=> []
=> => ? = 0
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 10101010 => 0
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> 1101010 => 1
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> 10011010 => 0
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> 111010 => 2
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> 10100110 => 0
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> 1100110 => 1
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> 10001110 => 0
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 11110 => 3
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> 1010100 => -1
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> 110100 => 0
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> 1001100 => -1
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> 11100 => 1
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> 101000 => -2
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> 11000 => -1
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 10000 => -3
[5] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> => ? = 0
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1]
=> 1010101010 => 0
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2,1]
=> 110101010 => 1
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2,1]
=> 1001101010 => 0
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [3,3,3,2,1]
=> 11101010 => 2
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,2,1]
=> 1010011010 => 0
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,4,2,2,1]
=> 110011010 => 1
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [5,2,2,2,1]
=> 1000111010 => 0
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,2,2,2,1]
=> 1111010 => 3
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,1]
=> 1010100110 => 0
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [4,4,3,1,1]
=> 110100110 => 1
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [5,3,3,1,1]
=> 1001100110 => 0
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,3,3,1,1]
=> 11100110 => 2
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,1,1]
=> 1010001110 => 0
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [4,4,1,1,1]
=> 110001110 => 1
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [5,1,1,1,1]
=> 1000011110 => 0
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1]
=> 111110 => 4
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2]
=> 101010100 => -1
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2]
=> 11010100 => 0
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2]
=> 100110100 => -1
[2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [3,3,3,2]
=> 1110100 => 1
[2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [5,4,2,2]
=> 101001100 => -1
[2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [4,4,2,2]
=> 11001100 => 0
[2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [5,2,2,2]
=> 100011100 => -1
[2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,2,2,2]
=> 111100 => 2
[6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> => ? = 0
[1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [5,5,4,3,2,1]
=> 11010101010 => ? ∊ {-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2}
[1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [6,4,4,3,2,1]
=> 100110101010 => ? ∊ {-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2}
[1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [4,4,4,3,2,1]
=> 1110101010 => ? ∊ {-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2}
[1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [6,5,3,3,2,1]
=> 101001101010 => ? ∊ {-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2}
[1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [5,5,3,3,2,1]
=> 11001101010 => ? ∊ {-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2}
[1,1,1,3,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [6,3,3,3,2,1]
=> 100011101010 => ? ∊ {-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2}
[1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,2,1]
=> 101010011010 => ? ∊ {-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2}
[1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [5,5,4,2,2,1]
=> 11010011010 => ? ∊ {-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2}
[1,1,2,2,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [6,4,4,2,2,1]
=> 100110011010 => ? ∊ {-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2}
[1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [4,4,4,2,2,1]
=> 1110011010 => ? ∊ {-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2}
[1,1,3,1,1] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [6,5,2,2,2,1]
=> 101000111010 => ? ∊ {-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2}
[1,1,3,2] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [5,5,2,2,2,1]
=> 11000111010 => ? ∊ {-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2}
[1,1,4,1] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [6,2,2,2,2,1]
=> 100001111010 => ? ∊ {-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2}
[1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,1,1]
=> 101010100110 => ? ∊ {-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2}
[1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [5,5,4,3,1,1]
=> 11010100110 => ? ∊ {-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2}
[1,2,1,2,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [6,4,4,3,1,1]
=> 100110100110 => ? ∊ {-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2}
[1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [4,4,4,3,1,1]
=> 1110100110 => ? ∊ {-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2}
[1,2,2,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [6,5,3,3,1,1]
=> 101001100110 => ? ∊ {-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2}
[1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [5,5,3,3,1,1]
=> 11001100110 => ? ∊ {-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2}
[1,2,3,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [6,3,3,3,1,1]
=> 100011100110 => ? ∊ {-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2}
[1,3,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [6,5,4,1,1,1]
=> 101010001110 => ? ∊ {-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2}
[1,3,1,2] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [5,5,4,1,1,1]
=> 11010001110 => ? ∊ {-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2}
[1,3,2,1] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [6,4,4,1,1,1]
=> 100110001110 => ? ∊ {-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2}
[1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [4,4,4,1,1,1]
=> 1110001110 => ? ∊ {-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2}
[1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [6,5,1,1,1,1]
=> 101000011110 => ? ∊ {-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2}
[1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [5,5,1,1,1,1]
=> 11000011110 => ? ∊ {-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2}
[1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [6,1,1,1,1,1]
=> 100000111110 => ? ∊ {-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2}
[2,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2]
=> 10101010100 => ? ∊ {-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2}
[2,1,1,2,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [6,4,4,3,2]
=> 10011010100 => ? ∊ {-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2}
[2,1,2,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [6,5,3,3,2]
=> 10100110100 => ? ∊ {-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2}
[2,1,3,1] => [1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [6,3,3,3,2]
=> 10001110100 => ? ∊ {-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2}
[2,2,1,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,2]
=> 10101001100 => ? ∊ {-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2}
[2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [6,4,4,2,2]
=> 10011001100 => ? ∊ {-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2}
[2,3,1,1] => [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [6,5,2,2,2]
=> 10100011100 => ? ∊ {-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2}
[2,3,2] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [5,5,2,2,2]
=> 1100011100 => ? ∊ {-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2}
[2,4,1] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [6,2,2,2,2]
=> 10000111100 => ? ∊ {-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2}
[3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3]
=> 1010101000 => ? ∊ {-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2}
[3,1,2,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [6,4,4,3]
=> 1001101000 => ? ∊ {-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2}
[3,2,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [6,5,3,3]
=> 1010011000 => ? ∊ {-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2}
[3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [6,3,3,3]
=> 1000111000 => ? ∊ {-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2}
[7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> []
=> => ? ∊ {-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2}
Description
The number of ones minus the number of zeros of a binary word.
Mp00184: Integer compositions to threshold graphGraphs
St000772: Graphs ⟶ ℤResult quality: 50% values known / values provided: 50%distinct values known / distinct values provided: 55%
Values
[1] => ([],1)
=> 1 = 0 + 1
[1,1] => ([(0,1)],2)
=> 1 = 0 + 1
[2] => ([],2)
=> ? = 0 + 1
[1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[1,2] => ([(1,2)],3)
=> ? ∊ {-1,0} + 1
[2,1] => ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[3] => ([],3)
=> ? ∊ {-1,0} + 1
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {-2,-1,0,0} + 1
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,3] => ([(2,3)],4)
=> ? ∊ {-2,-1,0,0} + 1
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {-2,-1,0,0} + 1
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[4] => ([],4)
=> ? ∊ {-2,-1,0,0} + 1
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {-3,-2,-1,-1,-1,0,0,1} + 1
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {-3,-2,-1,-1,-1,0,0,1} + 1
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {-3,-2,-1,-1,-1,0,0,1} + 1
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,4] => ([(3,4)],5)
=> ? ∊ {-3,-2,-1,-1,-1,0,0,1} + 1
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {-3,-2,-1,-1,-1,0,0,1} + 1
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {-3,-2,-1,-1,-1,0,0,1} + 1
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {-3,-2,-1,-1,-1,0,0,1} + 1
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[5] => ([],5)
=> ? ∊ {-3,-2,-1,-1,-1,0,0,1} + 1
[1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2} + 1
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2} + 1
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2} + 1
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2} + 1
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2} + 1
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2} + 1
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2} + 1
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[1,5] => ([(4,5)],6)
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2} + 1
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2} + 1
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2} + 1
[2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2} + 1
[2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[2,4] => ([(3,5),(4,5)],6)
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2} + 1
[3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2} + 1
[3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2} + 1
[4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
[4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2} + 1
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 3 + 1
[6] => ([],6)
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2} + 1
[1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 5 + 1
[1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3} + 1
[1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1 = 0 + 1
[1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3} + 1
[1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1 = 0 + 1
[1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3} + 1
[1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 1 + 1
[1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3} + 1
[1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1 = 0 + 1
[1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3} + 1
[1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1 = 0 + 1
[1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3} + 1
[1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 1 + 1
[1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3} + 1
[1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
[1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3} + 1
[1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1 = 0 + 1
[1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3} + 1
[1,2,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1 = 0 + 1
[1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3} + 1
[1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1 = 0 + 1
[1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3} + 1
[1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 1 + 1
[1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3} + 1
[1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 1 + 1
[1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3} + 1
[1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1 = 0 + 1
[1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3} + 1
[1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
[1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3} + 1
[1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 4 = 3 + 1
[1,6] => ([(5,6)],7)
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3} + 1
[2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1 = 0 + 1
[2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3} + 1
[2,1,1,2,1] => ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1 = 0 + 1
[2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3} + 1
[2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3} + 1
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian $$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$ Its eigenvalues are $0,4,4,6$, so the statistic is $1$. The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore also statistic $1$. The graphs with statistic $n-1$, $n-2$ and $n-3$ have been characterised, see [1].
Mp00180: Integer compositions to ribbonSkew partitions
Mp00183: Skew partitions inner shapeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000145: Integer partitions ⟶ ℤResult quality: 50% values known / values provided: 50%distinct values known / distinct values provided: 64%
Values
[1] => [[1],[]]
=> []
=> ?
=> ? = 0
[1,1] => [[1,1],[]]
=> []
=> ?
=> ? ∊ {0,0}
[2] => [[2],[]]
=> []
=> ?
=> ? ∊ {0,0}
[1,1,1] => [[1,1,1],[]]
=> []
=> ?
=> ? ∊ {-1,0,0,1}
[1,2] => [[2,1],[]]
=> []
=> ?
=> ? ∊ {-1,0,0,1}
[2,1] => [[2,2],[1]]
=> [1]
=> []
=> ? ∊ {-1,0,0,1}
[3] => [[3],[]]
=> []
=> ?
=> ? ∊ {-1,0,0,1}
[1,1,1,1] => [[1,1,1,1],[]]
=> []
=> ?
=> ? ∊ {-2,-1,0,0,0,1,2}
[1,1,2] => [[2,1,1],[]]
=> []
=> ?
=> ? ∊ {-2,-1,0,0,0,1,2}
[1,2,1] => [[2,2,1],[1]]
=> [1]
=> []
=> ? ∊ {-2,-1,0,0,0,1,2}
[1,3] => [[3,1],[]]
=> []
=> ?
=> ? ∊ {-2,-1,0,0,0,1,2}
[2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> [1]
=> 0
[2,2] => [[3,2],[1]]
=> [1]
=> []
=> ? ∊ {-2,-1,0,0,0,1,2}
[3,1] => [[3,3],[2]]
=> [2]
=> []
=> ? ∊ {-2,-1,0,0,0,1,2}
[4] => [[4],[]]
=> []
=> ?
=> ? ∊ {-2,-1,0,0,0,1,2}
[1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ?
=> ? ∊ {-3,-2,-1,-1,0,0,0,1,1,2,3}
[1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ?
=> ? ∊ {-3,-2,-1,-1,0,0,0,1,1,2,3}
[1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> []
=> ? ∊ {-3,-2,-1,-1,0,0,0,1,1,2,3}
[1,1,3] => [[3,1,1],[]]
=> []
=> ?
=> ? ∊ {-3,-2,-1,-1,0,0,0,1,1,2,3}
[1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> [1]
=> 0
[1,2,2] => [[3,2,1],[1]]
=> [1]
=> []
=> ? ∊ {-3,-2,-1,-1,0,0,0,1,1,2,3}
[1,3,1] => [[3,3,1],[2]]
=> [2]
=> []
=> ? ∊ {-3,-2,-1,-1,0,0,0,1,1,2,3}
[1,4] => [[4,1],[]]
=> []
=> ?
=> ? ∊ {-3,-2,-1,-1,0,0,0,1,1,2,3}
[2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> -1
[2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> [1]
=> 0
[2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> [1]
=> 0
[2,3] => [[4,2],[1]]
=> [1]
=> []
=> ? ∊ {-3,-2,-1,-1,0,0,0,1,1,2,3}
[3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> [2]
=> 1
[3,2] => [[4,3],[2]]
=> [2]
=> []
=> ? ∊ {-3,-2,-1,-1,0,0,0,1,1,2,3}
[4,1] => [[4,4],[3]]
=> [3]
=> []
=> ? ∊ {-3,-2,-1,-1,0,0,0,1,1,2,3}
[5] => [[5],[]]
=> []
=> ?
=> ? ∊ {-3,-2,-1,-1,0,0,0,1,1,2,3}
[1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ?
=> ? ∊ {-4,-3,-2,-2,-1,-1,0,0,0,0,1,1,2,2,3,4}
[1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ?
=> ? ∊ {-4,-3,-2,-2,-1,-1,0,0,0,0,1,1,2,2,3,4}
[1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> [1]
=> []
=> ? ∊ {-4,-3,-2,-2,-1,-1,0,0,0,0,1,1,2,2,3,4}
[1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ?
=> ? ∊ {-4,-3,-2,-2,-1,-1,0,0,0,0,1,1,2,2,3,4}
[1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> [1]
=> 0
[1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> []
=> ? ∊ {-4,-3,-2,-2,-1,-1,0,0,0,0,1,1,2,2,3,4}
[1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> []
=> ? ∊ {-4,-3,-2,-2,-1,-1,0,0,0,0,1,1,2,2,3,4}
[1,1,4] => [[4,1,1],[]]
=> []
=> ?
=> ? ∊ {-4,-3,-2,-2,-1,-1,0,0,0,0,1,1,2,2,3,4}
[1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> -1
[1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> [1]
=> 0
[1,2,2,1] => [[3,3,2,1],[2,1]]
=> [2,1]
=> [1]
=> 0
[1,2,3] => [[4,2,1],[1]]
=> [1]
=> []
=> ? ∊ {-4,-3,-2,-2,-1,-1,0,0,0,0,1,1,2,2,3,4}
[1,3,1,1] => [[3,3,3,1],[2,2]]
=> [2,2]
=> [2]
=> 1
[1,3,2] => [[4,3,1],[2]]
=> [2]
=> []
=> ? ∊ {-4,-3,-2,-2,-1,-1,0,0,0,0,1,1,2,2,3,4}
[1,4,1] => [[4,4,1],[3]]
=> [3]
=> []
=> ? ∊ {-4,-3,-2,-2,-1,-1,0,0,0,0,1,1,2,2,3,4}
[1,5] => [[5,1],[]]
=> []
=> ?
=> ? ∊ {-4,-3,-2,-2,-1,-1,0,0,0,0,1,1,2,2,3,4}
[2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]]
=> [1,1,1,1]
=> [1,1,1]
=> -2
[2,1,1,2] => [[3,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> -1
[2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> [2,1,1]
=> [1,1]
=> -1
[2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> [1]
=> 0
[2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> [2,2,1]
=> [2,1]
=> 0
[2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> [1]
=> 0
[2,3,1] => [[4,4,2],[3,1]]
=> [3,1]
=> [1]
=> 0
[2,4] => [[5,2],[1]]
=> [1]
=> []
=> ? ∊ {-4,-3,-2,-2,-1,-1,0,0,0,0,1,1,2,2,3,4}
[3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> [2,2]
=> 0
[3,1,2] => [[4,3,3],[2,2]]
=> [2,2]
=> [2]
=> 1
[3,2,1] => [[4,4,3],[3,2]]
=> [3,2]
=> [2]
=> 1
[3,3] => [[5,3],[2]]
=> [2]
=> []
=> ? ∊ {-4,-3,-2,-2,-1,-1,0,0,0,0,1,1,2,2,3,4}
[4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> [3]
=> 2
[4,2] => [[5,4],[3]]
=> [3]
=> []
=> ? ∊ {-4,-3,-2,-2,-1,-1,0,0,0,0,1,1,2,2,3,4}
[5,1] => [[5,5],[4]]
=> [4]
=> []
=> ? ∊ {-4,-3,-2,-2,-1,-1,0,0,0,0,1,1,2,2,3,4}
[6] => [[6],[]]
=> []
=> ?
=> ? ∊ {-4,-3,-2,-2,-1,-1,0,0,0,0,1,1,2,2,3,4}
[1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1],[]]
=> []
=> ?
=> ? ∊ {-5,-4,-3,-3,-2,-2,-1,-1,0,0,0,0,0,0,1,1,2,2,3,3,4,5}
[1,1,1,1,1,2] => [[2,1,1,1,1,1],[]]
=> []
=> ?
=> ? ∊ {-5,-4,-3,-3,-2,-2,-1,-1,0,0,0,0,0,0,1,1,2,2,3,3,4,5}
[1,1,1,1,2,1] => [[2,2,1,1,1,1],[1]]
=> [1]
=> []
=> ? ∊ {-5,-4,-3,-3,-2,-2,-1,-1,0,0,0,0,0,0,1,1,2,2,3,3,4,5}
[1,1,1,1,3] => [[3,1,1,1,1],[]]
=> []
=> ?
=> ? ∊ {-5,-4,-3,-3,-2,-2,-1,-1,0,0,0,0,0,0,1,1,2,2,3,3,4,5}
[1,1,1,2,1,1] => [[2,2,2,1,1,1],[1,1]]
=> [1,1]
=> [1]
=> 0
[1,1,1,2,2] => [[3,2,1,1,1],[1]]
=> [1]
=> []
=> ? ∊ {-5,-4,-3,-3,-2,-2,-1,-1,0,0,0,0,0,0,1,1,2,2,3,3,4,5}
[1,1,1,3,1] => [[3,3,1,1,1],[2]]
=> [2]
=> []
=> ? ∊ {-5,-4,-3,-3,-2,-2,-1,-1,0,0,0,0,0,0,1,1,2,2,3,3,4,5}
[1,1,1,4] => [[4,1,1,1],[]]
=> []
=> ?
=> ? ∊ {-5,-4,-3,-3,-2,-2,-1,-1,0,0,0,0,0,0,1,1,2,2,3,3,4,5}
[1,1,2,1,1,1] => [[2,2,2,2,1,1],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> -1
[1,1,2,1,2] => [[3,2,2,1,1],[1,1]]
=> [1,1]
=> [1]
=> 0
[1,1,2,2,1] => [[3,3,2,1,1],[2,1]]
=> [2,1]
=> [1]
=> 0
[1,1,2,3] => [[4,2,1,1],[1]]
=> [1]
=> []
=> ? ∊ {-5,-4,-3,-3,-2,-2,-1,-1,0,0,0,0,0,0,1,1,2,2,3,3,4,5}
[1,1,3,1,1] => [[3,3,3,1,1],[2,2]]
=> [2,2]
=> [2]
=> 1
[1,1,3,2] => [[4,3,1,1],[2]]
=> [2]
=> []
=> ? ∊ {-5,-4,-3,-3,-2,-2,-1,-1,0,0,0,0,0,0,1,1,2,2,3,3,4,5}
[1,2,1,1,1,1] => [[2,2,2,2,2,1],[1,1,1,1]]
=> [1,1,1,1]
=> [1,1,1]
=> -2
[1,2,1,1,2] => [[3,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> -1
[1,2,1,2,1] => [[3,3,2,2,1],[2,1,1]]
=> [2,1,1]
=> [1,1]
=> -1
[1,2,1,3] => [[4,2,2,1],[1,1]]
=> [1,1]
=> [1]
=> 0
[1,2,2,1,1] => [[3,3,3,2,1],[2,2,1]]
=> [2,2,1]
=> [2,1]
=> 0
[1,2,2,2] => [[4,3,2,1],[2,1]]
=> [2,1]
=> [1]
=> 0
[1,2,3,1] => [[4,4,2,1],[3,1]]
=> [3,1]
=> [1]
=> 0
[1,3,1,1,1] => [[3,3,3,3,1],[2,2,2]]
=> [2,2,2]
=> [2,2]
=> 0
[1,3,1,2] => [[4,3,3,1],[2,2]]
=> [2,2]
=> [2]
=> 1
[1,3,2,1] => [[4,4,3,1],[3,2]]
=> [3,2]
=> [2]
=> 1
[1,4,1,1] => [[4,4,4,1],[3,3]]
=> [3,3]
=> [3]
=> 2
[2,1,1,1,1,1] => [[2,2,2,2,2,2],[1,1,1,1,1]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> -3
[2,1,1,1,2] => [[3,2,2,2,2],[1,1,1,1]]
=> [1,1,1,1]
=> [1,1,1]
=> -2
[2,1,1,2,1] => [[3,3,2,2,2],[2,1,1,1]]
=> [2,1,1,1]
=> [1,1,1]
=> -2
[2,1,1,3] => [[4,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> -1
[2,1,2,1,1] => [[3,3,3,2,2],[2,2,1,1]]
=> [2,2,1,1]
=> [2,1,1]
=> -1
[2,1,2,2] => [[4,3,2,2],[2,1,1]]
=> [2,1,1]
=> [1,1]
=> -1
[2,1,3,1] => [[4,4,2,2],[3,1,1]]
=> [3,1,1]
=> [1,1]
=> -1
[2,1,4] => [[5,2,2],[1,1]]
=> [1,1]
=> [1]
=> 0
[2,2,1,1,1] => [[3,3,3,3,2],[2,2,2,1]]
=> [2,2,2,1]
=> [2,2,1]
=> -1
[2,2,1,2] => [[4,3,3,2],[2,2,1]]
=> [2,2,1]
=> [2,1]
=> 0
[2,2,2,1] => [[4,4,3,2],[3,2,1]]
=> [3,2,1]
=> [2,1]
=> 0
[2,2,3] => [[5,3,2],[2,1]]
=> [2,1]
=> [1]
=> 0
Description
The Dyson rank of a partition. This rank is defined as the largest part minus the number of parts. It was introduced by Dyson [1] in connection to Ramanujan's partition congruences $$p(5n+4) \equiv 0 \pmod 5$$ and $$p(7n+6) \equiv 0 \pmod 7.$$
Matching statistic: St000771
Mp00184: Integer compositions to threshold graphGraphs
Mp00247: Graphs de-duplicateGraphs
Mp00111: Graphs complementGraphs
St000771: Graphs ⟶ ℤResult quality: 45% values known / values provided: 50%distinct values known / distinct values provided: 45%
Values
[1] => ([],1)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[1,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 0 + 1
[2] => ([],2)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {-1,1} + 1
[1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[2,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {-1,1} + 1
[3] => ([],3)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {-2,-1,0,2} + 1
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {-2,-1,0,2} + 1
[1,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {-2,-1,0,2} + 1
[2,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {-2,-1,0,2} + 1
[4] => ([],4)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? ∊ {-3,-2,-1,-1,-1,0,1,3} + 1
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {-3,-2,-1,-1,-1,0,1,3} + 1
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {-3,-2,-1,-1,-1,0,1,3} + 1
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {-3,-2,-1,-1,-1,0,1,3} + 1
[1,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {-3,-2,-1,-1,-1,0,1,3} + 1
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {-3,-2,-1,-1,-1,0,1,3} + 1
[2,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {-3,-2,-1,-1,-1,0,1,3} + 1
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {-3,-2,-1,-1,-1,0,1,3} + 1
[5] => ([],5)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,2,4} + 1
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,2,4} + 1
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,2,4} + 1
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,2,4} + 1
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,2,4} + 1
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,2,4} + 1
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,2,4} + 1
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,2,4} + 1
[1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,2,4} + 1
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,2,4} + 1
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,2,4} + 1
[2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,2,4} + 1
[2,4] => ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,2,4} + 1
[3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,2,4} + 1
[3,3] => ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,2,4} + 1
[4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,2,4} + 1
[6] => ([],6)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],7)
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,3,5} + 1
[1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5 = 4 + 1
[1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,3,5} + 1
[1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 3 + 1
[1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,6),(4,6),(5,6)],7)
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,3,5} + 1
[1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
[1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,3,5} + 1
[1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,6),(4,6),(5,6)],7)
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,3,5} + 1
[1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 1 + 1
[1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,3,5} + 1
[1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,3,5} + 1
[1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,3,5} + 1
[1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(4,6),(5,6)],7)
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,3,5} + 1
[1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
[1,2,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,3,5} + 1
[1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,3,5} + 1
[1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1 = 0 + 1
[1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,3,5} + 1
[1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,3,5} + 1
[1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,3,5} + 1
[1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,3,5} + 1
[1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,3,5} + 1
[1,6] => ([(5,6)],7)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,3,5} + 1
[2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4 = 3 + 1
[2,1,1,2,1] => ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,3,5} + 1
[2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[2,1,2,1,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,3,5} + 1
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian $$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$ Its eigenvalues are $0,4,4,6$, so the statistic is $2$. The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
Mp00184: Integer compositions to threshold graphGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000506: Integer partitions ⟶ ℤResult quality: 18% values known / values provided: 50%distinct values known / distinct values provided: 18%
Values
[1] => ([],1)
=> [1]
=> []
=> ? = 0
[1,1] => ([(0,1)],2)
=> [2]
=> []
=> ? = 0
[2] => ([],2)
=> [1,1]
=> [1]
=> 0
[1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {-1,0}
[1,2] => ([(1,2)],3)
=> [2,1]
=> [1]
=> 0
[2,1] => ([(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {-1,0}
[3] => ([],3)
=> [1,1,1]
=> [1,1]
=> 1
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {-2,-1,0,2}
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {-2,-1,0,2}
[1,3] => ([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 1
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {-2,-1,0,2}
[2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {-2,-1,0,2}
[4] => ([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {-3,-2,-1,-1,-1,0,2,3}
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {-3,-2,-1,-1,-1,0,2,3}
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {-3,-2,-1,-1,-1,0,2,3}
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {-3,-2,-1,-1,-1,0,2,3}
[1,4] => ([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 0
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {-3,-2,-1,-1,-1,0,2,3}
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {-3,-2,-1,-1,-1,0,2,3}
[2,3] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {-3,-2,-1,-1,-1,0,2,3}
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {-3,-2,-1,-1,-1,0,2,3}
[5] => ([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,2,2,2,3,4}
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,2,2,2,3,4}
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,2,2,2,3,4}
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,2,2,2,3,4}
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,2,2,2,3,4}
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,2,2,2,3,4}
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,2,2,2,3,4}
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,2,2,2,3,4}
[1,5] => ([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,2,2,2,3,4}
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,2,2,2,3,4}
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,2,2,2,3,4}
[2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
[2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,2,2,2,3,4}
[2,4] => ([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
[3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,2,2,2,3,4}
[3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
[3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,2,2,2,3,4}
[3,3] => ([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,2,2,2,3,4}
[4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,2,2,2,3,4}
[6] => ([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,2,2,2,2,2,3,3,3,4,5}
[1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
[1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,2,2,2,2,2,3,3,3,4,5}
[1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,2,2,2,2,2,3,3,3,4,5}
[1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
[1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,2,2,2,2,2,3,3,3,4,5}
[1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 0
[1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,2,2,2,2,2,3,3,3,4,5}
[1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
[1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,2,2,2,2,2,3,3,3,4,5}
[1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,2,2,2,2,2,3,3,3,4,5}
[1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
[1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,2,2,2,2,2,3,3,3,4,5}
[1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,2,2,2,2,2,3,3,3,4,5}
[1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
[1,2,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,2,2,2,2,2,3,3,3,4,5}
[1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,2,2,2,2,2,3,3,3,4,5}
[1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
[1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,2,2,2,2,2,3,3,3,4,5}
[1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 0
[1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,2,2,2,2,2,3,3,3,4,5}
[1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
[1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,2,2,2,2,2,3,3,3,4,5}
[1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,2,2,2,2,2,3,3,3,4,5}
[1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
[1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,2,2,2,2,2,3,3,3,4,5}
[1,6] => ([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,2,2,2,2,2,3,3,3,4,5}
[2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
[2,1,1,2,1] => ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,2,2,2,2,2,3,3,3,4,5}
[2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
Description
The number of standard desarrangement tableaux of shape equal to the given partition. A '''standard desarrangement tableau''' is a standard tableau whose first ascent is even. Here, an ascent of a standard tableau is an entry $i$ such that $i+1$ appears to the right or above $i$ in the tableau (with respect to English tableau notation). This is also the nullity of the random-to-random operator (and the random-to-top) operator acting on the simple module of the symmetric group indexed by the given partition. See also: * [[St000046]]: The largest eigenvalue of the random to random operator acting on the simple module corresponding to the given partition * [[St000500]]: Eigenvalues of the random-to-random operator acting on the regular representation.
Mp00184: Integer compositions to threshold graphGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001176: Integer partitions ⟶ ℤResult quality: 50% values known / values provided: 50%distinct values known / distinct values provided: 55%
Values
[1] => ([],1)
=> [1]
=> []
=> ? = 0
[1,1] => ([(0,1)],2)
=> [2]
=> []
=> ? = 0
[2] => ([],2)
=> [1,1]
=> [1]
=> 0
[1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {-1,0}
[1,2] => ([(1,2)],3)
=> [2,1]
=> [1]
=> 0
[2,1] => ([(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {-1,0}
[3] => ([],3)
=> [1,1,1]
=> [1,1]
=> 1
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {-2,-1,0,0}
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {-2,-1,0,0}
[1,3] => ([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 1
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {-2,-1,0,0}
[2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {-2,-1,0,0}
[4] => ([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 2
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {-3,-2,-1,-1,-1,0,0,1}
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {-3,-2,-1,-1,-1,0,0,1}
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {-3,-2,-1,-1,-1,0,0,1}
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {-3,-2,-1,-1,-1,0,0,1}
[1,4] => ([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 2
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {-3,-2,-1,-1,-1,0,0,1}
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {-3,-2,-1,-1,-1,0,0,1}
[2,3] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {-3,-2,-1,-1,-1,0,0,1}
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {-3,-2,-1,-1,-1,0,0,1}
[5] => ([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 3
[1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2}
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2}
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2}
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2}
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 2
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2}
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2}
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2}
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2}
[1,5] => ([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 3
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2}
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2}
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2}
[2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
[2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2}
[2,4] => ([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 2
[3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2}
[3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
[3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2}
[3,3] => ([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2}
[4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2}
[6] => ([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 4
[1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
[1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
[1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 2
[1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
[1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
[1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 3
[1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
[1,2,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
[1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 2
[1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
[1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
[1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[1,6] => ([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> 4
[2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
[2,1,1,2,1] => ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
Description
The size of a partition minus its first part. This is the number of boxes in its diagram that are not in the first row.
Matching statistic: St001384
Mp00184: Integer compositions to threshold graphGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001384: Integer partitions ⟶ ℤResult quality: 50% values known / values provided: 50%distinct values known / distinct values provided: 55%
Values
[1] => ([],1)
=> [1]
=> []
=> ? = 0
[1,1] => ([(0,1)],2)
=> [2]
=> []
=> ? = 0
[2] => ([],2)
=> [1,1]
=> [1]
=> 0
[1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {-1,0}
[1,2] => ([(1,2)],3)
=> [2,1]
=> [1]
=> 0
[2,1] => ([(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {-1,0}
[3] => ([],3)
=> [1,1,1]
=> [1,1]
=> 1
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {-2,-1,0,0}
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {-2,-1,0,0}
[1,3] => ([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 1
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {-2,-1,0,0}
[2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {-2,-1,0,0}
[4] => ([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 2
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {-3,-2,-1,-1,-1,0,0,1}
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {-3,-2,-1,-1,-1,0,0,1}
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {-3,-2,-1,-1,-1,0,0,1}
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {-3,-2,-1,-1,-1,0,0,1}
[1,4] => ([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 2
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {-3,-2,-1,-1,-1,0,0,1}
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {-3,-2,-1,-1,-1,0,0,1}
[2,3] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {-3,-2,-1,-1,-1,0,0,1}
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {-3,-2,-1,-1,-1,0,0,1}
[5] => ([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 3
[1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2}
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2}
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2}
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2}
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 2
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2}
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2}
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2}
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2}
[1,5] => ([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 3
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2}
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2}
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2}
[2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
[2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2}
[2,4] => ([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 2
[3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2}
[3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
[3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2}
[3,3] => ([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2}
[4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2}
[6] => ([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 4
[1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
[1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
[1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 2
[1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
[1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
[1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 3
[1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
[1,2,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
[1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 2
[1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
[1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
[1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[1,6] => ([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> 4
[2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
[2,1,1,2,1] => ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
Description
The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains.
Mp00184: Integer compositions to threshold graphGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001714: Integer partitions ⟶ ℤResult quality: 50% values known / values provided: 50%distinct values known / distinct values provided: 55%
Values
[1] => ([],1)
=> [1]
=> []
=> ? = 0
[1,1] => ([(0,1)],2)
=> [2]
=> []
=> ? = 0
[2] => ([],2)
=> [1,1]
=> [1]
=> 0
[1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {-1,0}
[1,2] => ([(1,2)],3)
=> [2,1]
=> [1]
=> 0
[2,1] => ([(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {-1,0}
[3] => ([],3)
=> [1,1,1]
=> [1,1]
=> 1
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {-2,-1,0,0}
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {-2,-1,0,0}
[1,3] => ([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 1
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {-2,-1,0,0}
[2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {-2,-1,0,0}
[4] => ([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 2
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {-3,-2,-1,-1,-1,0,0,1}
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {-3,-2,-1,-1,-1,0,0,1}
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {-3,-2,-1,-1,-1,0,0,1}
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {-3,-2,-1,-1,-1,0,0,1}
[1,4] => ([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 2
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {-3,-2,-1,-1,-1,0,0,1}
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {-3,-2,-1,-1,-1,0,0,1}
[2,3] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {-3,-2,-1,-1,-1,0,0,1}
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {-3,-2,-1,-1,-1,0,0,1}
[5] => ([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 3
[1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2}
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2}
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2}
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2}
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 2
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2}
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2}
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2}
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2}
[1,5] => ([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 3
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2}
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2}
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2}
[2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
[2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2}
[2,4] => ([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 2
[3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2}
[3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
[3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2}
[3,3] => ([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2}
[4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,-1,0,0,0,0,1,2}
[6] => ([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 4
[1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
[1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
[1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 2
[1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
[1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
[1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 3
[1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
[1,2,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
[1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 2
[1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
[1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
[1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[1,6] => ([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> 4
[2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
[2,1,1,2,1] => ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [7]
=> []
=> ? ∊ {-5,-4,-3,-3,-3,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,1,1,1,2,3}
[2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
Description
The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. In particular, partitions with statistic $0$ are wide partitions.
Mp00180: Integer compositions to ribbonSkew partitions
Mp00183: Skew partitions inner shapeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000478: Integer partitions ⟶ ℤResult quality: 35% values known / values provided: 35%distinct values known / distinct values provided: 36%
Values
[1] => [[1],[]]
=> []
=> ?
=> ? = 0
[1,1] => [[1,1],[]]
=> []
=> ?
=> ? ∊ {0,0}
[2] => [[2],[]]
=> []
=> ?
=> ? ∊ {0,0}
[1,1,1] => [[1,1,1],[]]
=> []
=> ?
=> ? ∊ {-1,0,0,1}
[1,2] => [[2,1],[]]
=> []
=> ?
=> ? ∊ {-1,0,0,1}
[2,1] => [[2,2],[1]]
=> [1]
=> []
=> ? ∊ {-1,0,0,1}
[3] => [[3],[]]
=> []
=> ?
=> ? ∊ {-1,0,0,1}
[1,1,1,1] => [[1,1,1,1],[]]
=> []
=> ?
=> ? ∊ {-2,-1,0,0,0,0,1,2}
[1,1,2] => [[2,1,1],[]]
=> []
=> ?
=> ? ∊ {-2,-1,0,0,0,0,1,2}
[1,2,1] => [[2,2,1],[1]]
=> [1]
=> []
=> ? ∊ {-2,-1,0,0,0,0,1,2}
[1,3] => [[3,1],[]]
=> []
=> ?
=> ? ∊ {-2,-1,0,0,0,0,1,2}
[2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> [1]
=> ? ∊ {-2,-1,0,0,0,0,1,2}
[2,2] => [[3,2],[1]]
=> [1]
=> []
=> ? ∊ {-2,-1,0,0,0,0,1,2}
[3,1] => [[3,3],[2]]
=> [2]
=> []
=> ? ∊ {-2,-1,0,0,0,0,1,2}
[4] => [[4],[]]
=> []
=> ?
=> ? ∊ {-2,-1,0,0,0,0,1,2}
[1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ?
=> ? ∊ {-3,-2,-1,-1,-1,0,0,0,0,0,1,1,2,3}
[1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ?
=> ? ∊ {-3,-2,-1,-1,-1,0,0,0,0,0,1,1,2,3}
[1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> []
=> ? ∊ {-3,-2,-1,-1,-1,0,0,0,0,0,1,1,2,3}
[1,1,3] => [[3,1,1],[]]
=> []
=> ?
=> ? ∊ {-3,-2,-1,-1,-1,0,0,0,0,0,1,1,2,3}
[1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> [1]
=> ? ∊ {-3,-2,-1,-1,-1,0,0,0,0,0,1,1,2,3}
[1,2,2] => [[3,2,1],[1]]
=> [1]
=> []
=> ? ∊ {-3,-2,-1,-1,-1,0,0,0,0,0,1,1,2,3}
[1,3,1] => [[3,3,1],[2]]
=> [2]
=> []
=> ? ∊ {-3,-2,-1,-1,-1,0,0,0,0,0,1,1,2,3}
[1,4] => [[4,1],[]]
=> []
=> ?
=> ? ∊ {-3,-2,-1,-1,-1,0,0,0,0,0,1,1,2,3}
[2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 0
[2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> [1]
=> ? ∊ {-3,-2,-1,-1,-1,0,0,0,0,0,1,1,2,3}
[2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> [1]
=> ? ∊ {-3,-2,-1,-1,-1,0,0,0,0,0,1,1,2,3}
[2,3] => [[4,2],[1]]
=> [1]
=> []
=> ? ∊ {-3,-2,-1,-1,-1,0,0,0,0,0,1,1,2,3}
[3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> [2]
=> 1
[3,2] => [[4,3],[2]]
=> [2]
=> []
=> ? ∊ {-3,-2,-1,-1,-1,0,0,0,0,0,1,1,2,3}
[4,1] => [[4,4],[3]]
=> [3]
=> []
=> ? ∊ {-3,-2,-1,-1,-1,0,0,0,0,0,1,1,2,3}
[5] => [[5],[]]
=> []
=> ?
=> ? ∊ {-3,-2,-1,-1,-1,0,0,0,0,0,1,1,2,3}
[1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ?
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,0,0,0,0,0,0,0,1,1,2,2,3,4}
[1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ?
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,0,0,0,0,0,0,0,1,1,2,2,3,4}
[1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> [1]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,0,0,0,0,0,0,0,1,1,2,2,3,4}
[1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ?
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,0,0,0,0,0,0,0,1,1,2,2,3,4}
[1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> [1]
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,0,0,0,0,0,0,0,1,1,2,2,3,4}
[1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,0,0,0,0,0,0,0,1,1,2,2,3,4}
[1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,0,0,0,0,0,0,0,1,1,2,2,3,4}
[1,1,4] => [[4,1,1],[]]
=> []
=> ?
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,0,0,0,0,0,0,0,1,1,2,2,3,4}
[1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 0
[1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> [1]
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,0,0,0,0,0,0,0,1,1,2,2,3,4}
[1,2,2,1] => [[3,3,2,1],[2,1]]
=> [2,1]
=> [1]
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,0,0,0,0,0,0,0,1,1,2,2,3,4}
[1,2,3] => [[4,2,1],[1]]
=> [1]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,0,0,0,0,0,0,0,1,1,2,2,3,4}
[1,3,1,1] => [[3,3,3,1],[2,2]]
=> [2,2]
=> [2]
=> 1
[1,3,2] => [[4,3,1],[2]]
=> [2]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,0,0,0,0,0,0,0,1,1,2,2,3,4}
[1,4,1] => [[4,4,1],[3]]
=> [3]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,0,0,0,0,0,0,0,1,1,2,2,3,4}
[1,5] => [[5,1],[]]
=> []
=> ?
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,0,0,0,0,0,0,0,1,1,2,2,3,4}
[2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[2,1,1,2] => [[3,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 0
[2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> [2,1,1]
=> [1,1]
=> 0
[2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> [1]
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,0,0,0,0,0,0,0,1,1,2,2,3,4}
[2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> [2,2,1]
=> [2,1]
=> 0
[2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> [1]
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,0,0,0,0,0,0,0,1,1,2,2,3,4}
[2,3,1] => [[4,4,2],[3,1]]
=> [3,1]
=> [1]
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,0,0,0,0,0,0,0,1,1,2,2,3,4}
[2,4] => [[5,2],[1]]
=> [1]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,0,0,0,0,0,0,0,1,1,2,2,3,4}
[3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> [2,2]
=> -1
[3,1,2] => [[4,3,3],[2,2]]
=> [2,2]
=> [2]
=> 1
[3,2,1] => [[4,4,3],[3,2]]
=> [3,2]
=> [2]
=> 1
[3,3] => [[5,3],[2]]
=> [2]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,0,0,0,0,0,0,0,1,1,2,2,3,4}
[4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> [3]
=> 2
[4,2] => [[5,4],[3]]
=> [3]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,0,0,0,0,0,0,0,1,1,2,2,3,4}
[5,1] => [[5,5],[4]]
=> [4]
=> []
=> ? ∊ {-4,-3,-2,-2,-2,-1,-1,-1,-1,0,0,0,0,0,0,0,1,1,2,2,3,4}
[1,1,2,1,1,1] => [[2,2,2,2,1,1],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 0
[1,1,3,1,1] => [[3,3,3,1,1],[2,2]]
=> [2,2]
=> [2]
=> 1
[1,2,1,1,1,1] => [[2,2,2,2,2,1],[1,1,1,1]]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[1,2,1,1,2] => [[3,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 0
[1,2,1,2,1] => [[3,3,2,2,1],[2,1,1]]
=> [2,1,1]
=> [1,1]
=> 0
[1,2,2,1,1] => [[3,3,3,2,1],[2,2,1]]
=> [2,2,1]
=> [2,1]
=> 0
[1,3,1,1,1] => [[3,3,3,3,1],[2,2,2]]
=> [2,2,2]
=> [2,2]
=> -1
[1,3,1,2] => [[4,3,3,1],[2,2]]
=> [2,2]
=> [2]
=> 1
[1,3,2,1] => [[4,4,3,1],[3,2]]
=> [3,2]
=> [2]
=> 1
[1,4,1,1] => [[4,4,4,1],[3,3]]
=> [3,3]
=> [3]
=> 2
[2,1,1,1,1,1] => [[2,2,2,2,2,2],[1,1,1,1,1]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[2,1,1,1,2] => [[3,2,2,2,2],[1,1,1,1]]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[2,1,1,2,1] => [[3,3,2,2,2],[2,1,1,1]]
=> [2,1,1,1]
=> [1,1,1]
=> 0
[2,1,1,3] => [[4,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 0
[2,1,2,1,1] => [[3,3,3,2,2],[2,2,1,1]]
=> [2,2,1,1]
=> [2,1,1]
=> 0
[2,1,2,2] => [[4,3,2,2],[2,1,1]]
=> [2,1,1]
=> [1,1]
=> 0
[2,1,3,1] => [[4,4,2,2],[3,1,1]]
=> [3,1,1]
=> [1,1]
=> 0
[2,2,1,1,1] => [[3,3,3,3,2],[2,2,2,1]]
=> [2,2,2,1]
=> [2,2,1]
=> 0
[2,2,1,2] => [[4,3,3,2],[2,2,1]]
=> [2,2,1]
=> [2,1]
=> 0
[2,2,2,1] => [[4,4,3,2],[3,2,1]]
=> [3,2,1]
=> [2,1]
=> 0
[2,3,1,1] => [[4,4,4,2],[3,3,1]]
=> [3,3,1]
=> [3,1]
=> 1
[3,1,1,1,1] => [[3,3,3,3,3],[2,2,2,2]]
=> [2,2,2,2]
=> [2,2,2]
=> 1
[3,1,1,2] => [[4,3,3,3],[2,2,2]]
=> [2,2,2]
=> [2,2]
=> -1
[3,1,2,1] => [[4,4,3,3],[3,2,2]]
=> [3,2,2]
=> [2,2]
=> -1
[3,1,3] => [[5,3,3],[2,2]]
=> [2,2]
=> [2]
=> 1
[3,2,1,1] => [[4,4,4,3],[3,3,2]]
=> [3,3,2]
=> [3,2]
=> 0
[3,2,2] => [[5,4,3],[3,2]]
=> [3,2]
=> [2]
=> 1
[3,3,1] => [[5,5,3],[4,2]]
=> [4,2]
=> [2]
=> 1
[4,1,1,1] => [[4,4,4,4],[3,3,3]]
=> [3,3,3]
=> [3,3]
=> 0
[4,1,2] => [[5,4,4],[3,3]]
=> [3,3]
=> [3]
=> 2
[4,2,1] => [[5,5,4],[4,3]]
=> [4,3]
=> [3]
=> 2
[5,1,1] => [[5,5,5],[4,4]]
=> [4,4]
=> [4]
=> 2
Description
Another weight of a partition according to Alladi. According to Theorem 3.4 (Alladi 2012) in [1] $$ \sum_{\pi\in GG_1(r)} w_1(\pi) $$ equals the number of partitions of $r$ whose odd parts are all distinct. $GG_1(r)$ is the set of partitions of $r$ where consecutive entries differ by at least $2$, and consecutive even entries differ by at least $4$.
The following 31 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St000929The constant term of the character polynomial of an integer partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St000940The number of characters of the symmetric group whose value on the partition is zero. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St001280The number of parts of an integer partition that are at least two. St001392The largest nonnegative integer which is not a part and is smaller than the largest part of the partition. St001440The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition. St001525The number of symmetric hooks on the diagonal of a partition. St001587Half of the largest even part of an integer partition. St001657The number of twos in an integer partition. St001912The length of the preperiod in Bulgarian solitaire corresponding to an integer partition. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St001939The number of parts that are equal to their multiplicity in the integer partition. St001961The sum of the greatest common divisors of all pairs of parts. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St000477The weight of a partition according to Alladi. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000681The Grundy value of Chomp on Ferrers diagrams. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000928The sum of the coefficients of the character polynomial of an integer partition. St000934The 2-degree of an integer partition. St000936The number of even values of the symmetric group character corresponding to the partition. St000941The number of characters of the symmetric group whose value on the partition is even. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St000455The second largest eigenvalue of a graph if it is integral. St001651The Frankl number of a lattice. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons.