searching the database
Your data matches 102 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000095
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000095: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000095: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => ([],1)
=> 0
[1,1] => ([(0,1)],2)
=> 0
[2] => ([],2)
=> 0
[1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[1,2] => ([(1,2)],3)
=> 0
[2,1] => ([(0,2),(1,2)],3)
=> 0
[3] => ([],3)
=> 0
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 1
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,3] => ([(2,3)],4)
=> 0
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[2,2] => ([(1,3),(2,3)],4)
=> 0
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0
[4] => ([],4)
=> 0
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 10
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 1
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,4] => ([(3,4)],5)
=> 0
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 7
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,3] => ([(2,4),(3,4)],5)
=> 0
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
[5] => ([],5)
=> 0
[1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 20
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 10
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 10
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 11
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 1
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 13
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,5] => ([(4,5)],6)
=> 0
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 16
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 7
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 7
Description
The number of triangles of a graph.
A triangle $T$ of a graph $G$ is a collection of three vertices $\{u,v,w\} \in G$ such that they form $K_3$, the complete graph on three vertices.
Matching statistic: St001317
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001317: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St001317: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => ([],1)
=> 0
[1,1] => ([(0,1)],2)
=> 0
[2] => ([],2)
=> 0
[1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[1,2] => ([(1,2)],3)
=> 0
[2,1] => ([(0,2),(1,2)],3)
=> 0
[3] => ([],3)
=> 0
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 1
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,3] => ([(2,3)],4)
=> 0
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[2,2] => ([(1,3),(2,3)],4)
=> 0
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0
[4] => ([],4)
=> 0
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 10
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 1
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,4] => ([(3,4)],5)
=> 0
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 7
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,3] => ([(2,4),(3,4)],5)
=> 0
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
[5] => ([],5)
=> 0
[1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 20
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 10
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 10
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 11
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 1
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 13
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,5] => ([(4,5)],6)
=> 0
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 16
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 7
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 7
Description
The minimal number of occurrences of the forest-pattern in a linear ordering of the vertices of the graph.
A graph is a forest if and only if in any linear ordering of its vertices, there are no three vertices $a < b < c$ such that $(a,c)$ and $(b,c)$ are edges. This statistic is the minimal number of occurrences of this pattern, in the set of all linear orderings of the vertices.
Matching statistic: St001319
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001319: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St001319: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => ([],1)
=> 0
[1,1] => ([(0,1)],2)
=> 0
[2] => ([],2)
=> 0
[1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[1,2] => ([(1,2)],3)
=> 0
[2,1] => ([(0,2),(1,2)],3)
=> 0
[3] => ([],3)
=> 0
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 1
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,3] => ([(2,3)],4)
=> 0
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[2,2] => ([(1,3),(2,3)],4)
=> 0
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0
[4] => ([],4)
=> 0
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 10
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 1
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,4] => ([(3,4)],5)
=> 0
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 7
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,3] => ([(2,4),(3,4)],5)
=> 0
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
[5] => ([],5)
=> 0
[1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 20
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 10
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 10
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 11
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 1
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 13
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,5] => ([(4,5)],6)
=> 0
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 16
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 7
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 7
Description
The minimal number of occurrences of the star-pattern in a linear ordering of the vertices of the graph.
A graph is a disjoint union of isolated vertices and a star if and only if in any linear ordering of its vertices, there are no three vertices $a < b < c$ such that $(a,b)$ is an edge. This statistic is the minimal number of occurrences of this pattern, in the set of all linear orderings of the vertices.
Matching statistic: St001328
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001328: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St001328: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => ([],1)
=> 0
[1,1] => ([(0,1)],2)
=> 0
[2] => ([],2)
=> 0
[1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[1,2] => ([(1,2)],3)
=> 0
[2,1] => ([(0,2),(1,2)],3)
=> 0
[3] => ([],3)
=> 0
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 1
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,3] => ([(2,3)],4)
=> 0
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[2,2] => ([(1,3),(2,3)],4)
=> 0
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0
[4] => ([],4)
=> 0
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 10
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 1
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,4] => ([(3,4)],5)
=> 0
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 7
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,3] => ([(2,4),(3,4)],5)
=> 0
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
[5] => ([],5)
=> 0
[1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 20
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 10
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 10
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 11
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 1
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 13
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,5] => ([(4,5)],6)
=> 0
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 16
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 7
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 7
Description
The minimal number of occurrences of the bipartite-pattern in a linear ordering of the vertices of the graph.
A graph is bipartite if and only if in any linear ordering of its vertices, there are no three vertices $a < b < c$ such that $(a,b)$ and $(b,c)$ are edges. This statistic is the minimal number of occurrences of this pattern, in the set of all linear orderings of the vertices.
Matching statistic: St000002
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00067: Permutations —Foata bijection⟶ Permutations
St000002: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00067: Permutations —Foata bijection⟶ Permutations
St000002: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1] => [1] => 0
[1,1] => [1,0,1,0]
=> [1,2] => [1,2] => 0
[2] => [1,1,0,0]
=> [2,1] => [2,1] => 0
[1,1,1] => [1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => 1
[1,2] => [1,0,1,1,0,0]
=> [1,3,2] => [3,1,2] => 0
[2,1] => [1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => 0
[3] => [1,1,1,0,0,0]
=> [3,2,1] => [3,2,1] => 0
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => 4
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [4,1,2,3] => 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [3,1,2,4] => 1
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [4,3,1,2] => 0
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => 2
[2,2] => [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [4,2,1,3] => 0
[3,1] => [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,2,1,4] => 0
[4] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [4,3,2,1] => 0
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => 10
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [5,1,2,3,4] => 4
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [4,1,2,3,5] => 4
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [5,4,1,2,3] => 1
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [3,1,2,4,5] => 5
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [5,3,1,2,4] => 1
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [4,3,1,2,5] => 1
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [5,4,3,1,2] => 0
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => 7
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [5,2,1,3,4] => 2
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [4,2,1,3,5] => 2
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [5,4,2,1,3] => 0
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [3,2,1,4,5] => 3
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => [5,3,2,1,4] => 0
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => [4,3,2,1,5] => 0
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => [5,4,3,2,1] => 0
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => 20
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => [6,1,2,3,4,5] => 10
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => [5,1,2,3,4,6] => 10
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,5,4] => [6,5,1,2,3,4] => 4
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => [4,1,2,3,5,6] => 11
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => [6,4,1,2,3,5] => 4
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,5,4,3,6] => [5,4,1,2,3,6] => 4
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,6,5,4,3] => [6,5,4,1,2,3] => 1
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6] => [3,1,2,4,5,6] => 13
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,4,6,5] => [6,3,1,2,4,5] => 5
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,6] => [5,3,1,2,4,6] => 5
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,6,5,4] => [6,5,3,1,2,4] => 1
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,4,3,2,5,6] => [4,3,1,2,5,6] => 6
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,4,3,2,6,5] => [6,4,3,1,2,5] => 1
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,5,4,3,2,6] => [5,4,3,1,2,6] => 1
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,5,4,3,2] => [6,5,4,3,1,2] => 0
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6] => [2,1,3,4,5,6] => 16
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,3,4,6,5] => [6,2,1,3,4,5] => 7
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,3,5,4,6] => [5,2,1,3,4,6] => 7
Description
The number of occurrences of the pattern 123 in a permutation.
Matching statistic: St000119
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00067: Permutations —Foata bijection⟶ Permutations
St000119: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00067: Permutations —Foata bijection⟶ Permutations
St000119: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1] => [1] => 0
[1,1] => [1,0,1,0]
=> [1,2] => [1,2] => 0
[2] => [1,1,0,0]
=> [2,1] => [2,1] => 0
[1,1,1] => [1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => 0
[1,2] => [1,0,1,1,0,0]
=> [1,3,2] => [3,1,2] => 0
[2,1] => [1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => 0
[3] => [1,1,1,0,0,0]
=> [3,2,1] => [3,2,1] => 1
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => 0
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [4,1,2,3] => 0
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [3,1,2,4] => 0
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [4,3,1,2] => 2
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => 0
[2,2] => [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [4,2,1,3] => 1
[3,1] => [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,2,1,4] => 1
[4] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [4,3,2,1] => 4
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [5,1,2,3,4] => 0
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [4,1,2,3,5] => 0
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [5,4,1,2,3] => 3
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [3,1,2,4,5] => 0
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [5,3,1,2,4] => 2
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [4,3,1,2,5] => 2
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [5,4,3,1,2] => 7
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => 0
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [5,2,1,3,4] => 1
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [4,2,1,3,5] => 1
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [5,4,2,1,3] => 5
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [3,2,1,4,5] => 1
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => [5,3,2,1,4] => 4
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => [4,3,2,1,5] => 4
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => [5,4,3,2,1] => 10
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => [6,1,2,3,4,5] => 0
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => [5,1,2,3,4,6] => 0
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,5,4] => [6,5,1,2,3,4] => 4
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => [4,1,2,3,5,6] => 0
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => [6,4,1,2,3,5] => 3
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,5,4,3,6] => [5,4,1,2,3,6] => 3
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,6,5,4,3] => [6,5,4,1,2,3] => 10
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6] => [3,1,2,4,5,6] => 0
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,4,6,5] => [6,3,1,2,4,5] => 2
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,6] => [5,3,1,2,4,6] => 2
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,6,5,4] => [6,5,3,1,2,4] => 8
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,4,3,2,5,6] => [4,3,1,2,5,6] => 2
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,4,3,2,6,5] => [6,4,3,1,2,5] => 7
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,5,4,3,2,6] => [5,4,3,1,2,6] => 7
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,5,4,3,2] => [6,5,4,3,1,2] => 16
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6] => [2,1,3,4,5,6] => 0
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,3,4,6,5] => [6,2,1,3,4,5] => 1
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,3,5,4,6] => [5,2,1,3,4,6] => 1
Description
The number of occurrences of the pattern 321 in a permutation.
Matching statistic: St000185
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
St000185: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
St000185: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1,0]
=> []
=> 0
[1,1] => [1,0,1,0]
=> [1,1,0,0]
=> []
=> 0
[2] => [1,1,0,0]
=> [1,0,1,0]
=> [1]
=> 0
[1,1,1] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> []
=> 0
[1,2] => [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1]
=> 0
[2,1] => [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [2]
=> 0
[3] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [2,1]
=> 1
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> 0
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 0
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 0
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> 1
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> 0
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> 1
[3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [3,2]
=> 2
[4] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 4
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> 0
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> 0
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> 0
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> 1
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> 0
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> 1
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> 2
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> 4
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 0
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> 1
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> 2
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> 4
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> 3
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> 5
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> 7
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 10
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> 0
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> 0
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 0
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [2,1]
=> 1
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 0
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [3,1]
=> 1
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [3,2]
=> 2
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [3,2,1]
=> 4
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 0
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [4,1]
=> 1
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [4,2]
=> 2
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [4,2,1]
=> 4
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,3]
=> 3
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [4,3,1]
=> 5
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [4,3,2]
=> 7
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1]
=> 10
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5]
=> 0
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [5,1]
=> 1
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [5,2]
=> 2
Description
The weighted size of a partition.
Let $\lambda = (\lambda_0\geq\lambda_1 \geq \dots\geq\lambda_m)$ be an integer partition. Then the weighted size of $\lambda$ is
$$\sum_{i=0}^m i \cdot \lambda_i.$$
This is also the sum of the leg lengths of the cells in $\lambda$, or
$$
\sum_i \binom{\lambda^{\prime}_i}{2}
$$
where $\lambda^{\prime}$ is the conjugate partition of $\lambda$.
This is the minimal number of inversions a permutation with the given shape can have, see [1, cor.2.2].
This is also the smallest possible sum of the entries of a semistandard tableau (allowing 0 as a part) of shape $\lambda=(\lambda_0,\lambda_1,\ldots,\lambda_m)$, obtained uniquely by placing $i-1$ in all the cells of the $i$th row of $\lambda$, see [2, eq.7.103].
Matching statistic: St000423
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00067: Permutations —Foata bijection⟶ Permutations
St000423: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00067: Permutations —Foata bijection⟶ Permutations
St000423: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1] => [1] => 0
[1,1] => [1,0,1,0]
=> [1,2] => [1,2] => 0
[2] => [1,1,0,0]
=> [2,1] => [2,1] => 0
[1,1,1] => [1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => 1
[1,2] => [1,0,1,1,0,0]
=> [1,3,2] => [3,1,2] => 0
[2,1] => [1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => 0
[3] => [1,1,1,0,0,0]
=> [3,2,1] => [3,2,1] => 0
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => 4
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [4,1,2,3] => 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [3,1,2,4] => 1
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [4,3,1,2] => 0
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => 2
[2,2] => [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [4,2,1,3] => 0
[3,1] => [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,2,1,4] => 0
[4] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [4,3,2,1] => 0
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => 10
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [5,1,2,3,4] => 4
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [4,1,2,3,5] => 4
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [5,4,1,2,3] => 1
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [3,1,2,4,5] => 5
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [5,3,1,2,4] => 1
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [4,3,1,2,5] => 1
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [5,4,3,1,2] => 0
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => 7
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [5,2,1,3,4] => 2
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [4,2,1,3,5] => 2
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [5,4,2,1,3] => 0
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [3,2,1,4,5] => 3
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => [5,3,2,1,4] => 0
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => [4,3,2,1,5] => 0
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => [5,4,3,2,1] => 0
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => 20
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => [6,1,2,3,4,5] => 10
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => [5,1,2,3,4,6] => 10
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,5,4] => [6,5,1,2,3,4] => 4
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => [4,1,2,3,5,6] => 11
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => [6,4,1,2,3,5] => 4
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,5,4,3,6] => [5,4,1,2,3,6] => 4
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,6,5,4,3] => [6,5,4,1,2,3] => 1
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6] => [3,1,2,4,5,6] => 13
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,4,6,5] => [6,3,1,2,4,5] => 5
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,6] => [5,3,1,2,4,6] => 5
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,6,5,4] => [6,5,3,1,2,4] => 1
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,4,3,2,5,6] => [4,3,1,2,5,6] => 6
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,4,3,2,6,5] => [6,4,3,1,2,5] => 1
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,5,4,3,2,6] => [5,4,3,1,2,6] => 1
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,5,4,3,2] => [6,5,4,3,1,2] => 0
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6] => [2,1,3,4,5,6] => 16
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,3,4,6,5] => [6,2,1,3,4,5] => 7
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,3,5,4,6] => [5,2,1,3,4,6] => 7
Description
The number of occurrences of the pattern 123 or of the pattern 132 in a permutation.
Matching statistic: St000427
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00067: Permutations —Foata bijection⟶ Permutations
St000427: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00067: Permutations —Foata bijection⟶ Permutations
St000427: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1] => [1] => 0
[1,1] => [1,0,1,0]
=> [1,2] => [1,2] => 0
[2] => [1,1,0,0]
=> [2,1] => [2,1] => 0
[1,1,1] => [1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => 1
[1,2] => [1,0,1,1,0,0]
=> [1,3,2] => [3,1,2] => 0
[2,1] => [1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => 0
[3] => [1,1,1,0,0,0]
=> [3,2,1] => [3,2,1] => 0
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => 4
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [4,1,2,3] => 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [3,1,2,4] => 1
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [4,3,1,2] => 0
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => 2
[2,2] => [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [4,2,1,3] => 0
[3,1] => [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,2,1,4] => 0
[4] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [4,3,2,1] => 0
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => 10
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [5,1,2,3,4] => 4
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [4,1,2,3,5] => 4
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [5,4,1,2,3] => 1
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [3,1,2,4,5] => 5
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [5,3,1,2,4] => 1
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [4,3,1,2,5] => 1
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [5,4,3,1,2] => 0
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => 7
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [5,2,1,3,4] => 2
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [4,2,1,3,5] => 2
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [5,4,2,1,3] => 0
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [3,2,1,4,5] => 3
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => [5,3,2,1,4] => 0
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => [4,3,2,1,5] => 0
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => [5,4,3,2,1] => 0
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => 20
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => [6,1,2,3,4,5] => 10
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => [5,1,2,3,4,6] => 10
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,5,4] => [6,5,1,2,3,4] => 4
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => [4,1,2,3,5,6] => 11
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => [6,4,1,2,3,5] => 4
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,5,4,3,6] => [5,4,1,2,3,6] => 4
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,6,5,4,3] => [6,5,4,1,2,3] => 1
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6] => [3,1,2,4,5,6] => 13
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,4,6,5] => [6,3,1,2,4,5] => 5
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,6] => [5,3,1,2,4,6] => 5
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,6,5,4] => [6,5,3,1,2,4] => 1
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,4,3,2,5,6] => [4,3,1,2,5,6] => 6
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,4,3,2,6,5] => [6,4,3,1,2,5] => 1
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,5,4,3,2,6] => [5,4,3,1,2,6] => 1
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,5,4,3,2] => [6,5,4,3,1,2] => 0
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6] => [2,1,3,4,5,6] => 16
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,3,4,6,5] => [6,2,1,3,4,5] => 7
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,3,5,4,6] => [5,2,1,3,4,6] => 7
Description
The number of occurrences of the pattern 123 or of the pattern 231 in a permutation.
Matching statistic: St000428
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00067: Permutations —Foata bijection⟶ Permutations
St000428: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00067: Permutations —Foata bijection⟶ Permutations
St000428: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1] => [1] => 0
[1,1] => [1,0,1,0]
=> [2,1] => [2,1] => 0
[2] => [1,1,0,0]
=> [1,2] => [1,2] => 0
[1,1,1] => [1,0,1,0,1,0]
=> [3,2,1] => [3,2,1] => 0
[1,2] => [1,0,1,1,0,0]
=> [2,3,1] => [2,3,1] => 0
[2,1] => [1,1,0,0,1,0]
=> [3,1,2] => [1,3,2] => 0
[3] => [1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => 1
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [4,3,2,1] => 0
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [3,4,2,1] => 0
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [2,4,3,1] => 0
[1,3] => [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [2,3,4,1] => 1
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [1,4,3,2] => 0
[2,2] => [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [1,3,4,2] => 1
[3,1] => [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [1,2,4,3] => 2
[4] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => 4
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [5,4,3,2,1] => 0
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [4,5,3,2,1] => 0
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [3,5,4,2,1] => 0
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [3,4,5,2,1] => 1
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [2,5,4,3,1] => 0
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [2,4,5,3,1] => 1
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [2,3,5,4,1] => 2
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [2,3,4,5,1] => 4
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [1,5,4,3,2] => 0
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [1,4,5,3,2] => 1
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [1,3,5,4,2] => 2
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [1,3,4,5,2] => 4
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => [1,2,5,4,3] => 3
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => [1,2,4,5,3] => 5
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => [1,2,3,5,4] => 7
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => 10
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1] => [6,5,4,3,2,1] => 0
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [5,6,4,3,2,1] => [5,6,4,3,2,1] => 0
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [6,4,5,3,2,1] => [4,6,5,3,2,1] => 0
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [4,5,6,3,2,1] => [4,5,6,3,2,1] => 1
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [6,5,3,4,2,1] => [3,6,5,4,2,1] => 0
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [5,6,3,4,2,1] => [3,5,6,4,2,1] => 1
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [6,3,4,5,2,1] => [3,4,6,5,2,1] => 2
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [3,4,5,6,2,1] => [3,4,5,6,2,1] => 4
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,3,1] => [2,6,5,4,3,1] => 0
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [5,6,4,2,3,1] => [2,5,6,4,3,1] => 1
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [6,4,5,2,3,1] => [2,4,6,5,3,1] => 2
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [4,5,6,2,3,1] => [2,4,5,6,3,1] => 4
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [6,5,2,3,4,1] => [2,3,6,5,4,1] => 3
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [5,6,2,3,4,1] => [2,3,5,6,4,1] => 5
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [6,2,3,4,5,1] => [2,3,4,6,5,1] => 7
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [2,3,4,5,6,1] => 10
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,1,2] => [1,6,5,4,3,2] => 0
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [5,6,4,3,1,2] => [1,5,6,4,3,2] => 1
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [6,4,5,3,1,2] => [1,4,6,5,3,2] => 2
Description
The number of occurrences of the pattern 123 or of the pattern 213 in a permutation.
The following 92 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000430The number of occurrences of the pattern 123 or of the pattern 312 in a permutation. St000431The number of occurrences of the pattern 213 or of the pattern 321 in a permutation. St000433The number of occurrences of the pattern 132 or of the pattern 321 in a permutation. St001411The number of patterns 321 or 3412 in a permutation. St000580The number of occurrences of the pattern {{1},{2},{3}} such that 2 is minimal, 3 is maximal. St000593The number of occurrences of the pattern {{1},{2},{3}} such that 1,2 are minimal. St000603The number of occurrences of the pattern {{1},{2},{3}} such that 2,3 are minimal. St000604The number of occurrences of the pattern {{1},{2},{3}} such that 3 is minimal, 2 is maximal. St000436The number of occurrences of the pattern 231 or of the pattern 321 in a permutation. St000437The number of occurrences of the pattern 312 or of the pattern 321 in a permutation. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000422The energy of a graph, if it is integral. St000454The largest eigenvalue of a graph if it is integral. St001803The maximal overlap of the cylindrical tableau associated with a tableau. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. St001845The number of join irreducibles minus the rank of a lattice. St001881The number of factors of a lattice as a Cartesian product of lattices. St001651The Frankl number of a lattice. St001621The number of atoms of a lattice. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St000681The Grundy value of Chomp on Ferrers diagrams. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000937The number of positive values of the symmetric group character corresponding to the partition. St000941The number of characters of the symmetric group whose value on the partition is even. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St001384The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains. St001982The number of orbits of the action of a permutation of given cycle type on the set of edges of the complete graph. St000567The sum of the products of all pairs of parts. St000815The number of semistandard Young tableaux of partition weight of given shape. St000929The constant term of the character polynomial of an integer partition. St000934The 2-degree of an integer partition. St001099The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled binary trees. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St001095The number of non-isomorphic posets with precisely one further covering relation. St001942The number of loops of the quiver corresponding to the reduced incidence algebra of a poset. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001722The number of minimal chains with small intervals between a binary word and the top element. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St000091The descent variation of a composition. St000259The diameter of a connected graph. St000260The radius of a connected graph. St000284The Plancherel distribution on integer partitions. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000562The number of internal points of a set partition. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000668The least common multiple of the parts of the partition. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000706The product of the factorials of the multiplicities of an integer partition. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000709The number of occurrences of 14-2-3 or 14-3-2. St000770The major index of an integer partition when read from bottom to top. St000872The number of very big descents of a permutation. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000933The number of multipartitions of sizes given by an integer partition. St000936The number of even values of the symmetric group character corresponding to the partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St000939The number of characters of the symmetric group whose value on the partition is positive. St000940The number of characters of the symmetric group whose value on the partition is zero. St000993The multiplicity of the largest part of an integer partition. St001097The coefficient of the monomial symmetric function indexed by the partition in the formal group law for linear orders. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St001130The number of two successive successions in a permutation. St001470The cyclic holeyness of a permutation. St001551The number of restricted non-inversions between exceedances where the rightmost exceedance is linked. St001568The smallest positive integer that does not appear twice in the partition. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001857The number of edges in the reduced word graph of a signed permutation. St001867The number of alignments of type EN of a signed permutation. St001868The number of alignments of type NE of a signed permutation. St001906Half of the difference between the total displacement and the number of inversions and the reflection length of a permutation. St000243The number of cyclic valleys and cyclic peaks of a permutation. St001344The neighbouring number of a permutation. St001413Half the length of the longest even length palindromic prefix of a binary word. St001896The number of right descents of a signed permutations. St000236The number of cyclical small weak excedances. St000241The number of cyclical small excedances. St000248The number of anti-singletons of a set partition. St000249The number of singletons (St000247) plus the number of antisingletons (St000248) of a set partition. St001964The interval resolution global dimension of a poset. St000302The determinant of the distance matrix of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St000879The number of long braid edges in the graph of braid moves of a permutation. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001645The pebbling number of a connected graph.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!