searching the database
Your data matches 146 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000093
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
[[1,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1],[2]]
=> ([],1)
=> ([],1)
=> 1
[[1,3]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[2,3]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 3
[[3,3]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[[1],[3]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[2],[3]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,1,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,1],[2]]
=> ([],1)
=> ([],1)
=> 1
[[1,2],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1,1,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
[[1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 1
[[1,1,2],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 1
[[1,1,1,1,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
[[2,2,2,2,2]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 3
[[1,1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 1
[[1,1,1,2],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,2,2,2],[2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 1
[[1,1,2],[2,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1,1,1,1,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1,1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,1,1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,1,2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
[[1,2,2,2,2,2]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 3
[[2,2,2,2,2,2]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 4
[[1,1,1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 1
[[1,1,1,1,2],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1,1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,1,2,2,2],[2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,2,2,2,2],[2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
[[1,1,1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 1
[[1,1,1,2],[2,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1,2,2],[2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,1,1],[2,2,2]]
=> ([],1)
=> ([],1)
=> 1
Description
The cardinality of a maximal independent set of vertices of a graph.
An independent set of a graph is a set of pairwise non-adjacent vertices. A maximum independent set is an independent set of maximum cardinality. This statistic is also called the independence number or stability number $\alpha(G)$ of $G$.
Matching statistic: St000388
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Values
[[1,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1],[2]]
=> ([],1)
=> ([],1)
=> 1
[[1,3]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[2,3]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[[3,3]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 3
[[1],[3]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[2],[3]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,1,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,1],[2]]
=> ([],1)
=> ([],1)
=> 1
[[1,2],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1,1,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
[[1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 1
[[1,1,2],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 1
[[1,1,1,1,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
[[2,2,2,2,2]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 3
[[1,1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 1
[[1,1,1,2],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,2,2,2],[2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 1
[[1,1,2],[2,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1,1,1,1,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1,1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,1,1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,1,2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
[[1,2,2,2,2,2]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 3
[[2,2,2,2,2,2]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 4
[[1,1,1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 1
[[1,1,1,1,2],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1,1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,1,2,2,2],[2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,2,2,2,2],[2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
[[1,1,1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 1
[[1,1,1,2],[2,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1,2,2],[2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,1,1],[2,2,2]]
=> ([],1)
=> ([],1)
=> 1
Description
The number of orbits of vertices of a graph under automorphisms.
Matching statistic: St000698
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00214: Semistandard tableaux —subcrystal⟶ Posets
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000698: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000698: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1,2]]
=> ([(0,1)],2)
=> [3]
=> 1
[[2,2]]
=> ([(0,2),(2,1)],3)
=> [4]
=> 2
[[1],[2]]
=> ([],1)
=> [2]
=> 1
[[1,3]]
=> ([(0,2),(2,1)],3)
=> [4]
=> 2
[[2,3]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [5,2]
=> 3
[[3,3]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [6,2]
=> 4
[[1],[3]]
=> ([(0,1)],2)
=> [3]
=> 1
[[2],[3]]
=> ([(0,2),(2,1)],3)
=> [4]
=> 2
[[1,1,2]]
=> ([(0,1)],2)
=> [3]
=> 1
[[1,2,2]]
=> ([(0,2),(2,1)],3)
=> [4]
=> 2
[[2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> [5]
=> 2
[[1,1],[2]]
=> ([],1)
=> [2]
=> 1
[[1,2],[2]]
=> ([(0,1)],2)
=> [3]
=> 1
[[1,1,1,2]]
=> ([(0,1)],2)
=> [3]
=> 1
[[1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> [4]
=> 2
[[1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> [5]
=> 2
[[2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 3
[[1,1,1],[2]]
=> ([],1)
=> [2]
=> 1
[[1,1,2],[2]]
=> ([(0,1)],2)
=> [3]
=> 1
[[1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> [4]
=> 2
[[1,1],[2,2]]
=> ([],1)
=> [2]
=> 1
[[1,1,1,1,2]]
=> ([(0,1)],2)
=> [3]
=> 1
[[1,1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> [4]
=> 2
[[1,1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> [5]
=> 2
[[1,2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 3
[[2,2,2,2,2]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [7]
=> 3
[[1,1,1,1],[2]]
=> ([],1)
=> [2]
=> 1
[[1,1,1,2],[2]]
=> ([(0,1)],2)
=> [3]
=> 1
[[1,1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> [4]
=> 2
[[1,2,2,2],[2]]
=> ([(0,3),(2,1),(3,2)],4)
=> [5]
=> 2
[[1,1,1],[2,2]]
=> ([],1)
=> [2]
=> 1
[[1,1,2],[2,2]]
=> ([(0,1)],2)
=> [3]
=> 1
[[1,1,1,1,1,2]]
=> ([(0,1)],2)
=> [3]
=> 1
[[1,1,1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> [4]
=> 2
[[1,1,1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> [5]
=> 2
[[1,1,2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 3
[[1,2,2,2,2,2]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [7]
=> 3
[[2,2,2,2,2,2]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [8]
=> 4
[[1,1,1,1,1],[2]]
=> ([],1)
=> [2]
=> 1
[[1,1,1,1,2],[2]]
=> ([(0,1)],2)
=> [3]
=> 1
[[1,1,1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> [4]
=> 2
[[1,1,2,2,2],[2]]
=> ([(0,3),(2,1),(3,2)],4)
=> [5]
=> 2
[[1,2,2,2,2],[2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 3
[[1,1,1,1],[2,2]]
=> ([],1)
=> [2]
=> 1
[[1,1,1,2],[2,2]]
=> ([(0,1)],2)
=> [3]
=> 1
[[1,1,2,2],[2,2]]
=> ([(0,2),(2,1)],3)
=> [4]
=> 2
[[1,1,1],[2,2,2]]
=> ([],1)
=> [2]
=> 1
Description
The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core.
For any positive integer $k$, one associates a $k$-core to a partition by repeatedly removing all rim hooks of size $k$.
This statistic counts the $2$-rim hooks that are removed in this process to obtain a $2$-core.
Matching statistic: St000786
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
[[1,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1],[2]]
=> ([],1)
=> ([],1)
=> 1
[[1,3]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[2,3]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 3
[[3,3]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[[1],[3]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[2],[3]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,1,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,1],[2]]
=> ([],1)
=> ([],1)
=> 1
[[1,2],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1,1,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
[[1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 1
[[1,1,2],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 1
[[1,1,1,1,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
[[2,2,2,2,2]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 3
[[1,1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 1
[[1,1,1,2],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,2,2,2],[2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 1
[[1,1,2],[2,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1,1,1,1,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1,1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,1,1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,1,2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
[[1,2,2,2,2,2]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 3
[[2,2,2,2,2,2]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 4
[[1,1,1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 1
[[1,1,1,1,2],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1,1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,1,2,2,2],[2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,2,2,2,2],[2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
[[1,1,1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 1
[[1,1,1,2],[2,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1,2,2],[2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,1,1],[2,2,2]]
=> ([],1)
=> ([],1)
=> 1
Description
The maximal number of occurrences of a colour in a proper colouring of a graph.
To any proper colouring with the minimal number of colours possible we associate the integer partition recording how often each colour is used. This statistic records the largest part occurring in any of these partitions.
For example, the graph on six vertices consisting of a square together with two attached triangles - ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) in the list of values - is three-colourable and admits two colouring schemes, $[2,2,2]$ and $[3,2,1]$. Therefore, the statistic on this graph is $3$.
Matching statistic: St001286
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
[[1,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1],[2]]
=> ([],1)
=> ([],1)
=> 1
[[1,3]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[2,3]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 3
[[3,3]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[[1],[3]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[2],[3]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,1,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,1],[2]]
=> ([],1)
=> ([],1)
=> 1
[[1,2],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1,1,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
[[1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 1
[[1,1,2],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 1
[[1,1,1,1,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
[[2,2,2,2,2]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 3
[[1,1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 1
[[1,1,1,2],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,2,2,2],[2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 1
[[1,1,2],[2,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1,1,1,1,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1,1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,1,1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,1,2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
[[1,2,2,2,2,2]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 3
[[2,2,2,2,2,2]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 4
[[1,1,1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 1
[[1,1,1,1,2],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1,1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,1,2,2,2],[2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,2,2,2,2],[2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
[[1,1,1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 1
[[1,1,1,2],[2,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1,2,2],[2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,1,1],[2,2,2]]
=> ([],1)
=> ([],1)
=> 1
Description
The annihilation number of a graph.
For a graph on $m$ edges with degree sequence $d_1\leq\dots\leq d_n$, this is the largest number $k\leq n$ such that $\sum_{i=1}^k d_i \leq m$.
Matching statistic: St001337
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
[[1,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1],[2]]
=> ([],1)
=> ([],1)
=> 1
[[1,3]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[2,3]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 3
[[3,3]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[[1],[3]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[2],[3]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,1,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,1],[2]]
=> ([],1)
=> ([],1)
=> 1
[[1,2],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1,1,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
[[1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 1
[[1,1,2],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 1
[[1,1,1,1,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
[[2,2,2,2,2]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 3
[[1,1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 1
[[1,1,1,2],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,2,2,2],[2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 1
[[1,1,2],[2,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1,1,1,1,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1,1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,1,1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,1,2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
[[1,2,2,2,2,2]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 3
[[2,2,2,2,2,2]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 4
[[1,1,1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 1
[[1,1,1,1,2],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1,1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,1,2,2,2],[2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,2,2,2,2],[2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
[[1,1,1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 1
[[1,1,1,2],[2,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1,2,2],[2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,1,1],[2,2,2]]
=> ([],1)
=> ([],1)
=> 1
Description
The upper domination number of a graph.
This is the maximum cardinality of a minimal dominating set of $G$.
The smallest graph with different upper irredundance number and upper domination number has eight vertices. It is obtained from the disjoint union of two copies of $K_4$ by joining three of the four vertices of the first with three of the four vertices of the second. For bipartite graphs the two parameters always coincide [1].
Matching statistic: St001338
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
[[1,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1],[2]]
=> ([],1)
=> ([],1)
=> 1
[[1,3]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[2,3]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 3
[[3,3]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[[1],[3]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[2],[3]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,1,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,1],[2]]
=> ([],1)
=> ([],1)
=> 1
[[1,2],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1,1,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
[[1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 1
[[1,1,2],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 1
[[1,1,1,1,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
[[2,2,2,2,2]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 3
[[1,1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 1
[[1,1,1,2],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,2,2,2],[2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 1
[[1,1,2],[2,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1,1,1,1,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1,1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,1,1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,1,2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
[[1,2,2,2,2,2]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 3
[[2,2,2,2,2,2]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 4
[[1,1,1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 1
[[1,1,1,1,2],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1,1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,1,2,2,2],[2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,2,2,2,2],[2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
[[1,1,1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 1
[[1,1,1,2],[2,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1,2,2],[2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[[1,1,1],[2,2,2]]
=> ([],1)
=> ([],1)
=> 1
Description
The upper irredundance number of a graph.
A set $S$ of vertices is irredundant, if there is no vertex in $S$, whose closed neighbourhood is contained in the union of the closed neighbourhoods of the other vertices of $S$.
The upper irredundance number is the largest size of a maximal irredundant set.
The smallest graph with different upper irredundance number and upper domination number [[St001337]] has eight vertices. It is obtained from the disjoint union of two copies of $K_4$ by joining three of the four vertices of the first with three of the four vertices of the second. For bipartite graphs the two parameters always coincide [2].
Matching statistic: St000097
Values
[[1,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
[[2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
[[1],[2]]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
[[1,3]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
[[2,3]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 3
[[3,3]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[1],[3]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
[[2],[3]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
[[1,1,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
[[1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
[[2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,1],[2]]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
[[1,2],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
[[1,1,1,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
[[1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
[[1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
[[1,1,1],[2]]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
[[1,1,2],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
[[1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
[[1,1],[2,2]]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
[[1,1,1,1,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
[[1,1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
[[1,1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
[[2,2,2,2,2]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,1,1,1],[2]]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
[[1,1,1,2],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
[[1,1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
[[1,2,2,2],[2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,1,1],[2,2]]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
[[1,1,2],[2,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
[[1,1,1,1,1,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
[[1,1,1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
[[1,1,1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,1,2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
[[1,2,2,2,2,2]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[2,2,2,2,2,2]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([(0,1),(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
[[1,1,1,1,1],[2]]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
[[1,1,1,1,2],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
[[1,1,1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
[[1,1,2,2,2],[2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,2,2,2,2],[2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
[[1,1,1,1],[2,2]]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
[[1,1,1,2],[2,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
[[1,1,2,2],[2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
[[1,1,1],[2,2,2]]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
Description
The order of the largest clique of the graph.
A clique in a graph $G$ is a subset $U \subseteq V(G)$ such that any pair of vertices in $U$ are adjacent. I.e. the subgraph induced by $U$ is a complete graph.
Matching statistic: St000098
Values
[[1,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
[[2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
[[1],[2]]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
[[1,3]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
[[2,3]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 3
[[3,3]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[1],[3]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
[[2],[3]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
[[1,1,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
[[1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
[[2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,1],[2]]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
[[1,2],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
[[1,1,1,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
[[1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
[[1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
[[1,1,1],[2]]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
[[1,1,2],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
[[1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
[[1,1],[2,2]]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
[[1,1,1,1,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
[[1,1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
[[1,1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
[[2,2,2,2,2]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,1,1,1],[2]]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
[[1,1,1,2],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
[[1,1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
[[1,2,2,2],[2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,1,1],[2,2]]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
[[1,1,2],[2,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
[[1,1,1,1,1,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
[[1,1,1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
[[1,1,1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,1,2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
[[1,2,2,2,2,2]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[2,2,2,2,2,2]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([(0,1),(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
[[1,1,1,1,1],[2]]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
[[1,1,1,1,2],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
[[1,1,1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
[[1,1,2,2,2],[2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,2,2,2,2],[2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
[[1,1,1,1],[2,2]]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
[[1,1,1,2],[2,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
[[1,1,2,2],[2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
[[1,1,1],[2,2,2]]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
Description
The chromatic number of a graph.
The minimal number of colors needed to color the vertices of the graph such that no two vertices which share an edge have the same color.
Matching statistic: St001029
Values
[[1,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
[[2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
[[1],[2]]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
[[1,3]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
[[2,3]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 3
[[3,3]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[1],[3]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
[[2],[3]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
[[1,1,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
[[1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
[[2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,1],[2]]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
[[1,2],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
[[1,1,1,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
[[1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
[[1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
[[1,1,1],[2]]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
[[1,1,2],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
[[1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
[[1,1],[2,2]]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
[[1,1,1,1,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
[[1,1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
[[1,1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
[[2,2,2,2,2]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,1,1,1],[2]]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
[[1,1,1,2],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
[[1,1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
[[1,2,2,2],[2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,1,1],[2,2]]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
[[1,1,2],[2,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
[[1,1,1,1,1,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
[[1,1,1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
[[1,1,1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,1,2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
[[1,2,2,2,2,2]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[2,2,2,2,2,2]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([(0,1),(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
[[1,1,1,1,1],[2]]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
[[1,1,1,1,2],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
[[1,1,1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
[[1,1,2,2,2],[2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[1,2,2,2,2],[2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
[[1,1,1,1],[2,2]]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
[[1,1,1,2],[2,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
[[1,1,2,2],[2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
[[1,1,1],[2,2,2]]
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
Description
The size of the core of a graph.
The core of the graph $G$ is the smallest graph $C$ such that there is a graph homomorphism from $G$ to $C$ and a graph homomorphism from $C$ to $G$.
The following 136 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001494The Alon-Tarsi number of a graph. St000702The number of weak deficiencies of a permutation. St000796The stat' of a permutation. St000798The makl of a permutation. St001644The dimension of a graph. St001330The hat guessing number of a graph. St001624The breadth of a lattice. St000454The largest eigenvalue of a graph if it is integral. St000455The second largest eigenvalue of a graph if it is integral. St000101The cocharge of a semistandard tableau. St000102The charge of a semistandard tableau. St000993The multiplicity of the largest part of an integer partition. St000014The number of parking functions supported by a Dyck path. St000063The number of linear extensions of a certain poset defined for an integer partition. St000108The number of partitions contained in the given partition. St000144The pyramid weight of the Dyck path. St000380Half of the maximal perimeter of a rectangle fitting into the diagram of an integer partition. St000393The number of strictly increasing runs in a binary word. St000395The sum of the heights of the peaks of a Dyck path. St000420The number of Dyck paths that are weakly above a Dyck path. St000439The position of the first down step of a Dyck path. St000529The number of permutations whose descent word is the given binary word. St000532The total number of rook placements on a Ferrers board. St000543The size of the conjugacy class of a binary word. St000626The minimal period of a binary word. St000674The number of hills of a Dyck path. St000685The dominant dimension of the LNakayama algebra associated to a Dyck path. St000759The smallest missing part in an integer partition. St000949Gives the number of generalised tilting modules of the corresponding LNakayama algebra. St000952Gives the number of irreducible factors of the Coxeter polynomial of the Dyck path over the rational numbers. St000968We make a CNakayama algebra out of the LNakayama algebra (corresponding to the Dyck path) $[c_0,c_1,...,c_{n−1}]$ by adding $c_0$ to $c_{n−1}$. St000969We make a CNakayama algebra out of the LNakayama algebra (corresponding to the Dyck path) $[c_0,c_1,...,c_{n-1}]$ by adding $c_0$ to $c_{n-1}$. St000998Number of indecomposable projective modules with injective dimension smaller than or equal to the dominant dimension in the Nakayama algebra corresponding to the Dyck path. St001018Sum of projective dimension of the indecomposable injective modules of the Nakayama algebra corresponding to the Dyck path. St001020Sum of the codominant dimensions of the non-projective indecomposable injective modules of the Nakayama algebra corresponding to the Dyck path. St001023Number of simple modules with projective dimension at most 3 in the Nakayama algebra corresponding to the Dyck path. St001024Maximum of dominant dimensions of the simple modules in the Nakayama algebra corresponding to the Dyck path. St001028Number of simple modules with injective dimension equal to the dominant dimension in the Nakayama algebra corresponding to the Dyck path. St001166Number of indecomposable projective non-injective modules with dominant dimension equal to the global dimension plus the number of indecomposable projective injective modules in the corresponding Nakayama algebra. St001170Number of indecomposable injective modules whose socle has projective dimension at most g-1 when g denotes the global dimension in the corresponding Nakayama algebra. St001180Number of indecomposable injective modules with projective dimension at most 1. St001190Number of simple modules with projective dimension at most 4 in the corresponding Nakayama algebra. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001211The number of simple modules in the corresponding Nakayama algebra that have vanishing second Ext-group with the regular module. St001226The number of integers i such that the radical of the i-th indecomposable projective module has vanishing first extension group with the Jacobson radical J in the corresponding Nakayama algebra. St001237The number of simple modules with injective dimension at most one or dominant dimension at least one. St001240The number of indecomposable modules e_i J^2 that have injective dimension at most one in the corresponding Nakayama algebra St001257The dominant dimension of the double dual of A/J when A is the corresponding Nakayama algebra with Jacobson radical J. St001267The length of the Lyndon factorization of the binary word. St001290The first natural number n such that the tensor product of n copies of D(A) is zero for the corresponding Nakayama algebra A. St001291The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001348The bounce of the parallelogram polyomino associated with the Dyck path. St001400The total number of Littlewood-Richardson tableaux of given shape. St001437The flex of a binary word. St001492The number of simple modules that do not appear in the socle of the regular module or have no nontrivial selfextensions with the regular module in the corresponding Nakayama algebra. St001501The dominant dimension of magnitude 1 Nakayama algebras. St001504The sum of all indegrees of vertices with indegree at least two in the resolution quiver of a Nakayama algebra corresponding to the Dyck path. St001505The number of elements generated by the Dyck path as a map in the full transformation monoid. St001523The degree of symmetry of a Dyck path. St001650The order of Ringel's homological bijection associated to the linear Nakayama algebra corresponding to the Dyck path. St001658The total number of rook placements on a Ferrers board. St001733The number of weak left to right maxima of a Dyck path. St001808The box weight or horizontal decoration of a Dyck path. St001814The number of partitions interlacing the given partition. St000718The largest Laplacian eigenvalue of a graph if it is integral. St001568The smallest positive integer that does not appear twice in the partition. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001060The distinguishing index of a graph. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001118The acyclic chromatic index of a graph. St000464The Schultz index of a connected graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001545The second Elser number of a connected graph. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000456The monochromatic index of a connected graph. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001645The pebbling number of a connected graph. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000284The Plancherel distribution on integer partitions. St000477The weight of a partition according to Alladi. St000478Another weight of a partition according to Alladi. St000509The diagonal index (content) of a partition. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000514The number of invariant simple graphs when acting with a permutation of given cycle type. St000515The number of invariant set partitions when acting with a permutation of given cycle type. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000668The least common multiple of the parts of the partition. St000681The Grundy value of Chomp on Ferrers diagrams. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000706The product of the factorials of the multiplicities of an integer partition. St000708The product of the parts of an integer partition. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000770The major index of an integer partition when read from bottom to top. St000813The number of zero-one matrices with weakly decreasing column sums and row sums given by the partition. St000815The number of semistandard Young tableaux of partition weight of given shape. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000933The number of multipartitions of sizes given by an integer partition. St000934The 2-degree of an integer partition. St000937The number of positive values of the symmetric group character corresponding to the partition. St000939The number of characters of the symmetric group whose value on the partition is positive. St001128The exponens consonantiae of a partition. St000418The number of Dyck paths that are weakly below a Dyck path. St000419The number of Dyck paths that are weakly above the Dyck path, except for the path itself. St000444The length of the maximal rise of a Dyck path. St000476The sum of the semi-lengths of tunnels before a valley of a Dyck path. St000567The sum of the products of all pairs of parts. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000675The number of centered multitunnels of a Dyck path. St000678The number of up steps after the last double rise of a Dyck path. St000707The product of the factorials of the parts. St000735The last entry on the main diagonal of a standard tableau. St000744The length of the path to the largest entry in a standard Young tableau. St000929The constant term of the character polynomial of an integer partition. St000932The number of occurrences of the pattern UDU in a Dyck path. St000947The major index east count of a Dyck path. St000997The even-odd crank of an integer partition. St001032The number of horizontal steps in the bicoloured Motzkin path associated with the Dyck path. St001038The minimal height of a column in the parallelogram polyomino associated with the Dyck path. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St001099The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled binary trees. St001100The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled trees. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001204Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001498The normalised height of a Nakayama algebra with magnitude 1. St001499The number of indecomposable projective-injective modules of a magnitude 1 Nakayama algebra. St001500The global dimension of magnitude 1 Nakayama algebras. St001531Number of partial orders contained in the poset determined by the Dyck path. St001959The product of the heights of the peaks of a Dyck path. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!