Processing math: 4%

Your data matches 16 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00080: Set partitions to permutationPermutations
St000209: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => 0
{{1,2}}
=> [2,1] => 1
{{1},{2}}
=> [1,2] => 0
{{1,2,3}}
=> [2,3,1] => 2
{{1,2},{3}}
=> [2,1,3] => 1
{{1,3},{2}}
=> [3,2,1] => 2
{{1},{2,3}}
=> [1,3,2] => 1
{{1},{2},{3}}
=> [1,2,3] => 0
{{1,2,3,4}}
=> [2,3,4,1] => 3
{{1,2,3},{4}}
=> [2,3,1,4] => 2
{{1,2,4},{3}}
=> [2,4,3,1] => 3
{{1,2},{3,4}}
=> [2,1,4,3] => 1
{{1,2},{3},{4}}
=> [2,1,3,4] => 1
{{1,3,4},{2}}
=> [3,2,4,1] => 3
{{1,3},{2,4}}
=> [3,4,1,2] => 2
{{1,3},{2},{4}}
=> [3,2,1,4] => 2
{{1,4},{2,3}}
=> [4,3,2,1] => 3
{{1},{2,3,4}}
=> [1,3,4,2] => 2
{{1},{2,3},{4}}
=> [1,3,2,4] => 1
{{1,4},{2},{3}}
=> [4,2,3,1] => 3
{{1},{2,4},{3}}
=> [1,4,3,2] => 2
{{1},{2},{3,4}}
=> [1,2,4,3] => 1
{{1},{2},{3},{4}}
=> [1,2,3,4] => 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => 4
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => 3
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => 4
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => 2
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => 2
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => 4
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => 3
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => 3
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => 4
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => 2
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => 1
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => 4
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => 2
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => 1
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => 1
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => 4
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => 3
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => 3
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => 4
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => 3
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => 2
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => 4
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => 3
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => 2
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => 2
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => 4
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => 3
Description
Maximum difference of elements in cycles. Given a cycle C in a permutation, we can compute the maximum distance between elements in the cycle, that is max. The statistic is then the maximum of this value over all cycles in the permutation.
Mp00080: Set partitions to permutationPermutations
Mp00066: Permutations inversePermutations
St000141: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1] => 0
{{1,2}}
=> [2,1] => [2,1] => 1
{{1},{2}}
=> [1,2] => [1,2] => 0
{{1,2,3}}
=> [2,3,1] => [3,1,2] => 2
{{1,2},{3}}
=> [2,1,3] => [2,1,3] => 1
{{1,3},{2}}
=> [3,2,1] => [3,2,1] => 2
{{1},{2,3}}
=> [1,3,2] => [1,3,2] => 1
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => 0
{{1,2,3,4}}
=> [2,3,4,1] => [4,1,2,3] => 3
{{1,2,3},{4}}
=> [2,3,1,4] => [3,1,2,4] => 2
{{1,2,4},{3}}
=> [2,4,3,1] => [4,1,3,2] => 3
{{1,2},{3,4}}
=> [2,1,4,3] => [2,1,4,3] => 1
{{1,2},{3},{4}}
=> [2,1,3,4] => [2,1,3,4] => 1
{{1,3,4},{2}}
=> [3,2,4,1] => [4,2,1,3] => 3
{{1,3},{2,4}}
=> [3,4,1,2] => [3,4,1,2] => 2
{{1,3},{2},{4}}
=> [3,2,1,4] => [3,2,1,4] => 2
{{1,4},{2,3}}
=> [4,3,2,1] => [4,3,2,1] => 3
{{1},{2,3,4}}
=> [1,3,4,2] => [1,4,2,3] => 2
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,3,2,4] => 1
{{1,4},{2},{3}}
=> [4,2,3,1] => [4,2,3,1] => 3
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,4,3,2] => 2
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,4,3] => 1
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [5,1,2,3,4] => 4
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [4,1,2,3,5] => 3
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [5,1,2,4,3] => 4
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [3,1,2,5,4] => 2
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [3,1,2,4,5] => 2
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [5,1,3,2,4] => 4
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [4,1,5,2,3] => 3
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [4,1,3,2,5] => 3
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [5,1,4,3,2] => 4
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [2,1,5,3,4] => 2
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [2,1,4,3,5] => 1
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [5,1,3,4,2] => 4
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [2,1,5,4,3] => 2
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [2,1,3,5,4] => 1
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [2,1,3,4,5] => 1
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [5,2,1,3,4] => 4
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [4,5,1,3,2] => 3
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [4,2,1,3,5] => 3
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [5,4,1,2,3] => 4
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [3,5,1,2,4] => 3
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [3,4,1,2,5] => 2
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [5,2,1,4,3] => 4
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [3,5,1,4,2] => 3
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [3,2,1,5,4] => 2
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [3,2,1,4,5] => 2
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [5,3,2,1,4] => 4
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [4,5,2,1,3] => 3
Description
The maximum drop size of a permutation. The maximum drop size of a permutation \pi of [n]=\{1,2,\ldots, n\} is defined to be the maximum value of i-\pi(i).
Mp00080: Set partitions to permutationPermutations
Mp00087: Permutations inverse first fundamental transformationPermutations
Mp00064: Permutations reversePermutations
St000651: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1] => [1] => 0
{{1,2}}
=> [2,1] => [2,1] => [1,2] => 1
{{1},{2}}
=> [1,2] => [1,2] => [2,1] => 0
{{1,2,3}}
=> [2,3,1] => [3,1,2] => [2,1,3] => 2
{{1,2},{3}}
=> [2,1,3] => [2,1,3] => [3,1,2] => 1
{{1,3},{2}}
=> [3,2,1] => [2,3,1] => [1,3,2] => 2
{{1},{2,3}}
=> [1,3,2] => [1,3,2] => [2,3,1] => 1
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => [3,2,1] => 0
{{1,2,3,4}}
=> [2,3,4,1] => [4,1,2,3] => [3,2,1,4] => 3
{{1,2,3},{4}}
=> [2,3,1,4] => [3,1,2,4] => [4,2,1,3] => 2
{{1,2,4},{3}}
=> [2,4,3,1] => [3,4,1,2] => [2,1,4,3] => 3
{{1,2},{3,4}}
=> [2,1,4,3] => [2,1,4,3] => [3,4,1,2] => 1
{{1,2},{3},{4}}
=> [2,1,3,4] => [2,1,3,4] => [4,3,1,2] => 1
{{1,3,4},{2}}
=> [3,2,4,1] => [2,4,1,3] => [3,1,4,2] => 3
{{1,3},{2,4}}
=> [3,4,1,2] => [3,1,4,2] => [2,4,1,3] => 2
{{1,3},{2},{4}}
=> [3,2,1,4] => [2,3,1,4] => [4,1,3,2] => 2
{{1,4},{2,3}}
=> [4,3,2,1] => [3,2,4,1] => [1,4,2,3] => 3
{{1},{2,3,4}}
=> [1,3,4,2] => [1,4,2,3] => [3,2,4,1] => 2
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,3,2,4] => [4,2,3,1] => 1
{{1,4},{2},{3}}
=> [4,2,3,1] => [2,3,4,1] => [1,4,3,2] => 3
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,3,4,2] => [2,4,3,1] => 2
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,4,3] => [3,4,2,1] => 1
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => [4,3,2,1] => 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [5,1,2,3,4] => [4,3,2,1,5] => 4
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [4,1,2,3,5] => [5,3,2,1,4] => 3
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [4,5,1,2,3] => [3,2,1,5,4] => 4
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [3,1,2,5,4] => [4,5,2,1,3] => 2
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [3,1,2,4,5] => [5,4,2,1,3] => 2
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [3,5,1,2,4] => [4,2,1,5,3] => 4
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [4,1,2,5,3] => [3,5,2,1,4] => 3
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [3,4,1,2,5] => [5,2,1,4,3] => 3
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [4,3,5,1,2] => [2,1,5,3,4] => 4
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [2,1,5,3,4] => [4,3,5,1,2] => 2
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [2,1,4,3,5] => [5,3,4,1,2] => 1
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [3,4,5,1,2] => [2,1,5,4,3] => 4
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [2,1,4,5,3] => [3,5,4,1,2] => 2
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [2,1,3,5,4] => [4,5,3,1,2] => 1
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [2,1,3,4,5] => [5,4,3,1,2] => 1
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [2,5,1,3,4] => [4,3,1,5,2] => 4
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [4,1,3,5,2] => [2,5,3,1,4] => 3
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [2,4,1,3,5] => [5,3,1,4,2] => 3
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [4,2,5,1,3] => [3,1,5,2,4] => 4
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [3,1,5,2,4] => [4,2,5,1,3] => 3
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [3,1,4,2,5] => [5,2,4,1,3] => 2
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [2,4,5,1,3] => [3,1,5,4,2] => 4
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [3,1,4,5,2] => [2,5,4,1,3] => 3
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [2,3,1,5,4] => [4,5,1,3,2] => 2
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [2,3,1,4,5] => [5,4,1,3,2] => 2
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [3,2,5,1,4] => [4,1,5,2,3] => 4
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [4,1,5,2,3] => [3,2,5,1,4] => 3
Description
The maximal size of a rise in a permutation. This is \max_i \sigma_{i+1}-\sigma_i, except for the permutations without rises, where it is 0.
Matching statistic: St000013
Mp00080: Set partitions to permutationPermutations
Mp00066: Permutations inversePermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
St000013: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1] => [1,0]
=> 1 = 0 + 1
{{1,2}}
=> [2,1] => [2,1] => [1,1,0,0]
=> 2 = 1 + 1
{{1},{2}}
=> [1,2] => [1,2] => [1,0,1,0]
=> 1 = 0 + 1
{{1,2,3}}
=> [2,3,1] => [3,1,2] => [1,1,1,0,0,0]
=> 3 = 2 + 1
{{1,2},{3}}
=> [2,1,3] => [2,1,3] => [1,1,0,0,1,0]
=> 2 = 1 + 1
{{1,3},{2}}
=> [3,2,1] => [3,2,1] => [1,1,1,0,0,0]
=> 3 = 2 + 1
{{1},{2,3}}
=> [1,3,2] => [1,3,2] => [1,0,1,1,0,0]
=> 2 = 1 + 1
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> 1 = 0 + 1
{{1,2,3,4}}
=> [2,3,4,1] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
{{1,2,3},{4}}
=> [2,3,1,4] => [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
{{1,2,4},{3}}
=> [2,4,3,1] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
{{1,2},{3,4}}
=> [2,1,4,3] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
{{1,2},{3},{4}}
=> [2,1,3,4] => [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
{{1,3,4},{2}}
=> [3,2,4,1] => [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
{{1,3},{2,4}}
=> [3,4,1,2] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
{{1,3},{2},{4}}
=> [3,2,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
{{1,4},{2,3}}
=> [4,3,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
{{1},{2,3,4}}
=> [1,3,4,2] => [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
{{1,4},{2},{3}}
=> [4,2,3,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> 5 = 4 + 1
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [4,1,2,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> 4 = 3 + 1
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [5,1,2,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> 5 = 4 + 1
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [3,1,2,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> 3 = 2 + 1
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> 3 = 2 + 1
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [5,1,3,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> 5 = 4 + 1
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [4,1,5,2,3] => [1,1,1,1,0,0,1,0,0,0]
=> 4 = 3 + 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [4,1,3,2,5] => [1,1,1,1,0,0,0,0,1,0]
=> 4 = 3 + 1
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [5,1,4,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> 5 = 4 + 1
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> 2 = 1 + 1
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [5,1,3,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> 5 = 4 + 1
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> 2 = 1 + 1
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> 2 = 1 + 1
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [5,2,1,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> 5 = 4 + 1
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [4,5,1,3,2] => [1,1,1,1,0,1,0,0,0,0]
=> 4 = 3 + 1
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [4,2,1,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> 4 = 3 + 1
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> 5 = 4 + 1
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [3,5,1,2,4] => [1,1,1,0,1,1,0,0,0,0]
=> 4 = 3 + 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [3,4,1,2,5] => [1,1,1,0,1,0,0,0,1,0]
=> 3 = 2 + 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> 5 = 4 + 1
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [3,5,1,4,2] => [1,1,1,0,1,1,0,0,0,0]
=> 4 = 3 + 1
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> 3 = 2 + 1
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> 3 = 2 + 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> 5 = 4 + 1
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [4,5,2,1,3] => [1,1,1,1,0,1,0,0,0,0]
=> 4 = 3 + 1
Description
The height of a Dyck path. The height of a Dyck path D of semilength n is defined as the maximal height of a peak of D. The height of D at position i is the number of up-steps minus the number of down-steps before position i.
St000503: Set partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> ? = 0
{{1,2}}
=> 1
{{1},{2}}
=> 0
{{1,2,3}}
=> 2
{{1,2},{3}}
=> 1
{{1,3},{2}}
=> 2
{{1},{2,3}}
=> 1
{{1},{2},{3}}
=> 0
{{1,2,3,4}}
=> 3
{{1,2,3},{4}}
=> 2
{{1,2,4},{3}}
=> 3
{{1,2},{3,4}}
=> 1
{{1,2},{3},{4}}
=> 1
{{1,3,4},{2}}
=> 3
{{1,3},{2,4}}
=> 2
{{1,3},{2},{4}}
=> 2
{{1,4},{2,3}}
=> 3
{{1},{2,3,4}}
=> 2
{{1},{2,3},{4}}
=> 1
{{1,4},{2},{3}}
=> 3
{{1},{2,4},{3}}
=> 2
{{1},{2},{3,4}}
=> 1
{{1},{2},{3},{4}}
=> 0
{{1,2,3,4,5}}
=> 4
{{1,2,3,4},{5}}
=> 3
{{1,2,3,5},{4}}
=> 4
{{1,2,3},{4,5}}
=> 2
{{1,2,3},{4},{5}}
=> 2
{{1,2,4,5},{3}}
=> 4
{{1,2,4},{3,5}}
=> 3
{{1,2,4},{3},{5}}
=> 3
{{1,2,5},{3,4}}
=> 4
{{1,2},{3,4,5}}
=> 2
{{1,2},{3,4},{5}}
=> 1
{{1,2,5},{3},{4}}
=> 4
{{1,2},{3,5},{4}}
=> 2
{{1,2},{3},{4,5}}
=> 1
{{1,2},{3},{4},{5}}
=> 1
{{1,3,4,5},{2}}
=> 4
{{1,3,4},{2,5}}
=> 3
{{1,3,4},{2},{5}}
=> 3
{{1,3,5},{2,4}}
=> 4
{{1,3},{2,4,5}}
=> 3
{{1,3},{2,4},{5}}
=> 2
{{1,3,5},{2},{4}}
=> 4
{{1,3},{2,5},{4}}
=> 3
{{1,3},{2},{4,5}}
=> 2
{{1,3},{2},{4},{5}}
=> 2
{{1,4,5},{2,3}}
=> 4
{{1,4},{2,3,5}}
=> 3
{{1,4},{2,3},{5}}
=> 3
Description
The maximal difference between two elements in a common block.
Mp00080: Set partitions to permutationPermutations
St000956: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => ? = 0
{{1,2}}
=> [2,1] => 1
{{1},{2}}
=> [1,2] => 0
{{1,2,3}}
=> [2,3,1] => 2
{{1,2},{3}}
=> [2,1,3] => 1
{{1,3},{2}}
=> [3,2,1] => 2
{{1},{2,3}}
=> [1,3,2] => 1
{{1},{2},{3}}
=> [1,2,3] => 0
{{1,2,3,4}}
=> [2,3,4,1] => 3
{{1,2,3},{4}}
=> [2,3,1,4] => 2
{{1,2,4},{3}}
=> [2,4,3,1] => 3
{{1,2},{3,4}}
=> [2,1,4,3] => 1
{{1,2},{3},{4}}
=> [2,1,3,4] => 1
{{1,3,4},{2}}
=> [3,2,4,1] => 3
{{1,3},{2,4}}
=> [3,4,1,2] => 2
{{1,3},{2},{4}}
=> [3,2,1,4] => 2
{{1,4},{2,3}}
=> [4,3,2,1] => 3
{{1},{2,3,4}}
=> [1,3,4,2] => 2
{{1},{2,3},{4}}
=> [1,3,2,4] => 1
{{1,4},{2},{3}}
=> [4,2,3,1] => 3
{{1},{2,4},{3}}
=> [1,4,3,2] => 2
{{1},{2},{3,4}}
=> [1,2,4,3] => 1
{{1},{2},{3},{4}}
=> [1,2,3,4] => 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => 4
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => 3
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => 4
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => 2
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => 2
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => 4
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => 3
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => 3
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => 4
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => 2
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => 1
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => 4
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => 2
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => 1
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => 1
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => 4
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => 3
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => 3
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => 4
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => 3
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => 2
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => 4
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => 3
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => 2
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => 2
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => 4
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => 3
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => 3
Description
The maximal displacement of a permutation. This is \max\{ |\pi(i)-i| \mid 1 \leq i \leq n\} for a permutation \pi of \{1,\ldots,n\}. This statistic without the absolute value is the maximal drop size [[St000141]].
Matching statistic: St000442
Mp00080: Set partitions to permutationPermutations
Mp00066: Permutations inversePermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
St000442: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1] => [1,0]
=> ? = 0
{{1,2}}
=> [2,1] => [2,1] => [1,1,0,0]
=> 1
{{1},{2}}
=> [1,2] => [1,2] => [1,0,1,0]
=> 0
{{1,2,3}}
=> [2,3,1] => [3,1,2] => [1,1,1,0,0,0]
=> 2
{{1,2},{3}}
=> [2,1,3] => [2,1,3] => [1,1,0,0,1,0]
=> 1
{{1,3},{2}}
=> [3,2,1] => [3,2,1] => [1,1,1,0,0,0]
=> 2
{{1},{2,3}}
=> [1,3,2] => [1,3,2] => [1,0,1,1,0,0]
=> 1
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> 0
{{1,2,3,4}}
=> [2,3,4,1] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> 3
{{1,2,3},{4}}
=> [2,3,1,4] => [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> 2
{{1,2,4},{3}}
=> [2,4,3,1] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> 3
{{1,2},{3,4}}
=> [2,1,4,3] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 1
{{1,2},{3},{4}}
=> [2,1,3,4] => [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 1
{{1,3,4},{2}}
=> [3,2,4,1] => [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> 3
{{1,3},{2,4}}
=> [3,4,1,2] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 2
{{1,3},{2},{4}}
=> [3,2,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 2
{{1,4},{2,3}}
=> [4,3,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 3
{{1},{2,3,4}}
=> [1,3,4,2] => [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> 2
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> 1
{{1,4},{2},{3}}
=> [4,2,3,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> 3
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 2
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> 1
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> 4
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [4,1,2,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> 3
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [5,1,2,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> 4
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [3,1,2,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> 2
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> 2
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [5,1,3,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> 4
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [4,1,5,2,3] => [1,1,1,1,0,0,1,0,0,0]
=> 3
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [4,1,3,2,5] => [1,1,1,1,0,0,0,0,1,0]
=> 3
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [5,1,4,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> 4
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0]
=> 2
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> 1
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [5,1,3,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> 4
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> 1
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> 1
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [5,2,1,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> 4
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [4,5,1,3,2] => [1,1,1,1,0,1,0,0,0,0]
=> 3
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [4,2,1,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> 3
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> 4
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [3,5,1,2,4] => [1,1,1,0,1,1,0,0,0,0]
=> 3
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [3,4,1,2,5] => [1,1,1,0,1,0,0,0,1,0]
=> 2
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> 4
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [3,5,1,4,2] => [1,1,1,0,1,1,0,0,0,0]
=> 3
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> 2
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> 2
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> 4
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [4,5,2,1,3] => [1,1,1,1,0,1,0,0,0,0]
=> 3
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => [4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 3
Description
The maximal area to the right of an up step of a Dyck path.
Matching statistic: St000730
Mp00080: Set partitions to permutationPermutations
Mp00066: Permutations inversePermutations
Mp00240: Permutations weak exceedance partitionSet partitions
St000730: Set partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1] => {{1}}
=> ? = 0
{{1,2}}
=> [2,1] => [2,1] => {{1,2}}
=> 1
{{1},{2}}
=> [1,2] => [1,2] => {{1},{2}}
=> 0
{{1,2,3}}
=> [2,3,1] => [3,1,2] => {{1,3},{2}}
=> 2
{{1,2},{3}}
=> [2,1,3] => [2,1,3] => {{1,2},{3}}
=> 1
{{1,3},{2}}
=> [3,2,1] => [3,2,1] => {{1,3},{2}}
=> 2
{{1},{2,3}}
=> [1,3,2] => [1,3,2] => {{1},{2,3}}
=> 1
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => {{1},{2},{3}}
=> 0
{{1,2,3,4}}
=> [2,3,4,1] => [4,1,2,3] => {{1,4},{2},{3}}
=> 3
{{1,2,3},{4}}
=> [2,3,1,4] => [3,1,2,4] => {{1,3},{2},{4}}
=> 2
{{1,2,4},{3}}
=> [2,4,3,1] => [4,1,3,2] => {{1,4},{2},{3}}
=> 3
{{1,2},{3,4}}
=> [2,1,4,3] => [2,1,4,3] => {{1,2},{3,4}}
=> 1
{{1,2},{3},{4}}
=> [2,1,3,4] => [2,1,3,4] => {{1,2},{3},{4}}
=> 1
{{1,3,4},{2}}
=> [3,2,4,1] => [4,2,1,3] => {{1,4},{2},{3}}
=> 3
{{1,3},{2,4}}
=> [3,4,1,2] => [3,4,1,2] => {{1,3},{2,4}}
=> 2
{{1,3},{2},{4}}
=> [3,2,1,4] => [3,2,1,4] => {{1,3},{2},{4}}
=> 2
{{1,4},{2,3}}
=> [4,3,2,1] => [4,3,2,1] => {{1,4},{2,3}}
=> 3
{{1},{2,3,4}}
=> [1,3,4,2] => [1,4,2,3] => {{1},{2,4},{3}}
=> 2
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,3,2,4] => {{1},{2,3},{4}}
=> 1
{{1,4},{2},{3}}
=> [4,2,3,1] => [4,2,3,1] => {{1,4},{2},{3}}
=> 3
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,4,3,2] => {{1},{2,4},{3}}
=> 2
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,4,3] => {{1},{2},{3,4}}
=> 1
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => {{1},{2},{3},{4}}
=> 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [5,1,2,3,4] => {{1,5},{2},{3},{4}}
=> 4
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [4,1,2,3,5] => {{1,4},{2},{3},{5}}
=> 3
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [5,1,2,4,3] => {{1,5},{2},{3},{4}}
=> 4
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [3,1,2,5,4] => {{1,3},{2},{4,5}}
=> 2
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [3,1,2,4,5] => {{1,3},{2},{4},{5}}
=> 2
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [5,1,3,2,4] => {{1,5},{2},{3},{4}}
=> 4
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [4,1,5,2,3] => {{1,4},{2},{3,5}}
=> 3
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [4,1,3,2,5] => {{1,4},{2},{3},{5}}
=> 3
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [5,1,4,3,2] => {{1,5},{2},{3,4}}
=> 4
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [2,1,5,3,4] => {{1,2},{3,5},{4}}
=> 2
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [2,1,4,3,5] => {{1,2},{3,4},{5}}
=> 1
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [5,1,3,4,2] => {{1,5},{2},{3},{4}}
=> 4
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [2,1,5,4,3] => {{1,2},{3,5},{4}}
=> 2
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [2,1,3,5,4] => {{1,2},{3},{4,5}}
=> 1
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [2,1,3,4,5] => {{1,2},{3},{4},{5}}
=> 1
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [5,2,1,3,4] => {{1,5},{2},{3},{4}}
=> 4
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [4,5,1,3,2] => {{1,4},{2,5},{3}}
=> 3
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [4,2,1,3,5] => {{1,4},{2},{3},{5}}
=> 3
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [5,4,1,2,3] => {{1,5},{2,4},{3}}
=> 4
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [3,5,1,2,4] => {{1,3},{2,5},{4}}
=> 3
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [3,4,1,2,5] => {{1,3},{2,4},{5}}
=> 2
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [5,2,1,4,3] => {{1,5},{2},{3},{4}}
=> 4
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [3,5,1,4,2] => {{1,3},{2,5},{4}}
=> 3
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [3,2,1,5,4] => {{1,3},{2},{4,5}}
=> 2
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [3,2,1,4,5] => {{1,3},{2},{4},{5}}
=> 2
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [5,3,2,1,4] => {{1,5},{2,3},{4}}
=> 4
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [4,5,2,1,3] => {{1,4},{2,5},{3}}
=> 3
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => [4,3,2,1,5] => {{1,4},{2,3},{5}}
=> 3
Description
The maximal arc length of a set partition. The arcs of a set partition are those i < j that are consecutive elements in the blocks. If there are no arcs, the maximal arc length is 0.
Mp00080: Set partitions to permutationPermutations
Mp00149: Permutations Lehmer code rotationPermutations
Mp00160: Permutations graph of inversionsGraphs
St000777: Graphs ⟶ ℤResult quality: 66% values known / values provided: 66%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1] => ([],1)
=> 1 = 0 + 1
{{1,2}}
=> [2,1] => [1,2] => ([],2)
=> ? = 0 + 1
{{1},{2}}
=> [1,2] => [2,1] => ([(0,1)],2)
=> 2 = 1 + 1
{{1,2,3}}
=> [2,3,1] => [3,1,2] => ([(0,2),(1,2)],3)
=> 3 = 2 + 1
{{1,2},{3}}
=> [2,1,3] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
{{1,3},{2}}
=> [3,2,1] => [1,2,3] => ([],3)
=> ? ∊ {0,1} + 1
{{1},{2,3}}
=> [1,3,2] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {0,1} + 1
{{1},{2},{3}}
=> [1,2,3] => [2,3,1] => ([(0,2),(1,2)],3)
=> 3 = 2 + 1
{{1,2,3,4}}
=> [2,3,4,1] => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 3 = 2 + 1
{{1,2,3},{4}}
=> [2,3,1,4] => [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
{{1,2,4},{3}}
=> [2,4,3,1] => [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,2,3} + 1
{{1,2},{3,4}}
=> [2,1,4,3] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,2,3} + 1
{{1,2},{3},{4}}
=> [2,1,3,4] => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
{{1,3,4},{2}}
=> [3,2,4,1] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
{{1,3},{2,4}}
=> [3,4,1,2] => [4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
{{1,3},{2},{4}}
=> [3,2,1,4] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
{{1,4},{2,3}}
=> [4,3,2,1] => [1,2,3,4] => ([],4)
=> ? ∊ {0,1,1,1,2,3} + 1
{{1},{2,3,4}}
=> [1,3,4,2] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 4 = 3 + 1
{{1},{2,3},{4}}
=> [1,3,2,4] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
{{1,4},{2},{3}}
=> [4,2,3,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,2,3} + 1
{{1},{2,4},{3}}
=> [1,4,3,2] => [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {0,1,1,1,2,3} + 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,2,3} + 1
{{1},{2},{3},{4}}
=> [1,2,3,4] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 3 = 2 + 1
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4 = 3 + 1
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4} + 1
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [3,4,2,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4} + 1
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [3,5,4,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 5 = 4 + 1
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4} + 1
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 5 = 4 + 1
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 4 = 3 + 1
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 5 = 4 + 1
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4} + 1
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [3,2,4,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4} + 1
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [4,3,5,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 5 = 4 + 1
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 5 = 4 + 1
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [4,3,5,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4 = 3 + 1
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [4,5,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 5 = 4 + 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [4,5,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4} + 1
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [4,1,3,2,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4} + 1
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4} + 1
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [5,4,1,3,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
{{1,5},{2,3,4}}
=> [5,3,4,2,1] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4} + 1
{{1},{2,3,4,5}}
=> [1,3,4,5,2] => [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
{{1},{2,3,4},{5}}
=> [1,3,4,2,5] => [2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
{{1,5},{2,3},{4}}
=> [5,3,2,4,1] => [1,5,4,2,3] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4} + 1
{{1},{2,3,5},{4}}
=> [1,3,5,4,2] => [2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4} + 1
{{1},{2,3},{4,5}}
=> [1,3,2,5,4] => [2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4} + 1
{{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
{{1,4,5},{2},{3}}
=> [4,2,3,5,1] => [5,3,4,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
{{1,4},{2,5},{3}}
=> [4,5,3,1,2] => [5,1,2,4,3] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
{{1,4},{2},{3,5}}
=> [4,2,5,1,3] => [5,3,1,4,2] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
{{1,4},{2},{3},{5}}
=> [4,2,3,1,5] => [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
{{1,5},{2,4},{3}}
=> [5,4,3,2,1] => [1,2,3,4,5] => ([],5)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4} + 1
{{1},{2,4,5},{3}}
=> [1,4,3,5,2] => [2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
{{1},{2,4},{3,5}}
=> [1,4,5,2,3] => [2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 5 = 4 + 1
{{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
{{1,5},{2},{3,4}}
=> [5,2,4,3,1] => [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4} + 1
{{1},{2,5},{3,4}}
=> [1,5,4,3,2] => [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4} + 1
{{1},{2},{3,4,5}}
=> [1,2,4,5,3] => [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 5 = 4 + 1
{{1},{2},{3,4},{5}}
=> [1,2,4,3,5] => [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
{{1,5},{2},{3},{4}}
=> [5,2,3,4,1] => [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4} + 1
{{1},{2,5},{3},{4}}
=> [1,5,3,4,2] => [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4} + 1
{{1},{2},{3,5},{4}}
=> [1,2,5,4,3] => [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4} + 1
{{1},{2},{3},{4,5}}
=> [1,2,3,5,4] => [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4} + 1
{{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
{{1,2,3,4,5,6}}
=> [2,3,4,5,6,1] => [3,4,5,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4 = 3 + 1
{{1,2,3,4,5},{6}}
=> [2,3,4,5,1,6] => [3,4,5,6,2,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
{{1,2,3,4,6},{5}}
=> [2,3,4,6,5,1] => [3,4,5,1,2,6] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5} + 1
{{1,2,3,4},{5,6}}
=> [2,3,4,1,6,5] => [3,4,5,2,1,6] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5} + 1
{{1,2,3,4},{5},{6}}
=> [2,3,4,1,5,6] => [3,4,5,2,6,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
{{1,2,3,6},{4,5}}
=> [2,3,6,5,4,1] => [3,4,1,2,5,6] => ([(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5} + 1
{{1,2,3},{4,6},{5}}
=> [2,3,1,6,5,4] => [3,4,2,1,5,6] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5} + 1
{{1,2,3},{4},{5,6}}
=> [2,3,1,4,6,5] => [3,4,2,5,1,6] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5} + 1
{{1,2,4,6},{3},{5}}
=> [2,4,3,6,5,1] => [3,5,4,1,2,6] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5} + 1
{{1,2,4},{3,6},{5}}
=> [2,4,6,1,5,3] => [3,5,1,4,2,6] => ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5} + 1
{{1,2,4},{3},{5,6}}
=> [2,4,3,1,6,5] => [3,5,4,2,1,6] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5} + 1
{{1,2},{3,4,6},{5}}
=> [2,1,4,6,5,3] => [3,2,5,1,4,6] => ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5} + 1
{{1,2},{3,4},{5,6}}
=> [2,1,4,3,6,5] => [3,2,5,4,1,6] => ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5} + 1
{{1,2,6},{3,5},{4}}
=> [2,6,5,4,3,1] => [3,1,2,4,5,6] => ([(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5} + 1
{{1,2,6},{3},{4,5}}
=> [2,6,3,5,4,1] => [3,1,5,2,4,6] => ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5} + 1
{{1,2},{3,6},{4,5}}
=> [2,1,6,5,4,3] => [3,2,1,4,5,6] => ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5} + 1
{{1,2},{3,6},{4},{5}}
=> [2,1,6,4,5,3] => [3,2,1,6,4,5] => ([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5} + 1
{{1,2},{3},{4,6},{5}}
=> [2,1,3,6,5,4] => [3,2,4,1,5,6] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5} + 1
{{1,2},{3},{4},{5,6}}
=> [2,1,3,4,6,5] => [3,2,4,5,1,6] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5} + 1
{{1,3,4,6},{2},{5}}
=> [3,2,4,6,5,1] => [4,3,5,1,2,6] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5} + 1
{{1,3,4},{2},{5,6}}
=> [3,2,4,1,6,5] => [4,3,5,2,1,6] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5} + 1
{{1,3,6},{2,4,5}}
=> [3,4,6,5,2,1] => [4,5,1,2,3,6] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5} + 1
{{1,3},{2,4,6},{5}}
=> [3,4,1,6,5,2] => [4,5,2,1,3,6] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5} + 1
{{1,3},{2,4},{5,6}}
=> [3,4,1,2,6,5] => [4,5,2,3,1,6] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5} + 1
{{1,3,5},{2,6},{4}}
=> [3,6,5,4,1,2] => [4,1,2,3,6,5] => ([(0,1),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5} + 1
Description
The number of distinct eigenvalues of the distance Laplacian of a connected graph.
Mp00080: Set partitions to permutationPermutations
Mp00159: Permutations Demazure product with inversePermutations
Mp00160: Permutations graph of inversionsGraphs
St000454: Graphs ⟶ ℤResult quality: 65% values known / values provided: 65%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1] => ([],1)
=> 0
{{1,2}}
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
{{1},{2}}
=> [1,2] => [1,2] => ([],2)
=> 0
{{1,2,3}}
=> [2,3,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
{{1,2},{3}}
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> 1
{{1,3},{2}}
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
{{1},{2,3}}
=> [1,3,2] => [1,3,2] => ([(1,2)],3)
=> 1
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => ([],3)
=> 0
{{1,2,3,4}}
=> [2,3,4,1] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,3}
{{1,2,3},{4}}
=> [2,3,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 2
{{1,2,4},{3}}
=> [2,4,3,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
{{1,2},{3,4}}
=> [2,1,4,3] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> 1
{{1,2},{3},{4}}
=> [2,1,3,4] => [2,1,3,4] => ([(2,3)],4)
=> 1
{{1,3,4},{2}}
=> [3,2,4,1] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,3}
{{1,3},{2,4}}
=> [3,4,1,2] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
{{1,3},{2},{4}}
=> [3,2,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 2
{{1,4},{2,3}}
=> [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
{{1},{2,3,4}}
=> [1,3,4,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,3,2,4] => ([(2,3)],4)
=> 1
{{1,4},{2},{3}}
=> [4,2,3,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,4,3] => ([(2,3)],4)
=> 1
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,4,4}
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,4,4}
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> 2
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,4,4}
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [4,5,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,4,4}
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> 1
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> 1
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [2,1,3,4,5] => ([(3,4)],5)
=> 1
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,4,4}
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,4,4}
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,4,4}
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> 2
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,4,4}
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
{{1,5},{2,3,4}}
=> [5,3,4,2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
{{1},{2,3,4,5}}
=> [1,3,4,5,2] => [1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,4,4}
{{1},{2,3,4},{5}}
=> [1,3,4,2,5] => [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> 2
{{1,5},{2,3},{4}}
=> [5,3,2,4,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
{{1},{2,3,5},{4}}
=> [1,3,5,4,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
{{1},{2,3},{4,5}}
=> [1,3,2,5,4] => [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 1
{{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => [1,3,2,4,5] => ([(3,4)],5)
=> 1
{{1,4,5},{2},{3}}
=> [4,2,3,5,1] => [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,4,4}
{{1,4},{2,5},{3}}
=> [4,5,3,1,2] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
{{1,4},{2},{3,5}}
=> [4,2,5,1,3] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
{{1,4},{2},{3},{5}}
=> [4,2,3,1,5] => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
{{1},{2,4,5},{3}}
=> [1,4,3,5,2] => [1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,3,3,3,4,4}
{{1,2,3,4,5,6}}
=> [2,3,4,5,6,1] => [6,2,3,4,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,2,3,4,6},{5}}
=> [2,3,4,6,5,1] => [6,2,3,5,4,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,2,3,4},{5,6}}
=> [2,3,4,1,6,5] => [4,2,3,1,6,5] => ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,2,3,4},{5},{6}}
=> [2,3,4,1,5,6] => [4,2,3,1,5,6] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,2,3,5,6},{4}}
=> [2,3,5,4,6,1] => [6,2,4,3,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,2,3,5},{4,6}}
=> [2,3,5,6,1,4] => [5,2,6,4,1,3] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,2,3,5},{4},{6}}
=> [2,3,5,4,1,6] => [5,2,4,3,1,6] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,2,3,6},{4,5}}
=> [2,3,6,5,4,1] => [6,2,5,4,3,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,2,3,6},{4},{5}}
=> [2,3,6,4,5,1] => [6,2,5,4,3,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,2,4,5,6},{3}}
=> [2,4,3,5,6,1] => [6,3,2,4,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,2,4,5},{3,6}}
=> [2,4,6,5,1,3] => [5,6,4,3,1,2] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,2,4,5},{3},{6}}
=> [2,4,3,5,1,6] => [5,3,2,4,1,6] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,2,4,6},{3,5}}
=> [2,4,5,6,3,1] => [6,5,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,2,4},{3,5,6}}
=> [2,4,5,1,6,3] => [4,6,3,1,5,2] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,2,4},{3,5},{6}}
=> [2,4,5,1,3,6] => [4,5,3,1,2,6] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,2,4,6},{3},{5}}
=> [2,4,3,6,5,1] => [6,3,2,5,4,1] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,2,4},{3,6},{5}}
=> [2,4,6,1,5,3] => [4,6,5,1,3,2] => ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,2,5,6},{3,4}}
=> [2,5,4,3,6,1] => [6,4,3,2,5,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,2},{3,4,5,6}}
=> [2,1,4,5,6,3] => [2,1,6,4,5,3] => ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,2,5,6},{3},{4}}
=> [2,5,3,4,6,1] => [6,4,3,2,5,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,2,5},{3,6},{4}}
=> [2,5,6,4,1,3] => [5,6,4,3,1,2] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,2},{3,5,6},{4}}
=> [2,1,5,4,6,3] => [2,1,6,4,5,3] => ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,2,6},{3},{4,5}}
=> [2,6,3,5,4,1] => [6,5,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,2,6},{3},{4},{5}}
=> [2,6,3,4,5,1] => [6,5,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,3,4,5,6},{2}}
=> [3,2,4,5,6,1] => [6,2,3,4,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,3,4,6},{2,5}}
=> [3,5,4,6,2,1] => [6,5,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,3,4},{2,5,6}}
=> [3,5,4,1,6,2] => [6,4,3,2,5,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,3,4,6},{2},{5}}
=> [3,2,4,6,5,1] => [6,2,3,5,4,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,3,4},{2},{5,6}}
=> [3,2,4,1,6,5] => [4,2,3,1,6,5] => ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,3,4},{2},{5},{6}}
=> [3,2,4,1,5,6] => [4,2,3,1,5,6] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,3,5,6},{2,4}}
=> [3,4,5,2,6,1] => [6,4,3,2,5,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,3,5},{2,4,6}}
=> [3,4,5,6,1,2] => [6,5,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,3},{2,4,5,6}}
=> [3,4,1,5,6,2] => [6,3,2,4,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,3},{2,4,5},{6}}
=> [3,4,1,5,2,6] => [5,3,2,4,1,6] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,3,6},{2,4},{5}}
=> [3,4,6,2,5,1] => [6,4,5,2,3,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,3},{2,4,6},{5}}
=> [3,4,1,6,5,2] => [6,3,2,5,4,1] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,3,5,6},{2},{4}}
=> [3,2,5,4,6,1] => [6,2,4,3,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
Description
The largest eigenvalue of a graph if it is integral. If a graph is d-regular, then its largest eigenvalue equals d. One can show that the largest eigenvalue always lies between the average degree and the maximal degree. This statistic is undefined if the largest eigenvalue of the graph is not integral.
The following 6 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001330The hat guessing number of a graph. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001645The pebbling number of a connected graph. St000264The girth of a graph, which is not a tree. St000455The second largest eigenvalue of a graph if it is integral. St001207The Lowey length of the algebra A/T when T is the 1-tilting module corresponding to the permutation in the Auslander algebra of K[x]/(x^n).