searching the database
Your data matches 124 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000221
(load all 246 compositions to match this statistic)
(load all 246 compositions to match this statistic)
St000221: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => 1
[1,2] => 2
[2,1] => 0
[1,2,3] => 3
[1,3,2] => 1
[2,1,3] => 1
[2,3,1] => 0
[3,1,2] => 0
[3,2,1] => 0
[1,2,3,4] => 4
[1,2,4,3] => 2
[1,3,2,4] => 2
[1,3,4,2] => 1
[1,4,2,3] => 1
[1,4,3,2] => 1
[2,1,3,4] => 2
[2,1,4,3] => 0
[2,3,1,4] => 1
[2,3,4,1] => 0
[2,4,1,3] => 0
[2,4,3,1] => 0
[3,1,2,4] => 1
[3,1,4,2] => 0
[3,2,1,4] => 1
[3,2,4,1] => 0
[3,4,1,2] => 0
[3,4,2,1] => 0
[4,1,2,3] => 0
[4,1,3,2] => 0
[4,2,1,3] => 0
[4,2,3,1] => 0
[4,3,1,2] => 0
[4,3,2,1] => 0
[1,2,3,4,5] => 5
[1,2,3,5,4] => 3
[1,2,4,3,5] => 3
[1,2,4,5,3] => 2
[1,2,5,3,4] => 2
[1,2,5,4,3] => 2
[1,3,2,4,5] => 3
[1,3,2,5,4] => 1
[1,3,4,2,5] => 2
[1,3,4,5,2] => 1
[1,3,5,2,4] => 1
[1,3,5,4,2] => 1
[1,4,2,3,5] => 2
[1,4,2,5,3] => 1
[1,4,3,2,5] => 2
[1,4,3,5,2] => 1
[1,4,5,2,3] => 1
Description
The number of strong fixed points of a permutation.
$i$ is called a strong fixed point of $\pi$ if
1. $j < i$ implies $\pi_j < \pi_i$, and
2. $j > i$ implies $\pi_j > \pi_i$
This can be described as an occurrence of the mesh pattern ([1], {(0,1),(1,0)}), i.e., the upper left and the lower right quadrants are shaded, see [3].
The generating function for the joint-distribution (RLmin, LRmax, strong fixed points) has a continued fraction expression as given in [4, Lemma 3.2], for LRmax see [[St000314]].
Matching statistic: St000315
(load all 34 compositions to match this statistic)
(load all 34 compositions to match this statistic)
Mp00160: Permutations —graph of inversions⟶ Graphs
St000315: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000315: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => ([],1)
=> 1
[1,2] => ([],2)
=> 2
[2,1] => ([(0,1)],2)
=> 0
[1,2,3] => ([],3)
=> 3
[1,3,2] => ([(1,2)],3)
=> 1
[2,1,3] => ([(1,2)],3)
=> 1
[2,3,1] => ([(0,2),(1,2)],3)
=> 0
[3,1,2] => ([(0,2),(1,2)],3)
=> 0
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
[1,2,3,4] => ([],4)
=> 4
[1,2,4,3] => ([(2,3)],4)
=> 2
[1,3,2,4] => ([(2,3)],4)
=> 2
[1,3,4,2] => ([(1,3),(2,3)],4)
=> 1
[1,4,2,3] => ([(1,3),(2,3)],4)
=> 1
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 1
[2,1,3,4] => ([(2,3)],4)
=> 2
[2,1,4,3] => ([(0,3),(1,2)],4)
=> 0
[2,3,1,4] => ([(1,3),(2,3)],4)
=> 1
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 0
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 0
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[3,1,2,4] => ([(1,3),(2,3)],4)
=> 1
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 0
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 1
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 0
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 0
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[1,2,3,4,5] => ([],5)
=> 5
[1,2,3,5,4] => ([(3,4)],5)
=> 3
[1,2,4,3,5] => ([(3,4)],5)
=> 3
[1,2,4,5,3] => ([(2,4),(3,4)],5)
=> 2
[1,2,5,3,4] => ([(2,4),(3,4)],5)
=> 2
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[1,3,2,4,5] => ([(3,4)],5)
=> 3
[1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 1
[1,3,4,2,5] => ([(2,4),(3,4)],5)
=> 2
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> 1
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,4,2,3,5] => ([(2,4),(3,4)],5)
=> 2
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> 1
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> 2
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 1
Description
The number of isolated vertices of a graph.
Matching statistic: St000022
(load all 13 compositions to match this statistic)
(load all 13 compositions to match this statistic)
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00239: Permutations —Corteel⟶ Permutations
St000022: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00239: Permutations —Corteel⟶ Permutations
St000022: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1] => 1
[1,2] => [1,2] => [1,2] => 2
[2,1] => [2,1] => [2,1] => 0
[1,2,3] => [1,2,3] => [1,2,3] => 3
[1,3,2] => [1,3,2] => [1,3,2] => 1
[2,1,3] => [2,1,3] => [2,1,3] => 1
[2,3,1] => [3,2,1] => [2,3,1] => 0
[3,1,2] => [3,2,1] => [2,3,1] => 0
[3,2,1] => [3,2,1] => [2,3,1] => 0
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 4
[1,2,4,3] => [1,2,4,3] => [1,2,4,3] => 2
[1,3,2,4] => [1,3,2,4] => [1,3,2,4] => 2
[1,3,4,2] => [1,4,3,2] => [1,3,4,2] => 1
[1,4,2,3] => [1,4,3,2] => [1,3,4,2] => 1
[1,4,3,2] => [1,4,3,2] => [1,3,4,2] => 1
[2,1,3,4] => [2,1,3,4] => [2,1,3,4] => 2
[2,1,4,3] => [2,1,4,3] => [2,1,4,3] => 0
[2,3,1,4] => [3,2,1,4] => [2,3,1,4] => 1
[2,3,4,1] => [4,2,3,1] => [2,3,4,1] => 0
[2,4,1,3] => [3,4,1,2] => [4,3,2,1] => 0
[2,4,3,1] => [4,3,2,1] => [3,4,1,2] => 0
[3,1,2,4] => [3,2,1,4] => [2,3,1,4] => 1
[3,1,4,2] => [4,2,3,1] => [2,3,4,1] => 0
[3,2,1,4] => [3,2,1,4] => [2,3,1,4] => 1
[3,2,4,1] => [4,2,3,1] => [2,3,4,1] => 0
[3,4,1,2] => [4,3,2,1] => [3,4,1,2] => 0
[3,4,2,1] => [4,3,2,1] => [3,4,1,2] => 0
[4,1,2,3] => [4,2,3,1] => [2,3,4,1] => 0
[4,1,3,2] => [4,2,3,1] => [2,3,4,1] => 0
[4,2,1,3] => [4,3,2,1] => [3,4,1,2] => 0
[4,2,3,1] => [4,3,2,1] => [3,4,1,2] => 0
[4,3,1,2] => [4,3,2,1] => [3,4,1,2] => 0
[4,3,2,1] => [4,3,2,1] => [3,4,1,2] => 0
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 5
[1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,5,4] => 3
[1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => 3
[1,2,4,5,3] => [1,2,5,4,3] => [1,2,4,5,3] => 2
[1,2,5,3,4] => [1,2,5,4,3] => [1,2,4,5,3] => 2
[1,2,5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => 2
[1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => 3
[1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => 1
[1,3,4,2,5] => [1,4,3,2,5] => [1,3,4,2,5] => 2
[1,3,4,5,2] => [1,5,3,4,2] => [1,3,4,5,2] => 1
[1,3,5,2,4] => [1,4,5,2,3] => [1,5,4,3,2] => 1
[1,3,5,4,2] => [1,5,4,3,2] => [1,4,5,2,3] => 1
[1,4,2,3,5] => [1,4,3,2,5] => [1,3,4,2,5] => 2
[1,4,2,5,3] => [1,5,3,4,2] => [1,3,4,5,2] => 1
[1,4,3,2,5] => [1,4,3,2,5] => [1,3,4,2,5] => 2
[1,4,3,5,2] => [1,5,3,4,2] => [1,3,4,5,2] => 1
[1,4,5,2,3] => [1,5,4,3,2] => [1,4,5,2,3] => 1
Description
The number of fixed points of a permutation.
Matching statistic: St000117
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00296: Dyck paths —Knuth-Krattenthaler⟶ Dyck paths
St000117: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00296: Dyck paths —Knuth-Krattenthaler⟶ Dyck paths
St000117: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1,0]
=> 1
[1,2] => [1,0,1,0]
=> [1,1,0,0]
=> 2
[2,1] => [1,1,0,0]
=> [1,0,1,0]
=> 0
[1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 3
[1,3,2] => [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
[2,1,3] => [1,1,0,0,1,0]
=> [1,0,1,0,1,0]
=> 1
[2,3,1] => [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 0
[3,1,2] => [1,1,1,0,0,0]
=> [1,1,0,0,1,0]
=> 0
[3,2,1] => [1,1,1,0,0,0]
=> [1,1,0,0,1,0]
=> 0
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 4
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 1
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 0
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 0
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 0
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 0
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 0
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 0
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 0
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 0
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 0
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 0
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 0
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 5
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 3
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 3
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 2
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 2
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 3
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 2
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 2
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 2
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1
Description
The number of centered tunnels of a Dyck path.
A tunnel is a pair (a,b) where a is the position of an open parenthesis and b is the position of the matching close parenthesis. If a+b==n then the tunnel is called centered.
Matching statistic: St000475
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
St000475: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
St000475: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => ([],1)
=> [1]
=> 1
[1,2] => ([],2)
=> [1,1]
=> 2
[2,1] => ([(0,1)],2)
=> [2]
=> 0
[1,2,3] => ([],3)
=> [1,1,1]
=> 3
[1,3,2] => ([(1,2)],3)
=> [2,1]
=> 1
[2,1,3] => ([(1,2)],3)
=> [2,1]
=> 1
[2,3,1] => ([(0,2),(1,2)],3)
=> [3]
=> 0
[3,1,2] => ([(0,2),(1,2)],3)
=> [3]
=> 0
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 0
[1,2,3,4] => ([],4)
=> [1,1,1,1]
=> 4
[1,2,4,3] => ([(2,3)],4)
=> [2,1,1]
=> 2
[1,3,2,4] => ([(2,3)],4)
=> [2,1,1]
=> 2
[1,3,4,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> 1
[1,4,2,3] => ([(1,3),(2,3)],4)
=> [3,1]
=> 1
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 1
[2,1,3,4] => ([(2,3)],4)
=> [2,1,1]
=> 2
[2,1,4,3] => ([(0,3),(1,2)],4)
=> [2,2]
=> 0
[2,3,1,4] => ([(1,3),(2,3)],4)
=> [3,1]
=> 1
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> 0
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> [4]
=> 0
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 0
[3,1,2,4] => ([(1,3),(2,3)],4)
=> [3,1]
=> 1
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> [4]
=> 0
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 1
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 0
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> 0
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 0
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> 0
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 0
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 0
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 0
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 0
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 0
[1,2,3,4,5] => ([],5)
=> [1,1,1,1,1]
=> 5
[1,2,3,5,4] => ([(3,4)],5)
=> [2,1,1,1]
=> 3
[1,2,4,3,5] => ([(3,4)],5)
=> [2,1,1,1]
=> 3
[1,2,4,5,3] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> 2
[1,2,5,3,4] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> 2
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 2
[1,3,2,4,5] => ([(3,4)],5)
=> [2,1,1,1]
=> 3
[1,3,2,5,4] => ([(1,4),(2,3)],5)
=> [2,2,1]
=> 1
[1,3,4,2,5] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> 2
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 1
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> 1
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1
[1,4,2,3,5] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> 2
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> 1
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 2
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> 1
Description
The number of parts equal to 1 in a partition.
Matching statistic: St000895
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00035: Dyck paths —to alternating sign matrix⟶ Alternating sign matrices
St000895: Alternating sign matrices ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00035: Dyck paths —to alternating sign matrix⟶ Alternating sign matrices
St000895: Alternating sign matrices ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [[1]]
=> 1
[1,2] => [1,0,1,0]
=> [[1,0],[0,1]]
=> 2
[2,1] => [1,1,0,0]
=> [[0,1],[1,0]]
=> 0
[1,2,3] => [1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> 3
[1,3,2] => [1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> 1
[2,1,3] => [1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> 1
[2,3,1] => [1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> 0
[3,1,2] => [1,1,1,0,0,0]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> 0
[3,2,1] => [1,1,1,0,0,0]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> 0
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> 4
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> 2
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> 2
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> 1
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> 1
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> 1
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> 2
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> 0
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> 1
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> 0
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> 0
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> 0
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> 1
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> 0
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> 1
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> 0
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> 0
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> 0
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> 0
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> 0
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> 0
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> 0
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> 0
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> 0
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 5
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 3
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 3
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 2
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> 2
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> 2
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 3
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 1
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 2
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 1
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> 1
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> 1
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 2
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 1
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 2
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 1
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> 1
Description
The number of ones on the main diagonal of an alternating sign matrix.
Matching statistic: St001008
(load all 20 compositions to match this statistic)
(load all 20 compositions to match this statistic)
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
St001008: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
St001008: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1,0]
=> 1
[1,2] => [1,0,1,0]
=> [1,1,0,0]
=> 2
[2,1] => [1,1,0,0]
=> [1,0,1,0]
=> 0
[1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 3
[1,3,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[2,1,3] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1
[2,3,1] => [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> 0
[3,1,2] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
[3,2,1] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 4
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 2
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 2
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 0
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 0
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> 0
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> 0
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 0
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 0
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 0
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 0
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 5
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 3
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 2
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 2
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 1
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 1
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1
Description
Number of indecomposable injective modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path.
Matching statistic: St000164
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00146: Dyck paths —to tunnel matching⟶ Perfect matchings
Mp00116: Perfect matchings —Kasraoui-Zeng⟶ Perfect matchings
St000164: Perfect matchings ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00146: Dyck paths —to tunnel matching⟶ Perfect matchings
Mp00116: Perfect matchings —Kasraoui-Zeng⟶ Perfect matchings
St000164: Perfect matchings ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [(1,2)]
=> [(1,2)]
=> 1
[1,2] => [1,0,1,0]
=> [(1,2),(3,4)]
=> [(1,2),(3,4)]
=> 2
[2,1] => [1,1,0,0]
=> [(1,4),(2,3)]
=> [(1,3),(2,4)]
=> 0
[1,2,3] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> [(1,2),(3,4),(5,6)]
=> 3
[1,3,2] => [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> [(1,2),(3,5),(4,6)]
=> 1
[2,1,3] => [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> [(1,3),(2,4),(5,6)]
=> 1
[2,3,1] => [1,1,0,1,0,0]
=> [(1,6),(2,3),(4,5)]
=> [(1,3),(2,5),(4,6)]
=> 0
[3,1,2] => [1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> [(1,4),(2,5),(3,6)]
=> 0
[3,2,1] => [1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> [(1,4),(2,5),(3,6)]
=> 0
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [(1,2),(3,4),(5,6),(7,8)]
=> 4
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [(1,2),(3,4),(5,7),(6,8)]
=> 2
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [(1,2),(3,5),(4,6),(7,8)]
=> 2
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> [(1,2),(3,5),(4,7),(6,8)]
=> 1
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> [(1,2),(3,6),(4,7),(5,8)]
=> 1
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> [(1,2),(3,6),(4,7),(5,8)]
=> 1
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [(1,3),(2,4),(5,6),(7,8)]
=> 2
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> [(1,3),(2,4),(5,7),(6,8)]
=> 0
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [(1,3),(2,5),(4,6),(7,8)]
=> 1
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [(1,3),(2,5),(4,7),(6,8)]
=> 0
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [(1,8),(2,3),(4,7),(5,6)]
=> [(1,3),(2,6),(4,7),(5,8)]
=> 0
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [(1,8),(2,3),(4,7),(5,6)]
=> [(1,3),(2,6),(4,7),(5,8)]
=> 0
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> [(1,4),(2,5),(3,6),(7,8)]
=> 1
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [(1,8),(2,5),(3,4),(6,7)]
=> [(1,4),(2,5),(3,7),(6,8)]
=> 0
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> [(1,4),(2,5),(3,6),(7,8)]
=> 1
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [(1,8),(2,5),(3,4),(6,7)]
=> [(1,4),(2,5),(3,7),(6,8)]
=> 0
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [(1,8),(2,7),(3,4),(5,6)]
=> [(1,4),(2,6),(3,7),(5,8)]
=> 0
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [(1,8),(2,7),(3,4),(5,6)]
=> [(1,4),(2,6),(3,7),(5,8)]
=> 0
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> [(1,5),(2,6),(3,7),(4,8)]
=> 0
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> [(1,5),(2,6),(3,7),(4,8)]
=> 0
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> [(1,5),(2,6),(3,7),(4,8)]
=> 0
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> [(1,5),(2,6),(3,7),(4,8)]
=> 0
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> [(1,5),(2,6),(3,7),(4,8)]
=> 0
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> [(1,5),(2,6),(3,7),(4,8)]
=> 0
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> 5
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9)]
=> [(1,2),(3,4),(5,6),(7,9),(8,10)]
=> 3
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10)]
=> [(1,2),(3,4),(5,7),(6,8),(9,10)]
=> 3
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9)]
=> [(1,2),(3,4),(5,7),(6,9),(8,10)]
=> 2
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8)]
=> [(1,2),(3,4),(5,8),(6,9),(7,10)]
=> 2
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8)]
=> [(1,2),(3,4),(5,8),(6,9),(7,10)]
=> 2
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10)]
=> [(1,2),(3,5),(4,6),(7,8),(9,10)]
=> 3
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9)]
=> [(1,2),(3,5),(4,6),(7,9),(8,10)]
=> 1
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,10)]
=> [(1,2),(3,5),(4,7),(6,8),(9,10)]
=> 2
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9)]
=> [(1,2),(3,5),(4,7),(6,9),(8,10)]
=> 1
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8)]
=> [(1,2),(3,5),(4,8),(6,9),(7,10)]
=> 1
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8)]
=> [(1,2),(3,5),(4,8),(6,9),(7,10)]
=> 1
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,10)]
=> [(1,2),(3,6),(4,7),(5,8),(9,10)]
=> 2
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9)]
=> [(1,2),(3,6),(4,7),(5,9),(8,10)]
=> 1
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,10)]
=> [(1,2),(3,6),(4,7),(5,8),(9,10)]
=> 2
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9)]
=> [(1,2),(3,6),(4,7),(5,9),(8,10)]
=> 1
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,10),(4,9),(5,6),(7,8)]
=> [(1,2),(3,6),(4,8),(5,9),(7,10)]
=> 1
Description
The number of short pairs.
A short pair is a matching pair of the form $(i,i+1)$.
Matching statistic: St000241
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00296: Dyck paths —Knuth-Krattenthaler⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
St000241: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00296: Dyck paths —Knuth-Krattenthaler⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
St000241: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1,0]
=> [1] => 1
[1,2] => [1,0,1,0]
=> [1,1,0,0]
=> [1,2] => 0
[2,1] => [1,1,0,0]
=> [1,0,1,0]
=> [2,1] => 2
[1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,2,3] => 0
[1,3,2] => [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [2,1,3] => 1
[2,1,3] => [1,1,0,0,1,0]
=> [1,0,1,0,1,0]
=> [3,2,1] => 1
[2,3,1] => [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [2,3,1] => 3
[3,1,2] => [1,1,1,0,0,0]
=> [1,1,0,0,1,0]
=> [3,1,2] => 0
[3,2,1] => [1,1,1,0,0,0]
=> [1,1,0,0,1,0]
=> [3,1,2] => 0
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 1
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 0
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 2
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 0
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 0
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 2
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 2
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 4
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 1
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 1
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 0
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 1
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 0
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 1
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 0
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 0
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 0
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 0
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 0
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 0
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 0
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 0
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 0
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => 1
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,4,5] => 0
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [2,3,1,4,5] => 2
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => 0
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => 0
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => 0
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => 1
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => 1
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => 3
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => 0
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => 0
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,3,5] => 0
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => 1
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,3,5] => 0
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => 1
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,4,1,2,5] => 0
Description
The number of cyclical small excedances.
A cyclical small excedance is an index $i$ such that $\pi_i = i+1$ considered cyclically.
Matching statistic: St000445
Mp00114: Permutations —connectivity set⟶ Binary words
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St000445: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St000445: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => => [1] => [1,0]
=> 1
[1,2] => 1 => [1,1] => [1,0,1,0]
=> 2
[2,1] => 0 => [2] => [1,1,0,0]
=> 0
[1,2,3] => 11 => [1,1,1] => [1,0,1,0,1,0]
=> 3
[1,3,2] => 10 => [1,2] => [1,0,1,1,0,0]
=> 1
[2,1,3] => 01 => [2,1] => [1,1,0,0,1,0]
=> 1
[2,3,1] => 00 => [3] => [1,1,1,0,0,0]
=> 0
[3,1,2] => 00 => [3] => [1,1,1,0,0,0]
=> 0
[3,2,1] => 00 => [3] => [1,1,1,0,0,0]
=> 0
[1,2,3,4] => 111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 4
[1,2,4,3] => 110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 2
[1,3,2,4] => 101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
[1,3,4,2] => 100 => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,4,2,3] => 100 => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,4,3,2] => 100 => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[2,1,3,4] => 011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 2
[2,1,4,3] => 010 => [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[2,3,1,4] => 001 => [3,1] => [1,1,1,0,0,0,1,0]
=> 1
[2,3,4,1] => 000 => [4] => [1,1,1,1,0,0,0,0]
=> 0
[2,4,1,3] => 000 => [4] => [1,1,1,1,0,0,0,0]
=> 0
[2,4,3,1] => 000 => [4] => [1,1,1,1,0,0,0,0]
=> 0
[3,1,2,4] => 001 => [3,1] => [1,1,1,0,0,0,1,0]
=> 1
[3,1,4,2] => 000 => [4] => [1,1,1,1,0,0,0,0]
=> 0
[3,2,1,4] => 001 => [3,1] => [1,1,1,0,0,0,1,0]
=> 1
[3,2,4,1] => 000 => [4] => [1,1,1,1,0,0,0,0]
=> 0
[3,4,1,2] => 000 => [4] => [1,1,1,1,0,0,0,0]
=> 0
[3,4,2,1] => 000 => [4] => [1,1,1,1,0,0,0,0]
=> 0
[4,1,2,3] => 000 => [4] => [1,1,1,1,0,0,0,0]
=> 0
[4,1,3,2] => 000 => [4] => [1,1,1,1,0,0,0,0]
=> 0
[4,2,1,3] => 000 => [4] => [1,1,1,1,0,0,0,0]
=> 0
[4,2,3,1] => 000 => [4] => [1,1,1,1,0,0,0,0]
=> 0
[4,3,1,2] => 000 => [4] => [1,1,1,1,0,0,0,0]
=> 0
[4,3,2,1] => 000 => [4] => [1,1,1,1,0,0,0,0]
=> 0
[1,2,3,4,5] => 1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,2,3,5,4] => 1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 3
[1,2,4,3,5] => 1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 3
[1,2,4,5,3] => 1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,2,5,3,4] => 1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,2,5,4,3] => 1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,3,2,4,5] => 1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 3
[1,3,2,5,4] => 1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,3,4,2,5] => 1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,3,4,5,2] => 1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,3,5,2,4] => 1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,3,5,4,2] => 1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,4,2,3,5] => 1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,4,2,5,3] => 1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,4,3,2,5] => 1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,4,3,5,2] => 1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,4,5,2,3] => 1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
Description
The number of rises of length 1 of a Dyck path.
The following 114 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001017Number of indecomposable injective modules with projective dimension equal to the codominant dimension in the Nakayama algebra corresponding to the Dyck path. St001126Number of simple module that are 1-regular in the corresponding Nakayama algebra. St001479The number of bridges of a graph. St001691The number of kings in a graph. St000011The number of touch points (or returns) of a Dyck path. St000674The number of hills of a Dyck path. St000247The number of singleton blocks of a set partition. St001826The maximal number of leaves on a vertex of a graph. St001672The restrained domination number of a graph. St001342The number of vertices in the center of a graph. St001368The number of vertices of maximal degree in a graph. St000149The number of cells of the partition whose leg is zero and arm is odd. St000256The number of parts from which one can substract 2 and still get an integer partition. St001113Number of indecomposable projective non-injective modules with reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St001163The number of simple modules with dominant dimension at least three in the corresponding Nakayama algebra. St001181Number of indecomposable injective modules with grade at least 3 in the corresponding Nakayama algebra. St001219Number of simple modules S in the corresponding Nakayama algebra such that the Auslander-Reiten sequence ending at S has the property that all modules in the exact sequence are reflexive. St001355Number of non-empty prefixes of a binary word that contain equally many 0's and 1's. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000478Another weight of a partition according to Alladi. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000934The 2-degree of an integer partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St000940The number of characters of the symmetric group whose value on the partition is zero. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St000929The constant term of the character polynomial of an integer partition. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001877Number of indecomposable injective modules with projective dimension 2. St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St000941The number of characters of the symmetric group whose value on the partition is even. St001651The Frankl number of a lattice. St001230The number of simple modules with injective dimension equal to the dominant dimension equal to one and the dual property. St001122The multiplicity of the sign representation in the Kronecker square corresponding to a partition. St001498The normalised height of a Nakayama algebra with magnitude 1. St001525The number of symmetric hooks on the diagonal of a partition. St001940The number of distinct parts that are equal to their multiplicity in the integer partition. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St000850The number of 1/2-balanced pairs in a poset. St001095The number of non-isomorphic posets with precisely one further covering relation. St000455The second largest eigenvalue of a graph if it is integral. St000369The dinv deficit of a Dyck path. St000661The number of rises of length 3 of a Dyck path. St000791The number of pairs of left tunnels, one strictly containing the other, of a Dyck path. St000931The number of occurrences of the pattern UUU in a Dyck path. St000936The number of even values of the symmetric group character corresponding to the partition. St000980The number of boxes weakly below the path and above the diagonal that lie below at least two peaks. St001141The number of occurrences of hills of size 3 in a Dyck path. St001570The minimal number of edges to add to make a graph Hamiltonian. St000214The number of adjacencies of a permutation. St000175Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000225Difference between largest and smallest parts in a partition. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000506The number of standard desarrangement tableaux of shape equal to the given partition. St000749The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree. St000944The 3-degree of an integer partition. St001175The size of a partition minus the hook length of the base cell. St001176The size of a partition minus its first part. St001280The number of parts of an integer partition that are at least two. St001392The largest nonnegative integer which is not a part and is smaller than the largest part of the partition. St001440The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition. St001586The number of odd parts smaller than the largest even part in an integer partition. St001587Half of the largest even part of an integer partition. St001657The number of twos in an integer partition. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St001912The length of the preperiod in Bulgarian solitaire corresponding to an integer partition. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St000237The number of small exceedances. St000699The toughness times the least common multiple of 1,. St000567The sum of the products of all pairs of parts. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St001099The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled binary trees. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St001785The number of ways to obtain a partition as the multiset of antidiagonal lengths of the Ferrers diagram of a partition. St001939The number of parts that are equal to their multiplicity in the integer partition. St001178Twelve times the variance of the major index among all standard Young tableaux of a partition. St001248Sum of the even parts of a partition. St001279The sum of the parts of an integer partition that are at least two. St001384The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains. St001541The Gini index of an integer partition. St001767The largest minimal number of arrows pointing to a cell in the Ferrers diagram in any assignment. St000894The trace of an alternating sign matrix. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St000239The number of small weak excedances. St001226The number of integers i such that the radical of the i-th indecomposable projective module has vanishing first extension group with the Jacobson radical J in the corresponding Nakayama algebra. St000681The Grundy value of Chomp on Ferrers diagrams. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St001128The exponens consonantiae of a partition. St000284The Plancherel distribution on integer partitions. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000668The least common multiple of the parts of the partition. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000933The number of multipartitions of sizes given by an integer partition. St000937The number of positive values of the symmetric group character corresponding to the partition. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St001561The value of the elementary symmetric function evaluated at 1. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St000546The number of global descents of a permutation. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001903The number of fixed points of a parking function. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001631The number of simple modules $S$ with $dim Ext^1(S,A)=1$ in the incidence algebra $A$ of the poset.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!