Your data matches 362 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000387: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> 0
([],2)
=> 0
([(0,1)],2)
=> 1
([],3)
=> 0
([(1,2)],3)
=> 1
([(0,2),(1,2)],3)
=> 1
([(0,1),(0,2),(1,2)],3)
=> 1
([],4)
=> 0
([(2,3)],4)
=> 1
([(1,3),(2,3)],4)
=> 1
([(0,3),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2)],4)
=> 2
([(0,3),(1,2),(2,3)],4)
=> 2
([(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
Description
The matching number of a graph. For a graph $G$, this is defined as the maximal size of a '''matching''' or '''independent edge set''' (a set of edges without common vertices) contained in $G$.
Mp00156: Graphs line graphGraphs
St000093: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],0)
=> 0
([],2)
=> ([],0)
=> 0
([(0,1)],2)
=> ([],1)
=> 1
([],3)
=> ([],0)
=> 0
([(1,2)],3)
=> ([],1)
=> 1
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([],4)
=> ([],0)
=> 0
([(2,3)],4)
=> ([],1)
=> 1
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,3),(1,2)],4)
=> ([],2)
=> 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 2
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
Description
The cardinality of a maximal independent set of vertices of a graph. An independent set of a graph is a set of pairwise non-adjacent vertices. A maximum independent set is an independent set of maximum cardinality. This statistic is also called the independence number or stability number $\alpha(G)$ of $G$.
Mp00156: Graphs line graphGraphs
Mp00111: Graphs complementGraphs
St000097: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],0)
=> ([],0)
=> 0
([],2)
=> ([],0)
=> ([],0)
=> 0
([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1
([],3)
=> ([],0)
=> ([],0)
=> 0
([(1,2)],3)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 1
([],4)
=> ([],0)
=> ([],0)
=> 0
([(2,3)],4)
=> ([],1)
=> ([],1)
=> 1
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 1
([(0,3),(1,2)],4)
=> ([],2)
=> ([(0,1)],2)
=> 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 2
Description
The order of the largest clique of the graph. A clique in a graph $G$ is a subset $U \subseteq V(G)$ such that any pair of vertices in $U$ are adjacent. I.e. the subgraph induced by $U$ is a complete graph.
Mp00156: Graphs line graphGraphs
Mp00111: Graphs complementGraphs
St000098: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],0)
=> ([],0)
=> 0
([],2)
=> ([],0)
=> ([],0)
=> 0
([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1
([],3)
=> ([],0)
=> ([],0)
=> 0
([(1,2)],3)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 1
([],4)
=> ([],0)
=> ([],0)
=> 0
([(2,3)],4)
=> ([],1)
=> ([],1)
=> 1
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 1
([(0,3),(1,2)],4)
=> ([],2)
=> ([(0,1)],2)
=> 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 2
Description
The chromatic number of a graph. The minimal number of colors needed to color the vertices of the graph such that no two vertices which share an edge have the same color.
Mp00156: Graphs line graphGraphs
Mp00203: Graphs coneGraphs
St000259: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],0)
=> ([],1)
=> 0
([],2)
=> ([],0)
=> ([],1)
=> 0
([(0,1)],2)
=> ([],1)
=> ([(0,1)],2)
=> 1
([],3)
=> ([],0)
=> ([],1)
=> 0
([(1,2)],3)
=> ([],1)
=> ([(0,1)],2)
=> 1
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([],4)
=> ([],0)
=> ([],1)
=> 0
([(2,3)],4)
=> ([],1)
=> ([(0,1)],2)
=> 1
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2)],4)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> 2
Description
The diameter of a connected graph. This is the greatest distance between any pair of vertices.
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00321: Integer partitions 2-conjugateInteger partitions
St001280: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> [1]
=> 0
([],2)
=> [1,1]
=> [1,1]
=> 0
([(0,1)],2)
=> [2]
=> [2]
=> 1
([],3)
=> [1,1,1]
=> [1,1,1]
=> 0
([(1,2)],3)
=> [2,1]
=> [3]
=> 1
([(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [2,1]
=> 1
([],4)
=> [1,1,1,1]
=> [1,1,1,1]
=> 0
([(2,3)],4)
=> [2,1,1]
=> [3,1]
=> 1
([(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 1
([(0,3),(1,3),(2,3)],4)
=> [4]
=> [2,2]
=> 2
([(0,3),(1,2)],4)
=> [2,2]
=> [4]
=> 1
([(0,3),(1,2),(2,3)],4)
=> [4]
=> [2,2]
=> 2
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [2,2]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [2,2]
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [2,2]
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [2,2]
=> 2
Description
The number of parts of an integer partition that are at least two.
Mp00324: Graphs chromatic difference sequenceInteger compositions
Mp00094: Integer compositions to binary wordBinary words
St001355: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> [1] => 1 => 0
([],2)
=> [2] => 10 => 1
([(0,1)],2)
=> [1,1] => 11 => 0
([],3)
=> [3] => 100 => 1
([(1,2)],3)
=> [2,1] => 101 => 1
([(0,2),(1,2)],3)
=> [2,1] => 101 => 1
([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => 111 => 0
([],4)
=> [4] => 1000 => 1
([(2,3)],4)
=> [3,1] => 1001 => 2
([(1,3),(2,3)],4)
=> [3,1] => 1001 => 2
([(0,3),(1,3),(2,3)],4)
=> [3,1] => 1001 => 2
([(0,3),(1,2)],4)
=> [2,2] => 1010 => 2
([(0,3),(1,2),(2,3)],4)
=> [2,2] => 1010 => 2
([(1,2),(1,3),(2,3)],4)
=> [2,1,1] => 1011 => 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => 1011 => 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2] => 1010 => 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => 1011 => 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => 1111 => 0
Description
Number of non-empty prefixes of a binary word that contain equally many 0's and 1's. Graphically, this is the number of returns to the main diagonal of the monotone lattice path of a binary word.
Mp00156: Graphs line graphGraphs
Mp00203: Graphs coneGraphs
St001512: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],0)
=> ([],1)
=> 0
([],2)
=> ([],0)
=> ([],1)
=> 0
([(0,1)],2)
=> ([],1)
=> ([(0,1)],2)
=> 1
([],3)
=> ([],0)
=> ([],1)
=> 0
([(1,2)],3)
=> ([],1)
=> ([(0,1)],2)
=> 1
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([],4)
=> ([],0)
=> ([],1)
=> 0
([(2,3)],4)
=> ([],1)
=> ([(0,1)],2)
=> 1
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2)],4)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> 2
Description
The minimum rank of a graph. The minimum rank of a simple graph G is the smallest possible rank over all symmetric real matrices whose entry in row $i$ and column $j$ (for $i\neq j$) is nonzero whenever $\{i, j\}$ is an edge in $G$, and zero otherwise.
Mp00156: Graphs line graphGraphs
Mp00203: Graphs coneGraphs
St000453: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],0)
=> ([],1)
=> 1 = 0 + 1
([],2)
=> ([],0)
=> ([],1)
=> 1 = 0 + 1
([(0,1)],2)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([],3)
=> ([],0)
=> ([],1)
=> 1 = 0 + 1
([(1,2)],3)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
([],4)
=> ([],0)
=> ([],1)
=> 1 = 0 + 1
([(2,3)],4)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
([(0,3),(1,2)],4)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 3 = 2 + 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> 3 = 2 + 1
Description
The number of distinct Laplacian eigenvalues of a graph.
Mp00156: Graphs line graphGraphs
Mp00203: Graphs coneGraphs
St000777: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],0)
=> ([],1)
=> 1 = 0 + 1
([],2)
=> ([],0)
=> ([],1)
=> 1 = 0 + 1
([(0,1)],2)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([],3)
=> ([],0)
=> ([],1)
=> 1 = 0 + 1
([(1,2)],3)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
([],4)
=> ([],0)
=> ([],1)
=> 1 = 0 + 1
([(2,3)],4)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
([(0,3),(1,2)],4)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 3 = 2 + 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> 3 = 2 + 1
Description
The number of distinct eigenvalues of the distance Laplacian of a connected graph.
The following 352 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001093The detour number of a graph. St001674The number of vertices of the largest induced star graph in the graph. St001792The arboricity of a graph. St000024The number of double up and double down steps of a Dyck path. St000147The largest part of an integer partition. St000183The side length of the Durfee square of an integer partition. St000291The number of descents of a binary word. St000352The Elizalde-Pak rank of a permutation. St000378The diagonal inversion number of an integer partition. St000479The Ramsey number of a graph. St000875The semilength of the longest Dyck word in the Catalan factorisation of a binary word. St000994The number of cycle peaks and the number of cycle valleys of a permutation. St001089Number of indecomposable projective non-injective modules minus the number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001188The number of simple modules $S$ with grade $\inf \{ i \geq 0 | Ext^i(S,A) \neq 0 \}$ at least two in the Nakayama algebra $A$ corresponding to the Dyck path. St001229The vector space dimension of the first extension group between the Jacobson radical J and J^2. St001244The number of simple modules of projective dimension one that are not 1-regular for the Nakayama algebra associated to a Dyck path. St001269The sum of the minimum of the number of exceedances and deficiencies in each cycle of a permutation. St001413Half the length of the longest even length palindromic prefix of a binary word. St001420Half the length of a longest factor which is its own reverse-complement of a binary word. St001421Half the length of a longest factor which is its own reverse-complement and begins with a one of a binary word. St001873For a Nakayama algebra corresponding to a Dyck path, we define the matrix C with entries the Hom-spaces between $e_i J$ and $e_j J$ (the radical of the indecomposable projective modules). St001874Lusztig's a-function for the symmetric group. St000013The height of a Dyck path. St000299The number of nonisomorphic vertex-induced subtrees. St000300The number of independent sets of vertices of a graph. St000390The number of runs of ones in a binary word. St000443The number of long tunnels of a Dyck path. St001007Number of simple modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001187The number of simple modules with grade at least one in the corresponding Nakayama algebra. St001224Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001267The length of the Lyndon factorization of the binary word. St001642The Prague dimension of a graph. St001814The number of partitions interlacing the given partition. St001884The number of borders of a binary word. St001318The number of vertices of the largest induced subforest with the same number of connected components of a graph. St001321The number of vertices of the largest induced subforest of a graph. St000442The maximal area to the right of an up step of a Dyck path. St000829The Ulam distance of a permutation to the identity permutation. St001031The height of the bicoloured Motzkin path associated with the Dyck path. St000444The length of the maximal rise of a Dyck path. St001525The number of symmetric hooks on the diagonal of a partition. St001606The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on set partitions. St000723The maximal cardinality of a set of vertices with the same neighbourhood in a graph. St000786The maximal number of occurrences of a colour in a proper colouring of a graph. St001337The upper domination number of a graph. St001338The upper irredundance number of a graph. St000172The Grundy number of a graph. St000381The largest part of an integer composition. St000382The first part of an integer composition. St000808The number of up steps of the associated bargraph. St000822The Hadwiger number of the graph. St001029The size of the core of a graph. St001108The 2-dynamic chromatic number of a graph. St001110The 3-dynamic chromatic number of a graph. St001116The game chromatic number of a graph. St001330The hat guessing number of a graph. St001494The Alon-Tarsi number of a graph. St001580The acyclic chromatic number of a graph. St001883The mutual visibility number of a graph. St001963The tree-depth of a graph. St000086The number of subgraphs. St000087The number of induced subgraphs. St000207Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000244The cardinality of the automorphism group of a graph. St000258The burning number of a graph. St000269The number of acyclic orientations of a graph. St000270The number of forests contained in a graph. St000283The size of the preimage of the map 'to graph' from Binary trees to Graphs. St000286The number of connected components of the complement of a graph. St000306The bounce count of a Dyck path. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000343The number of spanning subgraphs of a graph. St000363The number of minimal vertex covers of a graph. St000364The exponent of the automorphism group of a graph. St000452The number of distinct eigenvalues of a graph. St000468The Hosoya index of a graph. St000469The distinguishing number of a graph. St000636The hull number of a graph. St000667The greatest common divisor of the parts of the partition. St000722The number of different neighbourhoods in a graph. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St000757The length of the longest weakly inreasing subsequence of parts of an integer composition. St000765The number of weak records in an integer composition. St000917The open packing number of a graph. St000918The 2-limited packing number of a graph. St000926The clique-coclique number of a graph. St000972The composition number of a graph. St001109The number of proper colourings of a graph with as few colours as possible. St001235The global dimension of the corresponding Comp-Nakayama algebra. St001261The Castelnuovo-Mumford regularity of a graph. St001302The number of minimally dominating sets of vertices of a graph. St001304The number of maximally independent sets of vertices of a graph. St001315The dissociation number of a graph. St001316The domatic number of a graph. St001342The number of vertices in the center of a graph. St001366The maximal multiplicity of a degree of a vertex of a graph. St001368The number of vertices of maximal degree in a graph. St001384The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains. St001389The number of partitions of the same length below the given integer partition. St001474The evaluation of the Tutte polynomial of the graph at (x,y) equal to (2,-1). St001503The largest distance of a vertex to a vertex in a cycle in the resolution quiver of the corresponding Nakayama algebra. St001571The Cartan determinant of the integer partition. St001581The achromatic number of a graph. St001645The pebbling number of a connected graph. St001654The monophonic hull number of a graph. St001655The general position number of a graph. St001656The monophonic position number of a graph. St001670The connected partition number of a graph. St001672The restrained domination number of a graph. St001707The length of a longest path in a graph such that the remaining vertices can be partitioned into two sets of the same size without edges between them. St001725The harmonious chromatic number of a graph. St001746The coalition number of a graph. St001757The number of orbits of toric promotion on a graph. St001758The number of orbits of promotion on a graph. St001802The number of endomorphisms of a graph. St001844The maximal degree of a generator of the invariant ring of the automorphism group of a graph. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001286The annihilation number of a graph. St000005The bounce statistic of a Dyck path. St000120The number of left tunnels of a Dyck path. St000329The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St001508The degree of the standard monomial associated to a Dyck path relative to the diagonal boundary. St000455The second largest eigenvalue of a graph if it is integral. St001942The number of loops of the quiver corresponding to the reduced incidence algebra of a poset. St000907The number of maximal antichains of minimal length in a poset. St001917The order of toric promotion on the set of labellings of a graph. St001621The number of atoms of a lattice. St001624The breadth of a lattice. St000460The hook length of the last cell along the main diagonal of an integer partition. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000668The least common multiple of the parts of the partition. St000681The Grundy value of Chomp on Ferrers diagrams. St000870The product of the hook lengths of the diagonal cells in an integer partition. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St001360The number of covering relations in Young's lattice below a partition. St001378The product of the cohook lengths of the integer partition. St001380The number of monomer-dimer tilings of a Ferrers diagram. St001520The number of strict 3-descents. St001607The number of coloured graphs such that the multiplicities of colours are given by a partition. St001611The number of multiset partitions such that the multiplicities of elements are given by a partition. St001914The size of the orbit of an integer partition in Bulgarian solitaire. St000260The radius of a connected graph. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000933The number of multipartitions of sizes given by an integer partition. St001498The normalised height of a Nakayama algebra with magnitude 1. St000741The Colin de Verdière graph invariant. St000454The largest eigenvalue of a graph if it is integral. St000466The Gutman (or modified Schultz) index of a connected graph. St000937The number of positive values of the symmetric group character corresponding to the partition. St000914The sum of the values of the Möbius function of a poset. St001283The number of finite solvable groups that are realised by the given partition over the complex numbers. St001284The number of finite groups that are realised by the given partition over the complex numbers. St001442The number of standard Young tableaux whose major index is divisible by the size of a given integer partition. St001913The number of preimages of an integer partition in Bulgarian solitaire. St000003The number of standard Young tableaux of the partition. St000006The dinv of a Dyck path. St000010The length of the partition. St000015The number of peaks of a Dyck path. St000026The position of the first return of a Dyck path. St000048The multinomial of the parts of a partition. St000079The number of alternating sign matrices for a given Dyck path. St000088The row sums of the character table of the symmetric group. St000148The number of odd parts of a partition. St000159The number of distinct parts of the integer partition. St000160The multiplicity of the smallest part of a partition. St000179The product of the hook lengths of the integer partition. St000184The size of the centralizer of any permutation of given cycle type. St000212The number of standard Young tableaux for an integer partition such that no two consecutive entries appear in the same row. St000278The size of the preimage of the map 'to partition' from Integer compositions to Integer partitions. St000285The size of the preimage of the map 'to inverse des composition' from Parking functions to Integer compositions. St000321The number of integer partitions of n that are dominated by an integer partition. St000326The position of the first one in a binary word after appending a 1 at the end. St000345The number of refinements of a partition. St000346The number of coarsenings of a partition. St000389The number of runs of ones of odd length in a binary word. St000475The number of parts equal to 1 in a partition. St000476The sum of the semi-lengths of tunnels before a valley of a Dyck path. St000531The leading coefficient of the rook polynomial of an integer partition. St000533The minimum of the number of parts and the size of the first part of an integer partition. St000549The number of odd partial sums of an integer partition. St000618The number of self-evacuating tableaux of given shape. St000644The number of graphs with given frequency partition. St000684The global dimension of the LNakayama algebra associated to a Dyck path. St000685The dominant dimension of the LNakayama algebra associated to a Dyck path. St000686The finitistic dominant dimension of a Dyck path. St000734The last entry in the first row of a standard tableau. St000783The side length of the largest staircase partition fitting into a partition. St000811The sum of the entries in the column specified by the partition of the change of basis matrix from powersum symmetric functions to Schur symmetric functions. St000814The sum of the entries in the column specified by the partition of the change of basis matrix from elementary symmetric functions to Schur symmetric functions. St000835The minimal difference in size when partitioning the integer partition into two subpartitions. St000876The number of factors in the Catalan decomposition of a binary word. St000930The k-Gorenstein degree of the corresponding Nakayama algebra with linear quiver. St000932The number of occurrences of the pattern UDU in a Dyck path. St000935The number of ordered refinements of an integer partition. St000947The major index east count of a Dyck path. St000992The alternating sum of the parts of an integer partition. St001024Maximum of dominant dimensions of the simple modules in the Nakayama algebra corresponding to the Dyck path. St001027Number of simple modules with projective dimension equal to injective dimension in the Nakayama algebra corresponding to the Dyck path. St001055The Grundy value for the game of removing cells of a row in an integer partition. St001067The number of simple modules of dominant dimension at least two in the corresponding Nakayama algebra. St001068Number of torsionless simple modules in the corresponding Nakayama algebra. St001103The number of words with multiplicities of the letters given by the partition, avoiding the consecutive pattern 123. St001121The multiplicity of the irreducible representation indexed by the partition in the Kronecker square corresponding to the partition. St001135The projective dimension of the first simple module in the Nakayama algebra corresponding to the Dyck path. St001159Number of simple modules with dominant dimension equal to the global dimension in the corresponding Nakayama algebra. St001161The major index north count of a Dyck path. St001165Number of simple modules with even projective dimension in the corresponding Nakayama algebra. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001201The grade of the simple module $S_0$ in the special CNakayama algebra corresponding to the Dyck path. St001202Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001203We associate to a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n-1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a Dyck path as follows: St001204Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001223Number of indecomposable projective non-injective modules P such that the modules X and Y in a an Auslander-Reiten sequence ending at P are torsionless. St001247The number of parts of a partition that are not congruent 2 modulo 3. St001249Sum of the odd parts of a partition. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001257The dominant dimension of the double dual of A/J when A is the corresponding Nakayama algebra with Jacobson radical J. St001273The projective dimension of the first term in an injective coresolution of the regular module. St001291The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001299The product of all non-zero projective dimensions of simple modules of the corresponding Nakayama algebra. St001364The number of permutations whose cube equals a fixed permutation of given cycle type. St001365The number of lattice paths of the same length weakly above the path given by a binary word. St001387Number of standard Young tableaux of the skew shape tracing the border of the given partition. St001432The order dimension of the partition. St001462The number of factors of a standard tableaux under concatenation. St001471The magnitude of a Dyck path. St001484The number of singletons of an integer partition. St001530The depth of a Dyck path. St001593This is the number of standard Young tableaux of the given shifted shape. St001599The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on rooted trees. St001601The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on trees. St001608The number of coloured rooted trees such that the multiplicities of colours are given by a partition. St001609The number of coloured trees such that the multiplicities of colours are given by a partition. St001612The number of coloured multisets of cycles such that the multiplicities of colours are given by a partition. St001627The number of coloured connected graphs such that the multiplicities of colours are given by a partition. St001628The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple connected graphs. St001659The number of ways to place as many non-attacking rooks as possible on a Ferrers board. St001710The number of permutations such that conjugation with a permutation of given cycle type yields the inverse permutation. St001733The number of weak left to right maxima of a Dyck path. St001780The order of promotion on the set of standard tableaux of given shape. St001785The number of ways to obtain a partition as the multiset of antidiagonal lengths of the Ferrers diagram of a partition. St001786The number of total orderings of the north steps of a Dyck path such that steps after the k-th east step are not among the first k positions in the order. St001899The total number of irreducible representations contained in the higher Lie character for an integer partition. St001900The number of distinct irreducible representations contained in the higher Lie character for an integer partition. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St001933The largest multiplicity of a part in an integer partition. St001936The number of transitive factorisations of a permutation of given cycle type into star transpositions. St001938The number of transitive monotone factorizations of genus zero of a permutation of given cycle type. St001955The number of natural descents for set-valued two row standard Young tableaux. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St001281The normalized isoperimetric number of a graph. St001568The smallest positive integer that does not appear twice in the partition. St001877Number of indecomposable injective modules with projective dimension 2. St001738The minimal order of a graph which is not an induced subgraph of the given graph. St001600The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple graphs. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St000456The monochromatic index of a connected graph. St000464The Schultz index of a connected graph. St000514The number of invariant simple graphs when acting with a permutation of given cycle type. St000515The number of invariant set partitions when acting with a permutation of given cycle type. St000706The product of the factorials of the multiplicities of an integer partition. St000939The number of characters of the symmetric group whose value on the partition is positive. St000993The multiplicity of the largest part of an integer partition. St001527The cyclic permutation representation number of an integer partition. St001545The second Elser number of a connected graph. St001704The size of the largest multi-subset-intersection of the deck of a graph with the deck of another graph. St001767The largest minimal number of arrows pointing to a cell in the Ferrers diagram in any assignment. St000284The Plancherel distribution on integer partitions. St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000813The number of zero-one matrices with weakly decreasing column sums and row sums given by the partition. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000928The sum of the coefficients of the character polynomial of an integer partition. St001118The acyclic chromatic index of a graph. St001128The exponens consonantiae of a partition. St001592The maximal number of simple paths between any two different vertices of a graph. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St001651The Frankl number of a lattice. St000137The Grundy value of an integer partition. St000699The toughness times the least common multiple of 1,. St000781The number of proper colouring schemes of a Ferrers diagram. St000929The constant term of the character polynomial of an integer partition. St001122The multiplicity of the sign representation in the Kronecker square corresponding to a partition. St001383The BG-rank of an integer partition. St001561The value of the elementary symmetric function evaluated at 1. St001562The value of the complete homogeneous symmetric function evaluated at 1. St001563The value of the power-sum symmetric function evaluated at 1. St001564The value of the forgotten symmetric functions when all variables set to 1. St001570The minimal number of edges to add to make a graph Hamiltonian. St001763The Hurwitz number of an integer partition. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St001924The number of cells in an integer partition whose arm and leg length coincide. St001939The number of parts that are equal to their multiplicity in the integer partition. St001940The number of distinct parts that are equal to their multiplicity in the integer partition. St000422The energy of a graph, if it is integral. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St000302The determinant of the distance matrix of a connected graph. St000467The hyper-Wiener index of a connected graph. St001845The number of join irreducibles minus the rank of a lattice. St000419The number of Dyck paths that are weakly above the Dyck path, except for the path itself. St000420The number of Dyck paths that are weakly above a Dyck path. St000478Another weight of a partition according to Alladi. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000567The sum of the products of all pairs of parts. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000658The number of rises of length 2 of a Dyck path. St000659The number of rises of length at least 2 of a Dyck path. St000678The number of up steps after the last double rise of a Dyck path. St000735The last entry on the main diagonal of a standard tableau. St000744The length of the path to the largest entry in a standard Young tableau. St000874The position of the last double rise in a Dyck path. St000934The 2-degree of an integer partition. St000946The sum of the skew hook positions in a Dyck path. St000976The sum of the positions of double up-steps of a Dyck path. St000984The number of boxes below precisely one peak. St001032The number of horizontal steps in the bicoloured Motzkin path associated with the Dyck path. St001038The minimal height of a column in the parallelogram polyomino associated with the Dyck path. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St001097The coefficient of the monomial symmetric function indexed by the partition in the formal group law for linear orders. St001099The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled binary trees. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St001418Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001480The number of simple summands of the module J^2/J^3. St001499The number of indecomposable projective-injective modules of a magnitude 1 Nakayama algebra. St001808The box weight or horizontal decoration of a Dyck path. St001816Eigenvalues of the top-to-random operator acting on a simple module. St001626The number of maximal proper sublattices of a lattice. St000046The largest eigenvalue of the random to random operator acting on the simple module corresponding to the given partition. St000506The number of standard desarrangement tableaux of shape equal to the given partition. St001176The size of a partition minus its first part. St001177Twice the mean value of the major index among all standard Young tableaux of a partition. St001440The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition. St001602The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on endofunctions. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St001961The sum of the greatest common divisors of all pairs of parts.