searching the database
Your data matches 1 statistic following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000270
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
([],1)
=> 1
([],2)
=> 1
([(0,1)],2)
=> 2
([],3)
=> 1
([(1,2)],3)
=> 2
([(0,2),(1,2)],3)
=> 4
([(0,1),(0,2),(1,2)],3)
=> 7
([],4)
=> 1
([(2,3)],4)
=> 2
([(1,3),(2,3)],4)
=> 4
([(0,3),(1,3),(2,3)],4)
=> 8
([(0,3),(1,2)],4)
=> 4
([(0,3),(1,2),(2,3)],4)
=> 8
([(1,2),(1,3),(2,3)],4)
=> 7
([(0,3),(1,2),(1,3),(2,3)],4)
=> 14
([(0,2),(0,3),(1,2),(1,3)],4)
=> 15
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 24
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 38
([],5)
=> 1
([(3,4)],5)
=> 2
([(2,4),(3,4)],5)
=> 4
([(1,4),(2,4),(3,4)],5)
=> 8
([(0,4),(1,4),(2,4),(3,4)],5)
=> 16
([(1,4),(2,3)],5)
=> 4
([(1,4),(2,3),(3,4)],5)
=> 8
([(0,1),(2,4),(3,4)],5)
=> 8
([(2,3),(2,4),(3,4)],5)
=> 7
([(0,4),(1,4),(2,3),(3,4)],5)
=> 16
([(1,4),(2,3),(2,4),(3,4)],5)
=> 14
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 28
([(1,3),(1,4),(2,3),(2,4)],5)
=> 15
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 30
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 24
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 28
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 48
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 54
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 81
([(0,4),(1,3),(2,3),(2,4)],5)
=> 16
([(0,1),(2,3),(2,4),(3,4)],5)
=> 14
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 28
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 49
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 31
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 52
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 82
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 48
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 38
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 76
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 128
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 86
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 134
Description
The number of forests contained in a graph.
That is, for a graph G=(V,E) with vertices V and edges E, the number of subsets E′⊆E for which the subgraph (V,E′) is acyclic.
If TG(x,y) is the Tutte polynomial [2] of G, then the number of forests contained in G is given by TG(2,1).
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!