Your data matches 177 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00264: Graphs delete endpointsGraphs
St000276: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> 1
([],2)
=> ([],2)
=> 0
([(0,1)],2)
=> ([],1)
=> 1
([],3)
=> ([],3)
=> 0
([(1,2)],3)
=> ([],2)
=> 0
([(0,2),(1,2)],3)
=> ([],1)
=> 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([],4)
=> ([],4)
=> 0
([(2,3)],4)
=> ([],3)
=> 0
([(1,3),(2,3)],4)
=> ([],2)
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> 1
([(0,3),(1,2)],4)
=> ([],2)
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([],1)
=> 1
([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([],5)
=> ([],5)
=> 0
([(3,4)],5)
=> ([],4)
=> 0
([(2,4),(3,4)],5)
=> ([],3)
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([],2)
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> 1
([(1,4),(2,3)],5)
=> ([],3)
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([],2)
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([],2)
=> 0
([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([],1)
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 0
Description
The size of the preimage of the map 'to graph' from Ordered trees to Graphs.
Mp00264: Graphs delete endpointsGraphs
St000283: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> 1
([],2)
=> ([],2)
=> 0
([(0,1)],2)
=> ([],1)
=> 1
([],3)
=> ([],3)
=> 0
([(1,2)],3)
=> ([],2)
=> 0
([(0,2),(1,2)],3)
=> ([],1)
=> 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([],4)
=> ([],4)
=> 0
([(2,3)],4)
=> ([],3)
=> 0
([(1,3),(2,3)],4)
=> ([],2)
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> 1
([(0,3),(1,2)],4)
=> ([],2)
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([],1)
=> 1
([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([],5)
=> ([],5)
=> 0
([(3,4)],5)
=> ([],4)
=> 0
([(2,4),(3,4)],5)
=> ([],3)
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([],2)
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> 1
([(1,4),(2,3)],5)
=> ([],3)
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([],2)
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([],2)
=> 0
([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([],1)
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 0
Description
The size of the preimage of the map 'to graph' from Binary trees to Graphs.
Mp00264: Graphs delete endpointsGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St001939: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> [1]
=> [1]
=> 1
([],2)
=> ([],2)
=> [1,1]
=> [2]
=> 0
([(0,1)],2)
=> ([],1)
=> [1]
=> [1]
=> 1
([],3)
=> ([],3)
=> [1,1,1]
=> [3]
=> 0
([(1,2)],3)
=> ([],2)
=> [1,1]
=> [2]
=> 0
([(0,2),(1,2)],3)
=> ([],1)
=> [1]
=> [1]
=> 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> 0
([],4)
=> ([],4)
=> [1,1,1,1]
=> [4]
=> 0
([(2,3)],4)
=> ([],3)
=> [1,1,1]
=> [3]
=> 0
([(1,3),(2,3)],4)
=> ([],2)
=> [1,1]
=> [2]
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> [1]
=> [1]
=> 1
([(0,3),(1,2)],4)
=> ([],2)
=> [1,1]
=> [2]
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([],1)
=> [1]
=> [1]
=> 1
([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [1,1,1,1]
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 0
([],5)
=> ([],5)
=> [1,1,1,1,1]
=> [5]
=> 0
([(3,4)],5)
=> ([],4)
=> [1,1,1,1]
=> [4]
=> 0
([(2,4),(3,4)],5)
=> ([],3)
=> [1,1,1]
=> [3]
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([],2)
=> [1,1]
=> [2]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> [1]
=> [1]
=> 1
([(1,4),(2,3)],5)
=> ([],3)
=> [1,1,1]
=> [3]
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([],2)
=> [1,1]
=> [2]
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([],2)
=> [1,1]
=> [2]
=> 0
([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([],1)
=> [1]
=> [1]
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [1,1,1,1]
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> [1]
=> [1]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [1,1,1,1,1]
=> 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 0
Description
The number of parts that are equal to their multiplicity in the integer partition.
Mp00264: Graphs delete endpointsGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St001940: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> [1]
=> [1]
=> 1
([],2)
=> ([],2)
=> [1,1]
=> [2]
=> 0
([(0,1)],2)
=> ([],1)
=> [1]
=> [1]
=> 1
([],3)
=> ([],3)
=> [1,1,1]
=> [3]
=> 0
([(1,2)],3)
=> ([],2)
=> [1,1]
=> [2]
=> 0
([(0,2),(1,2)],3)
=> ([],1)
=> [1]
=> [1]
=> 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> 0
([],4)
=> ([],4)
=> [1,1,1,1]
=> [4]
=> 0
([(2,3)],4)
=> ([],3)
=> [1,1,1]
=> [3]
=> 0
([(1,3),(2,3)],4)
=> ([],2)
=> [1,1]
=> [2]
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> [1]
=> [1]
=> 1
([(0,3),(1,2)],4)
=> ([],2)
=> [1,1]
=> [2]
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([],1)
=> [1]
=> [1]
=> 1
([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [1,1,1,1]
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 0
([],5)
=> ([],5)
=> [1,1,1,1,1]
=> [5]
=> 0
([(3,4)],5)
=> ([],4)
=> [1,1,1,1]
=> [4]
=> 0
([(2,4),(3,4)],5)
=> ([],3)
=> [1,1,1]
=> [3]
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([],2)
=> [1,1]
=> [2]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> [1]
=> [1]
=> 1
([(1,4),(2,3)],5)
=> ([],3)
=> [1,1,1]
=> [3]
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([],2)
=> [1,1]
=> [2]
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([],2)
=> [1,1]
=> [2]
=> 0
([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([],1)
=> [1]
=> [1]
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [1,1,1,1]
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> [1]
=> [1]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [1,1,1,1,1]
=> 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 0
Description
The number of distinct parts that are equal to their multiplicity in the integer partition.
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001122: Integer partitions ⟶ ℤResult quality: 97% values known / values provided: 97%distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> [1]
=> []
=> ? = 1
([],2)
=> [1,1]
=> [2]
=> []
=> ? = 0
([(0,1)],2)
=> [2]
=> [1,1]
=> [1]
=> 1
([],3)
=> [1,1,1]
=> [3]
=> []
=> ? = 0
([(1,2)],3)
=> [2,1]
=> [2,1]
=> [1]
=> 1
([(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> [1,1]
=> 0
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> [1,1]
=> 0
([],4)
=> [1,1,1,1]
=> [4]
=> []
=> ? = 1
([(2,3)],4)
=> [2,1,1]
=> [3,1]
=> [1]
=> 1
([(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> [1,1]
=> 0
([(0,3),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,3),(1,2)],4)
=> [2,2]
=> [2,2]
=> [2]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> [1,1]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> [1,1,1]
=> 0
([],5)
=> [1,1,1,1,1]
=> [5]
=> []
=> ? = 0
([(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> [1]
=> 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> [1,1]
=> 0
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> [1,1,1]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(1,4),(2,3)],5)
=> [2,2,1]
=> [3,2]
=> [2]
=> 0
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> [1,1,1]
=> 0
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2,2,1]
=> [2,1]
=> 1
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> [1,1]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> [1,1,1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [2,1,1,1]
=> [1,1,1]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> [1,1,1]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2,2,1]
=> [2,1]
=> 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> [1,1,1]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([],6)
=> [1,1,1,1,1,1]
=> [6]
=> []
=> ? = 0
([(4,5)],6)
=> [2,1,1,1,1]
=> [5,1]
=> [1]
=> 1
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [4,1,1]
=> [1,1]
=> 0
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> 0
Description
The multiplicity of the sign representation in the Kronecker square corresponding to a partition. The Kronecker coefficient is the multiplicity $g_{\mu,\nu}^\lambda$ of the Specht module $S^\lambda$ in $S^\mu\otimes S^\nu$: $$ S^\mu\otimes S^\nu = \bigoplus_\lambda g_{\mu,\nu}^\lambda S^\lambda $$ This statistic records the Kronecker coefficient $g_{\lambda,\lambda}^{1^n}$, for $\lambda\vdash n$. It equals $1$ if and only if $\lambda$ is self-conjugate.
Mp00117: Graphs Ore closureGraphs
Mp00157: Graphs connected complementGraphs
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
St001525: Integer partitions ⟶ ℤResult quality: 97% values known / values provided: 97%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> ([],1)
=> []
=> ? = 1
([],2)
=> ([],2)
=> ([],2)
=> []
=> ? = 0
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [1]
=> 1
([],3)
=> ([],3)
=> ([],3)
=> []
=> ? = 0
([(1,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> [1]
=> 1
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [1,1]
=> 0
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 0
([],4)
=> ([],4)
=> ([],4)
=> []
=> ? = 1
([(2,3)],4)
=> ([(2,3)],4)
=> ([(2,3)],4)
=> [1]
=> 1
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [1,1]
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> 0
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 0
([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> 0
([],5)
=> ([],5)
=> ([],5)
=> []
=> ? = 0
([(3,4)],5)
=> ([(3,4)],5)
=> ([(3,4)],5)
=> [1]
=> 1
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [1,1]
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> 0
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> 0
([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> 0
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> 0
([],6)
=> ([],6)
=> ([],6)
=> []
=> ? = 0
([(4,5)],6)
=> ([(4,5)],6)
=> ([(4,5)],6)
=> [1]
=> 1
([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> [1,1]
=> 0
([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> [1,1,1]
=> 0
Description
The number of symmetric hooks on the diagonal of a partition.
Mp00251: Graphs clique sizesInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000929: Integer partitions ⟶ ℤResult quality: 94% values known / values provided: 94%distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> [1]
=> []
=> ? = 1
([],2)
=> [1,1]
=> [2]
=> []
=> ? ∊ {0,1}
([(0,1)],2)
=> [2]
=> [1,1]
=> [1]
=> ? ∊ {0,1}
([],3)
=> [1,1,1]
=> [3]
=> []
=> ? ∊ {0,0}
([(1,2)],3)
=> [2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0}
([(0,2),(1,2)],3)
=> [2,2]
=> [2,2]
=> [2]
=> 0
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> [1,1]
=> 1
([],4)
=> [1,1,1,1]
=> [4]
=> []
=> ? ∊ {0,0}
([(2,3)],4)
=> [2,1,1]
=> [3,1]
=> [1]
=> ? ∊ {0,0}
([(1,3),(2,3)],4)
=> [2,2,1]
=> [3,2]
=> [2]
=> 0
([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> [3,3]
=> [3]
=> 0
([(0,3),(1,2)],4)
=> [2,2]
=> [2,2]
=> [2]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> [3,3]
=> [3]
=> 0
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> [1,1]
=> 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> [2,2,1]
=> [2,1]
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> [4,4]
=> [4]
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,3]
=> [2,2,2]
=> [2,2]
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> [1,1,1]
=> 1
([],5)
=> [1,1,1,1,1]
=> [5]
=> []
=> ? ∊ {0,0}
([(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> [1]
=> ? ∊ {0,0}
([(2,4),(3,4)],5)
=> [2,2,1,1]
=> [4,2]
=> [2]
=> 0
([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> [4,3]
=> [3]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> [4,4]
=> [4]
=> 0
([(1,4),(2,3)],5)
=> [2,2,1]
=> [3,2]
=> [2]
=> 0
([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> [4,3]
=> [3]
=> 0
([(0,1),(2,4),(3,4)],5)
=> [2,2,2]
=> [3,3]
=> [3]
=> 0
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> [1,1]
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> [4,4]
=> [4]
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,1]
=> [3,2,1]
=> [2,1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [3,3,1]
=> [3,1]
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,1]
=> [5,4]
=> [4]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> [5,5]
=> [5]
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,1]
=> [3,2,2]
=> [2,2]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [3,3,1]
=> [3,1]
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [3,3,2]
=> [3,2]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> [6,6]
=> [6]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [3,3,3]
=> [3,3]
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> [4,4]
=> [4]
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2,2,1]
=> [2,1]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,2,2]
=> [3,3,1]
=> [3,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [2,2,2]
=> [2,2]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,2,2,2]
=> [5,5]
=> [5]
=> 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2,2]
=> [4,4,1]
=> [4,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [3,3,3]
=> [3,3]
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [3,3,2]
=> [3,2]
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,2]
=> [2,2,1,1]
=> [2,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,3]
=> [2,2,2,1]
=> [2,2,1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,3,2,2]
=> [4,4,2]
=> [4,2]
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [3,3,3,3]
=> [4,4,4]
=> [4,4]
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,4]
=> [2,2,2,2]
=> [2,2,2]
=> 0
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
([],6)
=> [1,1,1,1,1,1]
=> [6]
=> []
=> ? ∊ {0,1,1}
([(4,5)],6)
=> [2,1,1,1,1]
=> [5,1]
=> [1]
=> ? ∊ {0,1,1}
([(3,5),(4,5)],6)
=> [2,2,1,1,1]
=> [5,2]
=> [2]
=> 0
([(2,5),(3,5),(4,5)],6)
=> [2,2,2,1,1]
=> [5,3]
=> [3]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [2,2,2,2,1]
=> [5,4]
=> [4]
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [2,2,2,2,2]
=> [5,5]
=> [5]
=> 0
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [4,2]
=> [2]
=> 0
([(2,5),(3,4),(4,5)],6)
=> [2,2,2,1,1]
=> [5,3]
=> [3]
=> 0
([(1,2),(3,5),(4,5)],6)
=> [2,2,2,1]
=> [4,3]
=> [3]
=> 0
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3,3,3,3,3]
=> [8,8,8]
=> [8,8]
=> ? ∊ {0,1,1}
Description
The constant term of the character polynomial of an integer partition. The definition of the character polynomial can be found in [1]. Indeed, this constant term is $0$ for partitions $\lambda \neq 1^n$ and $1$ for $\lambda = 1^n$.
Mp00275: Graphs to edge-partition of connected componentsInteger partitions
Mp00322: Integer partitions Loehr-WarringtonInteger partitions
St001123: Integer partitions ⟶ ℤResult quality: 93% values known / values provided: 93%distinct values known / distinct values provided: 100%
Values
([],1)
=> []
=> []
=> ? = 1
([],2)
=> []
=> []
=> ? ∊ {0,1}
([(0,1)],2)
=> [1]
=> [1]
=> ? ∊ {0,1}
([],3)
=> []
=> []
=> ? ∊ {0,0}
([(1,2)],3)
=> [1]
=> [1]
=> ? ∊ {0,0}
([(0,2),(1,2)],3)
=> [2]
=> [1,1]
=> 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> 0
([],4)
=> []
=> []
=> ? ∊ {0,0}
([(2,3)],4)
=> [1]
=> [1]
=> ? ∊ {0,0}
([(1,3),(2,3)],4)
=> [2]
=> [1,1]
=> 1
([(0,3),(1,3),(2,3)],4)
=> [3]
=> [1,1,1]
=> 0
([(0,3),(1,2)],4)
=> [1,1]
=> [2]
=> 1
([(0,3),(1,2),(2,3)],4)
=> [3]
=> [1,1,1]
=> 0
([(1,2),(1,3),(2,3)],4)
=> [3]
=> [1,1,1]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [1,1,1,1]
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> [1,1,1,1,1]
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> [1,1,1,1,1,1]
=> 0
([],5)
=> []
=> []
=> ? ∊ {0,0}
([(3,4)],5)
=> [1]
=> [1]
=> ? ∊ {0,0}
([(2,4),(3,4)],5)
=> [2]
=> [1,1]
=> 1
([(1,4),(2,4),(3,4)],5)
=> [3]
=> [1,1,1]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [4]
=> [1,1,1,1]
=> 0
([(1,4),(2,3)],5)
=> [1,1]
=> [2]
=> 1
([(1,4),(2,3),(3,4)],5)
=> [3]
=> [1,1,1]
=> 0
([(0,1),(2,4),(3,4)],5)
=> [2,1]
=> [3]
=> 0
([(2,3),(2,4),(3,4)],5)
=> [3]
=> [1,1,1]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [4]
=> [1,1,1,1]
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4]
=> [1,1,1,1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> [1,1,1,1]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> [1,1,1,1,1,1]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,1,1,1,1,1,1]
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> [4]
=> [1,1,1,1]
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [2,1,1]
=> 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [1,1,1,1,1]
=> 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,1,1,1,1,1,1]
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1]
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,1,1,1,1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> [1,1,1,1,1,1,1]
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> [1,1,1,1,1,1,1,1,1]
=> 0
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1]
=> 0
([],6)
=> []
=> []
=> ? ∊ {0,0,0,0,0,0}
([(4,5)],6)
=> [1]
=> [1]
=> ? ∊ {0,0,0,0,0,0}
([(3,5),(4,5)],6)
=> [2]
=> [1,1]
=> 1
([(2,5),(3,5),(4,5)],6)
=> [3]
=> [1,1,1]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [4]
=> [1,1,1,1]
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [5]
=> [1,1,1,1,1]
=> 0
([(2,5),(3,4)],6)
=> [1,1]
=> [2]
=> 1
([(2,5),(3,4),(4,5)],6)
=> [3]
=> [1,1,1]
=> 0
([(1,2),(3,5),(4,5)],6)
=> [2,1]
=> [3]
=> 0
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [13]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? ∊ {0,0,0,0,0,0}
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [13]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? ∊ {0,0,0,0,0,0}
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? ∊ {0,0,0,0,0,0}
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [15]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? ∊ {0,0,0,0,0,0}
Description
The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. The Kronecker coefficient is the multiplicity $g_{\mu,\nu}^\lambda$ of the Specht module $S^\lambda$ in $S^\mu\otimes S^\nu$: $$ S^\mu\otimes S^\nu = \bigoplus_\lambda g_{\mu,\nu}^\lambda S^\lambda $$ This statistic records the Kronecker coefficient $g_{\lambda,\lambda}^{21^{n-2}}$, for $\lambda\vdash n$.
Mp00275: Graphs to edge-partition of connected componentsInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001392: Integer partitions ⟶ ℤResult quality: 93% values known / values provided: 93%distinct values known / distinct values provided: 100%
Values
([],1)
=> []
=> []
=> ?
=> ? = 1
([],2)
=> []
=> []
=> ?
=> ? ∊ {0,1}
([(0,1)],2)
=> [1]
=> [1]
=> []
=> ? ∊ {0,1}
([],3)
=> []
=> []
=> ?
=> ? ∊ {0,1}
([(1,2)],3)
=> [1]
=> [1]
=> []
=> ? ∊ {0,1}
([(0,2),(1,2)],3)
=> [2]
=> [1,1]
=> [1]
=> 0
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> [1,1]
=> 0
([],4)
=> []
=> []
=> ?
=> ? ∊ {0,1,1}
([(2,3)],4)
=> [1]
=> [1]
=> []
=> ? ∊ {0,1,1}
([(1,3),(2,3)],4)
=> [2]
=> [1,1]
=> [1]
=> 0
([(0,3),(1,3),(2,3)],4)
=> [3]
=> [1,1,1]
=> [1,1]
=> 0
([(0,3),(1,2)],4)
=> [1,1]
=> [2]
=> []
=> ? ∊ {0,1,1}
([(0,3),(1,2),(2,3)],4)
=> [3]
=> [1,1,1]
=> [1,1]
=> 0
([(1,2),(1,3),(2,3)],4)
=> [3]
=> [1,1,1]
=> [1,1]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
([],5)
=> []
=> []
=> ?
=> ? ∊ {1,1,1}
([(3,4)],5)
=> [1]
=> [1]
=> []
=> ? ∊ {1,1,1}
([(2,4),(3,4)],5)
=> [2]
=> [1,1]
=> [1]
=> 0
([(1,4),(2,4),(3,4)],5)
=> [3]
=> [1,1,1]
=> [1,1]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [4]
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(1,4),(2,3)],5)
=> [1,1]
=> [2]
=> []
=> ? ∊ {1,1,1}
([(1,4),(2,3),(3,4)],5)
=> [3]
=> [1,1,1]
=> [1,1]
=> 0
([(0,1),(2,4),(3,4)],5)
=> [2,1]
=> [2,1]
=> [1]
=> 0
([(2,3),(2,4),(3,4)],5)
=> [3]
=> [1,1,1]
=> [1,1]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [4]
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4]
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> [4]
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [2,1,1]
=> [1,1]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> [1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> 0
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> 0
([],6)
=> []
=> []
=> ?
=> ? ∊ {1,1,1,1}
([(4,5)],6)
=> [1]
=> [1]
=> []
=> ? ∊ {1,1,1,1}
([(3,5),(4,5)],6)
=> [2]
=> [1,1]
=> [1]
=> 0
([(2,5),(3,5),(4,5)],6)
=> [3]
=> [1,1,1]
=> [1,1]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [4]
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(2,5),(3,4)],6)
=> [1,1]
=> [2]
=> []
=> ? ∊ {1,1,1,1}
([(2,5),(3,4),(4,5)],6)
=> [3]
=> [1,1,1]
=> [1,1]
=> 0
([(1,2),(3,5),(4,5)],6)
=> [2,1]
=> [2,1]
=> [1]
=> 0
([(3,4),(3,5),(4,5)],6)
=> [3]
=> [1,1,1]
=> [1,1]
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> [4]
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> [3,1]
=> [2,1,1]
=> [1,1]
=> 0
([(0,5),(1,4),(2,3)],6)
=> [1,1,1]
=> [3]
=> []
=> ? ∊ {1,1,1,1}
Description
The largest nonnegative integer which is not a part and is smaller than the largest part of the partition.
Mp00275: Graphs to edge-partition of connected componentsInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001587: Integer partitions ⟶ ℤResult quality: 93% values known / values provided: 93%distinct values known / distinct values provided: 100%
Values
([],1)
=> []
=> []
=> ?
=> ? = 1
([],2)
=> []
=> []
=> ?
=> ? ∊ {0,1}
([(0,1)],2)
=> [1]
=> [1]
=> []
=> ? ∊ {0,1}
([],3)
=> []
=> []
=> ?
=> ? ∊ {0,1}
([(1,2)],3)
=> [1]
=> [1]
=> []
=> ? ∊ {0,1}
([(0,2),(1,2)],3)
=> [2]
=> [1,1]
=> [1]
=> 0
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> [1,1]
=> 0
([],4)
=> []
=> []
=> ?
=> ? ∊ {0,1,1}
([(2,3)],4)
=> [1]
=> [1]
=> []
=> ? ∊ {0,1,1}
([(1,3),(2,3)],4)
=> [2]
=> [1,1]
=> [1]
=> 0
([(0,3),(1,3),(2,3)],4)
=> [3]
=> [1,1,1]
=> [1,1]
=> 0
([(0,3),(1,2)],4)
=> [1,1]
=> [2]
=> []
=> ? ∊ {0,1,1}
([(0,3),(1,2),(2,3)],4)
=> [3]
=> [1,1,1]
=> [1,1]
=> 0
([(1,2),(1,3),(2,3)],4)
=> [3]
=> [1,1,1]
=> [1,1]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
([],5)
=> []
=> []
=> ?
=> ? ∊ {1,1,1}
([(3,4)],5)
=> [1]
=> [1]
=> []
=> ? ∊ {1,1,1}
([(2,4),(3,4)],5)
=> [2]
=> [1,1]
=> [1]
=> 0
([(1,4),(2,4),(3,4)],5)
=> [3]
=> [1,1,1]
=> [1,1]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [4]
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(1,4),(2,3)],5)
=> [1,1]
=> [2]
=> []
=> ? ∊ {1,1,1}
([(1,4),(2,3),(3,4)],5)
=> [3]
=> [1,1,1]
=> [1,1]
=> 0
([(0,1),(2,4),(3,4)],5)
=> [2,1]
=> [2,1]
=> [1]
=> 0
([(2,3),(2,4),(3,4)],5)
=> [3]
=> [1,1,1]
=> [1,1]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [4]
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4]
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 0
([(0,4),(1,3),(2,3),(2,4)],5)
=> [4]
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [2,1,1]
=> [1,1]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> [1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> 0
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> 0
([],6)
=> []
=> []
=> ?
=> ? ∊ {0,1,1,1}
([(4,5)],6)
=> [1]
=> [1]
=> []
=> ? ∊ {0,1,1,1}
([(3,5),(4,5)],6)
=> [2]
=> [1,1]
=> [1]
=> 0
([(2,5),(3,5),(4,5)],6)
=> [3]
=> [1,1,1]
=> [1,1]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [4]
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(2,5),(3,4)],6)
=> [1,1]
=> [2]
=> []
=> ? ∊ {0,1,1,1}
([(2,5),(3,4),(4,5)],6)
=> [3]
=> [1,1,1]
=> [1,1]
=> 0
([(1,2),(3,5),(4,5)],6)
=> [2,1]
=> [2,1]
=> [1]
=> 0
([(3,4),(3,5),(4,5)],6)
=> [3]
=> [1,1,1]
=> [1,1]
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> [4]
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> [3,1]
=> [2,1,1]
=> [1,1]
=> 0
([(0,5),(1,4),(2,3)],6)
=> [1,1,1]
=> [3]
=> []
=> ? ∊ {0,1,1,1}
Description
Half of the largest even part of an integer partition. The largest even part is recorded by [[St000995]].
The following 167 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001593This is the number of standard Young tableaux of the given shifted shape. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000940The number of characters of the symmetric group whose value on the partition is zero. St000225Difference between largest and smallest parts in a partition. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000944The 3-degree of an integer partition. St001570The minimal number of edges to add to make a graph Hamiltonian. St001440The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St000379The number of Hamiltonian cycles in a graph. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000175Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. St001175The size of a partition minus the hook length of the base cell. St001176The size of a partition minus its first part. St001177Twice the mean value of the major index among all standard Young tableaux of a partition. St001178Twelve times the variance of the major index among all standard Young tableaux of a partition. St001283The number of finite solvable groups that are realised by the given partition over the complex numbers. St001284The number of finite groups that are realised by the given partition over the complex numbers. St001561The value of the elementary symmetric function evaluated at 1. St001586The number of odd parts smaller than the largest even part in an integer partition. St001657The number of twos in an integer partition. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St001785The number of ways to obtain a partition as the multiset of antidiagonal lengths of the Ferrers diagram of a partition. St001961The sum of the greatest common divisors of all pairs of parts. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St000567The sum of the products of all pairs of parts. St000936The number of even values of the symmetric group character corresponding to the partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St001097The coefficient of the monomial symmetric function indexed by the partition in the formal group law for linear orders. St001098The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for vertex labelled trees. St001099The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled binary trees. St001100The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled trees. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St000478Another weight of a partition according to Alladi. St000506The number of standard desarrangement tableaux of shape equal to the given partition. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000713The dimension of the irreducible representation of Sp(4) labelled by an integer partition. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000749The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree. St000934The 2-degree of an integer partition. St001730The number of times the path corresponding to a binary word crosses the base line. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St000791The number of pairs of left tunnels, one strictly containing the other, of a Dyck path. St001141The number of occurrences of hills of size 3 in a Dyck path. St000661The number of rises of length 3 of a Dyck path. St000931The number of occurrences of the pattern UUU in a Dyck path. St000980The number of boxes weakly below the path and above the diagonal that lie below at least two peaks. St000369The dinv deficit of a Dyck path. St000376The bounce deficit of a Dyck path. St001035The convexity degree of the parallelogram polyomino associated with the Dyck path. St001139The number of occurrences of hills of size 2 in a Dyck path. St001932The number of pairs of singleton blocks in the noncrossing set partition corresponding to a Dyck path, that can be merged to create another noncrossing set partition. St001125The number of simple modules that satisfy the 2-regular condition in the corresponding Nakayama algebra. St001276The number of 2-regular indecomposable modules in the corresponding Nakayama algebra. St000790The number of pairs of centered tunnels, one strictly containing the other, of a Dyck path. St001584The area statistic between a Dyck path and its bounce path. St000658The number of rises of length 2 of a Dyck path. St000449The number of pairs of vertices of a graph with distance 4. St000370The genus of a graph. St001793The difference between the clique number and the chromatic number of a graph. St001248Sum of the even parts of a partition. St001307The number of induced stars on four vertices in a graph. St001217The projective dimension of the indecomposable injective module I[n-2] in the corresponding Nakayama algebra with simples enumerated from 0 to n-1. St001222Number of simple modules in the corresponding LNakayama algebra that have a unique 2-extension with the regular module. St001113Number of indecomposable projective non-injective modules with reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St001219Number of simple modules S in the corresponding Nakayama algebra such that the Auslander-Reiten sequence ending at S has the property that all modules in the exact sequence are reflexive. St001292The injective dimension of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St000954Number of times the corresponding LNakayama algebra has $Ext^i(D(A),A)=0$ for $i>0$. St001163The number of simple modules with dominant dimension at least three in the corresponding Nakayama algebra. St001181Number of indecomposable injective modules with grade at least 3 in the corresponding Nakayama algebra. St001186Number of simple modules with grade at least 3 in the corresponding Nakayama algebra. St001193The dimension of $Ext_A^1(A/AeA,A)$ in the corresponding Nakayama algebra $A$ such that $eA$ is a minimal faithful projective-injective module. St001204Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001231The number of simple modules that are non-projective and non-injective with the property that they have projective dimension equal to one and that also the Auslander-Reiten translates of the module and the inverse Auslander-Reiten translate of the module have the same projective dimension. St001234The number of indecomposable three dimensional modules with projective dimension one. St001264The smallest index i such that the i-th simple module has projective dimension equal to the global dimension of the corresponding Nakayama algebra. St001266The largest vector space dimension of an indecomposable non-projective module that is reflexive in the corresponding Nakayama algebra. St001037The number of inner corners of the upper path of the parallelogram polyomino associated with the Dyck path. St001172The number of 1-rises at odd height of a Dyck path. St000315The number of isolated vertices of a graph. St000986The multiplicity of the eigenvalue zero of the adjacency matrix of the graph. St001230The number of simple modules with injective dimension equal to the dominant dimension equal to one and the dual property. St001353The number of prime nodes in the modular decomposition of a graph. St001367The smallest number which does not occur as degree of a vertex in a graph. St001691The number of kings in a graph. St001185The number of indecomposable injective modules of grade at least 2 in the corresponding Nakayama algebra. St001795The binary logarithm of the evaluation of the Tutte polynomial of the graph at (x,y) equal to (-1,-1). St000322The skewness of a graph. St001578The minimal number of edges to add or remove to make a graph a line graph. St000552The number of cut vertices of a graph. St000699The toughness times the least common multiple of 1,. St001281The normalized isoperimetric number of a graph. St001498The normalised height of a Nakayama algebra with magnitude 1. St001592The maximal number of simple paths between any two different vertices of a graph. St000455The second largest eigenvalue of a graph if it is integral. St000447The number of pairs of vertices of a graph with distance 3. St001001The number of indecomposable modules with projective and injective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. St001314The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra. St001140Number of indecomposable modules with projective and injective dimension at least two in the corresponding Nakayama algebra. St001221The number of simple modules in the corresponding LNakayama algebra that have 2 dimensional second Extension group with the regular module. St001021Sum of the differences between projective and codominant dimension of the non-projective indecomposable injective modules in the Nakayama algebra corresponding to the Dyck path. St001089Number of indecomposable projective non-injective modules minus the number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001159Number of simple modules with dominant dimension equal to the global dimension in the corresponding Nakayama algebra. St000017The number of inversions of a standard tableau. St000117The number of centered tunnels of a Dyck path. St000142The number of even parts of a partition. St000143The largest repeated part of a partition. St000149The number of cells of the partition whose leg is zero and arm is odd. St000256The number of parts from which one can substract 2 and still get an integer partition. St000257The number of distinct parts of a partition that occur at least twice. St000290The major index of a binary word. St000291The number of descents of a binary word. St000292The number of ascents of a binary word. St000293The number of inversions of a binary word. St000296The length of the symmetric border of a binary word. St000347The inversion sum of a binary word. St000473The number of parts of a partition that are strictly bigger than the number of ones. St000480The number of lower covers of a partition in dominance order. St000481The number of upper covers of a partition in dominance order. St000628The balance of a binary word. St000629The defect of a binary word. St000687The dimension of $Hom(I,P)$ for the LNakayama algebra of a Dyck path. St000691The number of changes of a binary word. St000697The number of 3-rim hooks removed from an integer partition to obtain its associated 3-core. St000752The Grundy value for the game 'Couples are forever' on an integer partition. St000875The semilength of the longest Dyck word in the Catalan factorisation of a binary word. St000921The number of internal inversions of a binary word. St000966Number of peaks minus the global dimension of the corresponding LNakayama algebra. St001022Number of simple modules with projective dimension 3 in the Nakayama algebra corresponding to the Dyck path. St001025Number of simple modules with projective dimension 4 in the Nakayama algebra corresponding to the Dyck path. St001026The maximum of the projective dimensions of the indecomposable non-projective injective modules minus the minimum in the Nakayama algebra corresponding to the Dyck path. St001036The number of inner corners of the parallelogram polyomino associated with the Dyck path. St001092The number of distinct even parts of a partition. St001107The number of times one can erase the first up and the last down step in a Dyck path and still remain a Dyck path. St001137Number of simple modules that are 3-regular in the corresponding Nakayama algebra. St001164Number of indecomposable injective modules whose socle has projective dimension at most g-1 (g the global dimension) minus the number of indecomposable projective-injective modules. St001167The number of simple modules that appear as the top of an indecomposable non-projective modules that is reflexive in the corresponding Nakayama algebra. St001214The aft of an integer partition. St001229The vector space dimension of the first extension group between the Jacobson radical J and J^2. St001251The number of parts of a partition that are not congruent 1 modulo 3. St001252Half the sum of the even parts of a partition. St001253The number of non-projective indecomposable reflexive modules in the corresponding Nakayama algebra. St001355Number of non-empty prefixes of a binary word that contain equally many 0's and 1's. St001371The length of the longest Yamanouchi prefix of a binary word. St001420Half the length of a longest factor which is its own reverse-complement of a binary word. St001421Half the length of a longest factor which is its own reverse-complement and begins with a one of a binary word. St001423The number of distinct cubes in a binary word. St001435The number of missing boxes in the first row. St001436The index of a given binary word in the lex-order among all its cyclic shifts. St001438The number of missing boxes of a skew partition. St001485The modular major index of a binary word. St001588The number of distinct odd parts smaller than the largest even part in an integer partition. St001596The number of two-by-two squares inside a skew partition. St001695The natural comajor index of a standard Young tableau. St001698The comajor index of a standard tableau minus the weighted size of its shape. St001699The major index of a standard tableau minus the weighted size of its shape. St001712The number of natural descents of a standard Young tableau. St001912The length of the preperiod in Bulgarian solitaire corresponding to an integer partition. St001651The Frankl number of a lattice. St001502The global dimension minus the dominant dimension of magnitude 1 Nakayama algebras. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001280The number of parts of an integer partition that are at least two. St001541The Gini index of an integer partition.