searching the database
Your data matches 275 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001009
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
St001009: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> 1 = 0 + 1
[1,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
[1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,0,1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,1,0,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,0,1,0,1,0]
=> 1 = 0 + 1
Description
Number of indecomposable injective modules with projective dimension g when g is the global dimension of the Nakayama algebra corresponding to the Dyck path.
Matching statistic: St000025
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00099: Dyck paths —bounce path⟶ Dyck paths
St000025: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000025: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,0,1,0]
=> 1 = 0 + 1
[1,1,0,0]
=> [1,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 3 = 2 + 1
Description
The number of initial rises of a Dyck path.
In other words, this is the height of the first peak of D.
Matching statistic: St000026
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00099: Dyck paths —bounce path⟶ Dyck paths
St000026: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000026: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,0,1,0]
=> 1 = 0 + 1
[1,1,0,0]
=> [1,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 3 = 2 + 1
Description
The position of the first return of a Dyck path.
Matching statistic: St000439
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00099: Dyck paths —bounce path⟶ Dyck paths
St000439: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000439: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,0,1,0]
=> 2 = 0 + 2
[1,1,0,0]
=> [1,1,0,0]
=> 3 = 1 + 2
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 2 = 0 + 2
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 2 = 0 + 2
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 3 = 1 + 2
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 2 = 0 + 2
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 4 = 2 + 2
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 2 = 0 + 2
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2 = 0 + 2
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 0 + 2
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2 = 0 + 2
[1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2 = 0 + 2
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 3 = 1 + 2
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 3 = 1 + 2
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 0 + 2
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 3 = 1 + 2
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2 = 0 + 2
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 4 = 2 + 2
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 3 = 1 + 2
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2 = 0 + 2
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 5 = 3 + 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 2 = 0 + 2
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 2 = 0 + 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2 = 0 + 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 2 = 0 + 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2 = 0 + 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2 = 0 + 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2 = 0 + 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2 = 0 + 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2 = 0 + 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2 = 0 + 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2 = 0 + 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2 = 0 + 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2 = 0 + 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 3 = 1 + 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 3 = 1 + 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 3 = 1 + 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 3 = 1 + 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 1 + 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2 = 0 + 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2 = 0 + 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 3 = 1 + 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2 = 0 + 2
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 1 + 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2 = 0 + 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2 = 0 + 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 1 + 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2 = 0 + 2
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 4 = 2 + 2
Description
The position of the first down step of a Dyck path.
Matching statistic: St001615
Values
[1,0,1,0]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,1,0,0]
=> ([],2)
=> ([],1)
=> 0
[1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
[1,0,1,1,0,0]
=> ([(0,2),(1,2)],3)
=> ([],1)
=> 0
[1,1,0,0,1,0]
=> ([(0,1),(0,2)],3)
=> ([],1)
=> 0
[1,1,0,1,0,0]
=> ([(1,2)],3)
=> ([(0,1)],2)
=> 1
[1,1,1,0,0,0]
=> ([],3)
=> ([],1)
=> 0
[1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[1,0,1,0,1,1,0,0]
=> ([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> 0
[1,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],1)
=> 0
[1,0,1,1,0,1,0,0]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> 1
[1,0,1,1,1,0,0,0]
=> ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> 0
[1,1,0,0,1,0,1,0]
=> ([(0,3),(3,1),(3,2)],4)
=> ([],1)
=> 0
[1,1,0,0,1,1,0,0]
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> 1
[1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> 1
[1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 2
[1,1,0,1,1,0,0,0]
=> ([(1,3),(2,3)],4)
=> ([],1)
=> 0
[1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> 0
[1,1,1,0,0,1,0,0]
=> ([(1,2),(1,3)],4)
=> ([],1)
=> 0
[1,1,1,0,1,0,0,0]
=> ([(2,3)],4)
=> ([(0,1)],2)
=> 1
[1,1,1,1,0,0,0,0]
=> ([],4)
=> ([],1)
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([],1)
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([],1)
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([],1)
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,1)],2)
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([],1)
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([],1)
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,1)],2)
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([],1)
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ([],1)
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> ([(1,4),(2,4),(3,4)],5)
=> ([],1)
=> 0
[1,1,1,0,0,0,1,0,1,0]
=> ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([],1)
=> 0
Description
The number of join prime elements of a lattice.
An element x of a lattice L is join-prime (or coprime) if x≤a∨b implies x≤a or x≤b for every a,b∈L.
Matching statistic: St001617
Values
[1,0,1,0]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,1,0,0]
=> ([],2)
=> ([],1)
=> 0
[1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
[1,0,1,1,0,0]
=> ([(0,2),(1,2)],3)
=> ([],1)
=> 0
[1,1,0,0,1,0]
=> ([(0,1),(0,2)],3)
=> ([],1)
=> 0
[1,1,0,1,0,0]
=> ([(1,2)],3)
=> ([(0,1)],2)
=> 1
[1,1,1,0,0,0]
=> ([],3)
=> ([],1)
=> 0
[1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[1,0,1,0,1,1,0,0]
=> ([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> 0
[1,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],1)
=> 0
[1,0,1,1,0,1,0,0]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> 1
[1,0,1,1,1,0,0,0]
=> ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> 0
[1,1,0,0,1,0,1,0]
=> ([(0,3),(3,1),(3,2)],4)
=> ([],1)
=> 0
[1,1,0,0,1,1,0,0]
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> 1
[1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> 1
[1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 2
[1,1,0,1,1,0,0,0]
=> ([(1,3),(2,3)],4)
=> ([],1)
=> 0
[1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> 0
[1,1,1,0,0,1,0,0]
=> ([(1,2),(1,3)],4)
=> ([],1)
=> 0
[1,1,1,0,1,0,0,0]
=> ([(2,3)],4)
=> ([(0,1)],2)
=> 1
[1,1,1,1,0,0,0,0]
=> ([],4)
=> ([],1)
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([],1)
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([],1)
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([],1)
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,1)],2)
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([],1)
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([],1)
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,1)],2)
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([],1)
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ([],1)
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> ([(1,4),(2,4),(3,4)],5)
=> ([],1)
=> 0
[1,1,1,0,0,0,1,0,1,0]
=> ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([],1)
=> 0
Description
The dimension of the space of valuations of a lattice.
A valuation, or modular function, on a lattice L is a function v:L↦R satisfying
v(a∨b)+v(a∧b)=v(a)+v(b).
It was shown by Birkhoff [1, thm. X.2], that a lattice with a positive valuation must be modular. This was sharpened by Fleischer and Traynor [2, thm. 1], which states that the modular functions on an arbitrary lattice are in bijection with the modular functions on its modular quotient [[Mp00196]].
Moreover, Birkhoff [1, thm. X.2] showed that the dimension of the space of modular functions equals the number of subsets of projective prime intervals.
Matching statistic: St001622
Values
[1,0,1,0]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,1,0,0]
=> ([],2)
=> ([],1)
=> 0
[1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2
[1,0,1,1,0,0]
=> ([(0,2),(1,2)],3)
=> ([],1)
=> 0
[1,1,0,0,1,0]
=> ([(0,1),(0,2)],3)
=> ([],1)
=> 0
[1,1,0,1,0,0]
=> ([(1,2)],3)
=> ([(0,1)],2)
=> 1
[1,1,1,0,0,0]
=> ([],3)
=> ([],1)
=> 0
[1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[1,0,1,0,1,1,0,0]
=> ([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> 0
[1,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],1)
=> 0
[1,0,1,1,0,1,0,0]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> 1
[1,0,1,1,1,0,0,0]
=> ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> 0
[1,1,0,0,1,0,1,0]
=> ([(0,3),(3,1),(3,2)],4)
=> ([],1)
=> 0
[1,1,0,0,1,1,0,0]
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> 1
[1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> 1
[1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 2
[1,1,0,1,1,0,0,0]
=> ([(1,3),(2,3)],4)
=> ([],1)
=> 0
[1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> 0
[1,1,1,0,0,1,0,0]
=> ([(1,2),(1,3)],4)
=> ([],1)
=> 0
[1,1,1,0,1,0,0,0]
=> ([(2,3)],4)
=> ([(0,1)],2)
=> 1
[1,1,1,1,0,0,0,0]
=> ([],4)
=> ([],1)
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([],1)
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([],1)
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([],1)
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,1)],2)
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([],1)
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([],1)
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,1)],2)
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([],1)
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ([],1)
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> ([(1,4),(2,4),(3,4)],5)
=> ([],1)
=> 0
[1,1,1,0,0,0,1,0,1,0]
=> ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([],1)
=> 0
Description
The number of join-irreducible elements of a lattice.
An element j of a lattice L is '''join irreducible''' if it is not the least element and if j=x∨y, then j∈{x,y} for all x,y∈L.
Matching statistic: St000011
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00099: Dyck paths —bounce path⟶ Dyck paths
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
St000011: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
St000011: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1 = 0 + 1
[1,1,0,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1 = 0 + 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 3 = 2 + 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 3 = 2 + 1
Description
The number of touch points (or returns) of a Dyck path.
This is the number of points, excluding the origin, where the Dyck path has height 0.
Matching statistic: St000069
Mp00099: Dyck paths —bounce path⟶ Dyck paths
Mp00242: Dyck paths —Hessenberg poset⟶ Posets
St000069: Posets ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00242: Dyck paths —Hessenberg poset⟶ Posets
St000069: Posets ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,0,1,0]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,1,0,0]
=> [1,1,0,0]
=> ([],2)
=> 2 = 1 + 1
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> ([(0,1),(0,2)],3)
=> 2 = 1 + 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> ([],3)
=> 3 = 2 + 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(1,3),(3,2)],4)
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(1,3),(3,2)],4)
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(3,1),(3,2)],4)
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3)],4)
=> 3 = 2 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> ([],4)
=> 4 = 3 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(4,2),(4,3)],5)
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(4,2),(4,3)],5)
=> 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 2 = 1 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2 = 1 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ([(0,4),(4,1),(4,2),(4,3)],5)
=> 3 = 2 + 1
Description
The number of maximal elements of a poset.
Matching statistic: St000382
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00099: Dyck paths —bounce path⟶ Dyck paths
Mp00100: Dyck paths —touch composition⟶ Integer compositions
St000382: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00100: Dyck paths —touch composition⟶ Integer compositions
St000382: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,0,1,0]
=> [1,1] => 1 = 0 + 1
[1,1,0,0]
=> [1,1,0,0]
=> [2] => 2 = 1 + 1
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1] => 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,2] => 1 = 0 + 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [2,1] => 2 = 1 + 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,2] => 1 = 0 + 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [3] => 3 = 2 + 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1] => 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,2] => 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,2,1] => 1 = 0 + 1
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,2] => 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,3] => 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,1] => 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,2] => 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,2,1] => 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,2] => 2 = 1 + 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,3] => 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [3,1] => 3 = 2 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,2] => 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,3] => 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4] => 4 = 3 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => 1 = 0 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => 1 = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => 1 = 0 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => 1 = 0 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,4] => 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,3] => 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => 2 = 1 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,3] => 2 = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => 1 = 0 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,3] => 2 = 1 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,4] => 1 = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => 3 = 2 + 1
Description
The first part of an integer composition.
The following 265 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000504The cardinality of the first block of a set partition. St000505The biggest entry in the block containing the 1. St000550The number of modular elements of a lattice. St000551The number of left modular elements of a lattice. St000678The number of up steps after the last double rise of a Dyck path. St000823The number of unsplittable factors of the set partition. St000971The smallest closer of a set partition. St001616The number of neutral elements in a lattice. St001720The minimal length of a chain of small intervals in a lattice. St001619The number of non-isomorphic sublattices of a lattice. St001666The number of non-isomorphic subposets of a lattice which are lattices. St000008The major index of the composition. St000234The number of global ascents of a permutation. St000297The number of leading ones in a binary word. St000502The number of successions of a set partitions. St001777The number of weak descents in an integer composition. St000068The number of minimal elements in a poset. St000326The position of the first one in a binary word after appending a 1 at the end. St000363The number of minimal vertex covers of a graph. St000383The last part of an integer composition. St000675The number of centered multitunnels of a Dyck path. St000700The protection number of an ordered tree. St000745The index of the last row whose first entry is the row number in a standard Young tableau. St000759The smallest missing part in an integer partition. St001050The number of terminal closers of a set partition. St001051The depth of the label 1 in the decreasing labelled unordered tree associated with the set partition. St001135The projective dimension of the first simple module in the Nakayama algebra corresponding to the Dyck path. St001733The number of weak left to right maxima of a Dyck path. St001784The minimum of the smallest closer and the second element of the block containing 1 in a set partition. St000738The first entry in the last row of a standard tableau. St001498The normalised height of a Nakayama algebra with magnitude 1. St000909The number of maximal chains of maximal size in a poset. St000911The number of maximal antichains of maximal size in a poset. St000054The first entry of the permutation. St000617The number of global maxima of a Dyck path. St000989The number of final rises of a permutation. St001877Number of indecomposable injective modules with projective dimension 2. St000940The number of characters of the symmetric group whose value on the partition is zero. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000369The dinv deficit of a Dyck path. St000442The maximal area to the right of an up step of a Dyck path. St000658The number of rises of length 2 of a Dyck path. St000659The number of rises of length at least 2 of a Dyck path. St001031The height of the bicoloured Motzkin path associated with the Dyck path. St001035The convexity degree of the parallelogram polyomino associated with the Dyck path. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St001139The number of occurrences of hills of size 2 in a Dyck path. St001384The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains. St001418Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001587Half of the largest even part of an integer partition. St001657The number of twos in an integer partition. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St001480The number of simple summands of the module J^2/J^3. St000501The size of the first part in the decomposition of a permutation. St001586The number of odd parts smaller than the largest even part in an integer partition. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St000993The multiplicity of the largest part of an integer partition. St000541The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. St000542The number of left-to-right-minima of a permutation. St000990The first ascent of a permutation. St000654The first descent of a permutation. St000740The last entry of a permutation. St001803The maximal overlap of the cylindrical tableau associated with a tableau. St000883The number of longest increasing subsequences of a permutation. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St000455The second largest eigenvalue of a graph if it is integral. St000214The number of adjacencies of a permutation. St001392The largest nonnegative integer which is not a part and is smaller than the largest part of the partition. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St000148The number of odd parts of a partition. St000475The number of parts equal to 1 in a partition. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. St000835The minimal difference in size when partitioning the integer partition into two subpartitions. St000877The depth of the binary word interpreted as a path. St000954Number of times the corresponding LNakayama algebra has Exti(D(A),A)=0 for i>0. St000992The alternating sum of the parts of an integer partition. St001037The number of inner corners of the upper path of the parallelogram polyomino associated with the Dyck path. St001055The Grundy value for the game of removing cells of a row in an integer partition. St001067The number of simple modules of dominant dimension at least two in the corresponding Nakayama algebra. St001185The number of indecomposable injective modules of grade at least 2 in the corresponding Nakayama algebra. St001189The number of simple modules with dominant and codominant dimension equal to zero in the Nakayama algebra corresponding to the Dyck path. St001216The number of indecomposable injective modules in the corresponding Nakayama algebra that have non-vanishing second Ext-group with the regular module. St001217The projective dimension of the indecomposable injective module I[n-2] in the corresponding Nakayama algebra with simples enumerated from 0 to n-1. St001223Number of indecomposable projective non-injective modules P such that the modules X and Y in a an Auslander-Reiten sequence ending at P are torsionless. St001230The number of simple modules with injective dimension equal to the dominant dimension equal to one and the dual property. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St001264The smallest index i such that the i-th simple module has projective dimension equal to the global dimension of the corresponding Nakayama algebra. St001265The maximal i such that the i-th simple module has projective dimension equal to the global dimension in the corresponding Nakayama algebra. St001274The number of indecomposable injective modules with projective dimension equal to two. St001413Half the length of the longest even length palindromic prefix of a binary word. St001594The number of indecomposable projective modules in the Nakayama algebra corresponding to the Dyck path such that the UC-condition is satisfied. St001730The number of times the path corresponding to a binary word crosses the base line. St000137The Grundy value of an integer partition. St000175Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. St000225Difference between largest and smallest parts in a partition. St000749The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree. St001122The multiplicity of the sign representation in the Kronecker square corresponding to a partition. St001175The size of a partition minus the hook length of the base cell. St001283The number of finite solvable groups that are realised by the given partition over the complex numbers. St001284The number of finite groups that are realised by the given partition over the complex numbers. St001525The number of symmetric hooks on the diagonal of a partition. St001785The number of ways to obtain a partition as the multiset of antidiagonal lengths of the Ferrers diagram of a partition. St001939The number of parts that are equal to their multiplicity in the integer partition. St001940The number of distinct parts that are equal to their multiplicity in the integer partition. St000929The constant term of the character polynomial of an integer partition. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000938The number of zeros of the symmetric group character corresponding to the partition. St000941The number of characters of the symmetric group whose value on the partition is even. St001461The number of topologically connected components of the chord diagram of a permutation. St001651The Frankl number of a lattice. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St001107The number of times one can erase the first up and the last down step in a Dyck path and still remain a Dyck path. St000237The number of small exceedances. St000717The number of ordinal summands of a poset. St000203The number of external nodes of a binary tree. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St000376The bounce deficit of a Dyck path. St000476The sum of the semi-lengths of tunnels before a valley of a Dyck path. St000661The number of rises of length 3 of a Dyck path. St000931The number of occurrences of the pattern UUU in a Dyck path. St000932The number of occurrences of the pattern UDU in a Dyck path. St001141The number of occurrences of hills of size 3 in a Dyck path. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St000546The number of global descents of a permutation. St001247The number of parts of a partition that are not congruent 2 modulo 3. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001593This is the number of standard Young tableaux of the given shifted shape. St001913The number of preimages of an integer partition in Bulgarian solitaire. St000007The number of saliances of the permutation. St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St000850The number of 1/2-balanced pairs in a poset. St001195The global dimension of the algebra A/AfA of the corresponding Nakayama algebra A with minimal left faithful projective-injective module Af. St000066The column of the unique '1' in the first row of the alternating sign matrix. St001231The number of simple modules that are non-projective and non-injective with the property that they have projective dimension equal to one and that also the Auslander-Reiten translates of the module and the inverse Auslander-Reiten translate of the module have the same projective dimension. St001234The number of indecomposable three dimensional modules with projective dimension one. St000838The number of terminal right-hand endpoints when the vertices are written in order. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000506The number of standard desarrangement tableaux of shape equal to the given partition. St000567The sum of the products of all pairs of parts. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000936The number of even values of the symmetric group character corresponding to the partition. St000944The 3-degree of an integer partition. St001097The coefficient of the monomial symmetric function indexed by the partition in the formal group law for linear orders. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St001176The size of a partition minus its first part. St001177Twice the mean value of the major index among all standard Young tableaux of a partition. St001364The number of permutations whose cube equals a fixed permutation of given cycle type. St001383The BG-rank of an integer partition. St001440The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition. St001561The value of the elementary symmetric function evaluated at 1. St001912The length of the preperiod in Bulgarian solitaire corresponding to an integer partition. St001961The sum of the greatest common divisors of all pairs of parts. St001640The number of ascent tops in the permutation such that all smaller elements appear before. St000843The decomposition number of a perfect matching. St001330The hat guessing number of a graph. St001552The number of inversions between excedances and fixed points of a permutation. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001199The dominant dimension of eAe for the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St000734The last entry in the first row of a standard tableau. St000999Number of indecomposable projective module with injective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St000051The size of the left subtree of a binary tree. St000061The number of nodes on the left branch of a binary tree. St000335The difference of lower and upper interactions. St000991The number of right-to-left minima of a permutation. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001201The grade of the simple module S0 in the special CNakayama algebra corresponding to the Dyck path. St001390The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. St001226The number of integers i such that the radical of the i-th indecomposable projective module has vanishing first extension group with the Jacobson radical J in the corresponding Nakayama algebra. St001816Eigenvalues of the top-to-random operator acting on a simple module. St000056The decomposition (or block) number of a permutation. St000084The number of subtrees. St000314The number of left-to-right-maxima of a permutation. St000352The Elizalde-Pak rank of a permutation. St001235The global dimension of the corresponding Comp-Nakayama algebra. St001481The minimal height of a peak of a Dyck path. St000460The hook length of the last cell along the main diagonal of an integer partition. St001249Sum of the odd parts of a partition. St001280The number of parts of an integer partition that are at least two. St001606The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on set partitions. St001767The largest minimal number of arrows pointing to a cell in the Ferrers diagram in any assignment. St000117The number of centered tunnels of a Dyck path. St000221The number of strong fixed points of a permutation. St001008Number of indecomposable injective modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St000260The radius of a connected graph. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001568The smallest positive integer that does not appear twice in the partition. St001632The number of indecomposable injective modules I with dimExt1(I,A)=1 for the incidence algebra A of a poset. St001133The smallest label in the subtree rooted at the sister of 1 in the decreasing labelled binary unordered tree associated with the perfect matching. St001134The largest label in the subtree rooted at the sister of 1 in the leaf labelled binary unordered tree associated with the perfect matching. St000731The number of double exceedences of a permutation. St001520The number of strict 3-descents. St001556The number of inversions of the third entry of a permutation. St001960The number of descents of a permutation minus one if its first entry is not one. St000681The Grundy value of Chomp on Ferrers diagrams. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000022The number of fixed points of a permutation. St000153The number of adjacent cycles of a permutation. St000215The number of adjacencies of a permutation, zero appended. St000441The number of successions of a permutation. St000624The normalized sum of the minimal distances to a greater element. St000650The number of 3-rises of a permutation. St000732The number of double deficiencies of a permutation. St000779The tier of a permutation. St000872The number of very big descents of a permutation. St001061The number of indices that are both descents and recoils of a permutation. St001174The Gorenstein dimension of the algebra A/I when I is the tilting module corresponding to the permutation in the Auslander algebra of K[x]/(xn). St001130The number of two successive successions in a permutation. St001810The number of fixed points of a permutation smaller than its largest moved point. St001236The dominant dimension of the corresponding Comp-Nakayama algebra. St000657The smallest part of an integer composition. St001570The minimal number of edges to add to make a graph Hamiltonian. St000338The number of pixed points of a permutation. St000193The row of the unique '1' in the first column of the alternating sign matrix. St000241The number of cyclical small excedances. St000802The number of occurrences of the vincular pattern |321 in a permutation. St001948The number of augmented double ascents of a permutation. St000060The greater neighbor of the maximum. St000133The "bounce" of a permutation. St000199The column of the unique '1' in the last row of the alternating sign matrix. St000200The row of the unique '1' in the last column of the alternating sign matrix. St001238The number of simple modules S such that the Auslander-Reiten translate of S is isomorphic to the Nakayama functor applied to the second syzygy of S. St000756The sum of the positions of the left to right maxima of a permutation. St001240The number of indecomposable modules e_i J^2 that have injective dimension at most one in the corresponding Nakayama algebra St001087The number of occurrences of the vincular pattern |12-3 in a permutation. St001095The number of non-isomorphic posets with precisely one further covering relation. St000906The length of the shortest maximal chain in a poset. St000895The number of ones on the main diagonal of an alternating sign matrix. St000648The number of 2-excedences of a permutation. St001964The interval resolution global dimension of a poset. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000888The maximal sum of entries on a diagonal of an alternating sign matrix. St000892The maximal number of nonzero entries on a diagonal of an alternating sign matrix. St001846The number of elements which do not have a complement in the lattice. St000649The number of 3-excedences of a permutation. St001889The size of the connectivity set of a signed permutation. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001820The size of the image of the pop stack sorting operator. St001267The length of the Lyndon factorization of the binary word. St000894The trace of an alternating sign matrix. St001414Half the length of the longest odd length palindromic prefix of a binary word. St001811The Castelnuovo-Mumford regularity of a permutation. St000741The Colin de Verdière graph invariant. St000800The number of occurrences of the vincular pattern |231 in a permutation. St001000Number of indecomposable modules with projective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001355Number of non-empty prefixes of a binary word that contain equally many 0's and 1's. St001462The number of factors of a standard tableaux under concatenation. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001804The minimal height of the rectangular inner shape in a cylindrical tableau associated to a tableau. St001904The length of the initial strictly increasing segment of a parking function. St001937The size of the center of a parking function. St000392The length of the longest run of ones in a binary word. St000887The maximal number of nonzero entries on a diagonal of a permutation matrix. St000982The length of the longest constant subword. St001038The minimal height of a column in the parallelogram polyomino associated with the Dyck path. St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!