Your data matches 105 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000298: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> 1
([],2)
=> 2
([(0,1)],2)
=> 1
([],3)
=> 2
([(1,2)],3)
=> 2
([(0,1),(0,2)],3)
=> 2
([(0,2),(2,1)],3)
=> 1
([(0,2),(1,2)],3)
=> 2
([],4)
=> 2
([(2,3)],4)
=> 2
([(1,2),(1,3)],4)
=> 2
([(0,1),(0,2),(0,3)],4)
=> 2
([(0,2),(0,3),(3,1)],4)
=> 2
([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,2),(2,3)],4)
=> 2
([(0,3),(3,1),(3,2)],4)
=> 2
([(1,3),(2,3)],4)
=> 2
([(0,3),(1,3),(3,2)],4)
=> 2
([(0,3),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2)],4)
=> 2
([(0,3),(1,2),(1,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,3),(2,1),(3,2)],4)
=> 1
([(0,3),(1,2),(2,3)],4)
=> 2
([],5)
=> 2
([(3,4)],5)
=> 2
([(2,3),(2,4)],5)
=> 2
([(1,2),(1,3),(1,4)],5)
=> 2
([(0,1),(0,2),(0,3),(0,4)],5)
=> 2
([(0,2),(0,3),(0,4),(4,1)],5)
=> 2
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(1,3),(1,4),(4,2)],5)
=> 2
([(0,3),(0,4),(4,1),(4,2)],5)
=> 2
([(1,2),(1,3),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
([(0,3),(0,4),(3,2),(4,1)],5)
=> 2
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> 2
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(2,3),(3,4)],5)
=> 2
([(1,4),(4,2),(4,3)],5)
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> 2
([(2,4),(3,4)],5)
=> 2
([(1,4),(2,4),(4,3)],5)
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> 2
([(1,4),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(2,3)],5)
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
Description
The order dimension or Dushnik-Miller dimension of a poset. This is the minimal number of linear orderings whose intersection is the given poset.
Matching statistic: St000098
Mp00205: Posets maximal antichainsLattices
Mp00193: Lattices to posetPosets
Mp00074: Posets to graphGraphs
St000098: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,1),(0,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,1),(0,2),(0,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,3),(3,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(1,4),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,3),(1,4),(1,5),(3,5),(4,2)],6)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,7),(1,2),(1,7),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? ∊ {3,3}
([(0,5),(1,4),(4,2),(5,3)],6)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,6),(0,7),(1,4),(1,5),(2,5),(2,7),(3,4),(3,6),(4,8),(5,8),(6,8),(7,8)],9)
=> ? ∊ {3,3}
Description
The chromatic number of a graph. The minimal number of colors needed to color the vertices of the graph such that no two vertices which share an edge have the same color.
Matching statistic: St000147
Mp00074: Posets to graphGraphs
Mp00251: Graphs clique sizesInteger partitions
St000147: Integer partitions ⟶ ℤResult quality: 67% values known / values provided: 99%distinct values known / distinct values provided: 67%
Values
([],1)
=> ([],1)
=> [1]
=> 1
([],2)
=> ([],2)
=> [1,1]
=> 1
([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 2
([],3)
=> ([],3)
=> [1,1,1]
=> 1
([(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> 2
([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> [2,2]
=> 2
([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> [2,2]
=> 2
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [2,2]
=> 2
([],4)
=> ([],4)
=> [1,1,1,1]
=> 1
([(2,3)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> 2
([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> 2
([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> 2
([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> 2
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> 2
([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> 2
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> 2
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> 2
([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> 2
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> 2
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> [2,2]
=> 2
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> 2
([],5)
=> ([],5)
=> [1,1,1,1,1]
=> 1
([(3,4)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> 2
([(2,3),(2,4)],5)
=> ([(2,4),(3,4)],5)
=> [2,2,1,1]
=> 2
([(1,2),(1,3),(1,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> 2
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> 2
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> 2
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> 2
([(1,3),(1,4),(4,2)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> 2
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> 2
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,1]
=> 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> 2
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> 2
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> 2
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> 2
([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [2,2,1,1]
=> 2
([(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> 2
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [2,2,1,1]
=> 2
([(1,4),(2,4),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> 2
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> 2
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [2,2,2]
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> 2
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [2,2,2,2,2,2,2,2,2]
=> ? ∊ {3,3,3}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [2,2,2,2,2,2,2,2,2]
=> ? ∊ {3,3,3}
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [2,2,2,2,2,2,2,2,2]
=> ? ∊ {3,3,3}
Description
The largest part of an integer partition.
Matching statistic: St001587
Mp00074: Posets to graphGraphs
Mp00251: Graphs clique sizesInteger partitions
St001587: Integer partitions ⟶ ℤResult quality: 67% values known / values provided: 99%distinct values known / distinct values provided: 67%
Values
([],1)
=> ([],1)
=> [1]
=> 0 = 1 - 1
([],2)
=> ([],2)
=> [1,1]
=> 0 = 1 - 1
([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 1 = 2 - 1
([],3)
=> ([],3)
=> [1,1,1]
=> 0 = 1 - 1
([(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> 1 = 2 - 1
([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> [2,2]
=> 1 = 2 - 1
([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> [2,2]
=> 1 = 2 - 1
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [2,2]
=> 1 = 2 - 1
([],4)
=> ([],4)
=> [1,1,1,1]
=> 0 = 1 - 1
([(2,3)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> 1 = 2 - 1
([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> 1 = 2 - 1
([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> 1 = 2 - 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> 1 = 2 - 1
([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> 1 = 2 - 1
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> 1 = 2 - 1
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> 1 = 2 - 1
([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> 1 = 2 - 1
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> [2,2]
=> 1 = 2 - 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> 1 = 2 - 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> 1 = 2 - 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> 1 = 2 - 1
([],5)
=> ([],5)
=> [1,1,1,1,1]
=> 0 = 1 - 1
([(3,4)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> 1 = 2 - 1
([(2,3),(2,4)],5)
=> ([(2,4),(3,4)],5)
=> [2,2,1,1]
=> 1 = 2 - 1
([(1,2),(1,3),(1,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> 1 = 2 - 1
([(1,3),(1,4),(4,2)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> 1 = 2 - 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> 1 = 2 - 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,1]
=> 1 = 2 - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> 1 = 2 - 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> 1 = 2 - 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> 1 = 2 - 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> 1 = 2 - 1
([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [2,2,1,1]
=> 1 = 2 - 1
([(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> 1 = 2 - 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> 1 = 2 - 1
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [2,2,1,1]
=> 1 = 2 - 1
([(1,4),(2,4),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> 1 = 2 - 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> 1 = 2 - 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> 1 = 2 - 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [2,2,2]
=> 1 = 2 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [2,2,2,2,2,2,2,2,2]
=> ? ∊ {3,3,3} - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [2,2,2,2,2,2,2,2,2]
=> ? ∊ {3,3,3} - 1
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [2,2,2,2,2,2,2,2,2]
=> ? ∊ {3,3,3} - 1
Description
Half of the largest even part of an integer partition. The largest even part is recorded by [[St000995]].
Matching statistic: St001918
Mp00074: Posets to graphGraphs
Mp00251: Graphs clique sizesInteger partitions
St001918: Integer partitions ⟶ ℤResult quality: 67% values known / values provided: 99%distinct values known / distinct values provided: 67%
Values
([],1)
=> ([],1)
=> [1]
=> 0 = 1 - 1
([],2)
=> ([],2)
=> [1,1]
=> 0 = 1 - 1
([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 1 = 2 - 1
([],3)
=> ([],3)
=> [1,1,1]
=> 0 = 1 - 1
([(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> 1 = 2 - 1
([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> [2,2]
=> 1 = 2 - 1
([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> [2,2]
=> 1 = 2 - 1
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [2,2]
=> 1 = 2 - 1
([],4)
=> ([],4)
=> [1,1,1,1]
=> 0 = 1 - 1
([(2,3)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> 1 = 2 - 1
([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> 1 = 2 - 1
([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> 1 = 2 - 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> 1 = 2 - 1
([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> 1 = 2 - 1
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> 1 = 2 - 1
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> 1 = 2 - 1
([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> 1 = 2 - 1
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> [2,2]
=> 1 = 2 - 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> 1 = 2 - 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> 1 = 2 - 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> 1 = 2 - 1
([],5)
=> ([],5)
=> [1,1,1,1,1]
=> 0 = 1 - 1
([(3,4)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> 1 = 2 - 1
([(2,3),(2,4)],5)
=> ([(2,4),(3,4)],5)
=> [2,2,1,1]
=> 1 = 2 - 1
([(1,2),(1,3),(1,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> 1 = 2 - 1
([(1,3),(1,4),(4,2)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> 1 = 2 - 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> 1 = 2 - 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,1]
=> 1 = 2 - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> 1 = 2 - 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> 1 = 2 - 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> 1 = 2 - 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> 1 = 2 - 1
([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [2,2,1,1]
=> 1 = 2 - 1
([(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> 1 = 2 - 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> 1 = 2 - 1
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [2,2,1,1]
=> 1 = 2 - 1
([(1,4),(2,4),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> 1 = 2 - 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> 1 = 2 - 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> 1 = 2 - 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [2,2,2]
=> 1 = 2 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [2,2,2,2,2,2,2,2,2]
=> ? ∊ {3,3,3} - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [2,2,2,2,2,2,2,2,2]
=> ? ∊ {3,3,3} - 1
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [2,2,2,2,2,2,2,2,2]
=> ? ∊ {3,3,3} - 1
Description
The degree of the cyclic sieving polynomial corresponding to an integer partition. Let $\lambda$ be an integer partition of $n$ and let $N$ be the least common multiple of the parts of $\lambda$. Fix an arbitrary permutation $\pi$ of cycle type $\lambda$. Then $\pi$ induces a cyclic action of order $N$ on $\{1,\dots,n\}$. The corresponding character can be identified with the cyclic sieving polynomial $C_\lambda(q)$ of this action, modulo $q^N-1$. Explicitly, it is $$ \sum_{p\in\lambda} [p]_{q^{N/p}}, $$ where $[p]_q = 1+\dots+q^{p-1}$ is the $q$-integer. This statistic records the degree of $C_\lambda(q)$. Equivalently, it equals $$ \left(1 - \frac{1}{\lambda_1}\right) N, $$ where $\lambda_1$ is the largest part of $\lambda$. The statistic is undefined for the empty partition.
Matching statistic: St000010
Mp00074: Posets to graphGraphs
Mp00251: Graphs clique sizesInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St000010: Integer partitions ⟶ ℤResult quality: 67% values known / values provided: 99%distinct values known / distinct values provided: 67%
Values
([],1)
=> ([],1)
=> [1]
=> [1]
=> 1
([],2)
=> ([],2)
=> [1,1]
=> [2]
=> 1
([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> [1,1]
=> 2
([],3)
=> ([],3)
=> [1,1,1]
=> [3]
=> 1
([(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> [2,1]
=> 2
([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> [2,2]
=> [2,2]
=> 2
([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> [2,2]
=> [2,2]
=> 2
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [2,2]
=> [2,2]
=> 2
([],4)
=> ([],4)
=> [1,1,1,1]
=> [4]
=> 1
([(2,3)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> [3,1]
=> 2
([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> [3,2]
=> 2
([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> [3,3]
=> 2
([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> [3,3]
=> 2
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> [4,4]
=> 2
([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> [3,2]
=> 2
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> [3,3]
=> 2
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> [3,2]
=> 2
([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> [3,3]
=> 2
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> [3,3]
=> 2
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> [2,2]
=> [2,2]
=> 2
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> [3,3]
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> [4,4]
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> [3,3]
=> 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> [3,3]
=> 2
([],5)
=> ([],5)
=> [1,1,1,1,1]
=> [5]
=> 1
([(3,4)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> 2
([(2,3),(2,4)],5)
=> ([(2,4),(3,4)],5)
=> [2,2,1,1]
=> [4,2]
=> 2
([(1,2),(1,3),(1,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> [4,3]
=> 2
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> [4,4]
=> 2
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> [4,4]
=> 2
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> [5,5]
=> 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> [6,6]
=> 2
([(1,3),(1,4),(4,2)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> [4,3]
=> 2
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> [4,4]
=> 2
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,1]
=> [5,4]
=> 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> [5,5]
=> 2
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> [4,4]
=> 2
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> [5,5]
=> 2
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> [6,6]
=> 2
([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [2,2,1,1]
=> [4,2]
=> 2
([(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> [4,3]
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> [4,4]
=> 2
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [2,2,1,1]
=> [4,2]
=> 2
([(1,4),(2,4),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> [4,3]
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> [4,4]
=> 2
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> [4,3]
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> [4,4]
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> [4,4]
=> 2
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [2,2,2]
=> [3,3]
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> [4,4]
=> 2
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [2,2,2,2,2,2,2,2,2]
=> [9,9]
=> ? ∊ {3,3,3}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [2,2,2,2,2,2,2,2,2]
=> [9,9]
=> ? ∊ {3,3,3}
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [2,2,2,2,2,2,2,2,2]
=> [9,9]
=> ? ∊ {3,3,3}
Description
The length of the partition.
Matching statistic: St000636
Mp00205: Posets maximal antichainsLattices
Mp00193: Lattices to posetPosets
Mp00074: Posets to graphGraphs
St000636: Graphs ⟶ ℤResult quality: 99% values known / values provided: 99%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,1),(0,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,1),(0,2),(0,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,3),(3,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(1,4),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,3),(1,4),(1,5),(3,5),(4,2)],6)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,7),(1,2),(1,7),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? ∊ {2,2,3,3}
([(0,5),(1,4),(4,2),(5,3)],6)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,6),(0,7),(1,4),(1,5),(2,5),(2,7),(3,4),(3,6),(4,8),(5,8),(6,8),(7,8)],9)
=> ? ∊ {2,2,3,3}
([(0,5),(1,4),(2,3)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6)],8)
=> ? ∊ {2,2,3,3}
([(0,5),(1,3),(4,2),(5,4)],6)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? ∊ {2,2,3,3}
Description
The hull number of a graph. The convex hull of a set of vertices $S$ of a graph is the smallest set $h(S)$ such that for any pair $u,v\in h(S)$ all vertices on a shortest path from $u$ to $v$ are also in $h(S)$. The hull number is the size of the smallest set $S$ such that $h(S)$ is the set of all vertices.
Matching statistic: St001654
Mp00205: Posets maximal antichainsLattices
Mp00193: Lattices to posetPosets
Mp00074: Posets to graphGraphs
St001654: Graphs ⟶ ℤResult quality: 67% values known / values provided: 99%distinct values known / distinct values provided: 67%
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,1),(0,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,1),(0,2),(0,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,3),(3,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(1,4),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,3),(1,4),(1,5),(3,5),(4,2)],6)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,7),(1,2),(1,7),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? ∊ {2,3,3,3}
([(0,5),(1,4),(4,2),(5,3)],6)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,6),(0,7),(1,4),(1,5),(2,5),(2,7),(3,4),(3,6),(4,8),(5,8),(6,8),(7,8)],9)
=> ? ∊ {2,3,3,3}
([(0,5),(1,4),(2,3)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6)],8)
=> ? ∊ {2,3,3,3}
([(0,5),(1,3),(4,2),(5,4)],6)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? ∊ {2,3,3,3}
Description
The monophonic hull number of a graph. The monophonic hull of a set of vertices $M$ of a graph $G$ is the set of vertices that lie on at least one induced path between vertices in $M$. The monophonic hull number is the size of the smallest set $M$ such that the monophonic hull of $M$ is all of $G$. For example, the monophonic hull number of a graph $G$ with $n$ vertices is $n$ if and only if $G$ is a disjoint union of complete graphs.
Mp00205: Posets maximal antichainsLattices
Mp00193: Lattices to posetPosets
Mp00074: Posets to graphGraphs
St001333: Graphs ⟶ ℤResult quality: 99% values known / values provided: 99%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,1),(0,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,1),(0,2),(0,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
([(0,3),(3,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 1 = 2 - 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
([],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
([(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
([(1,4),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 1 = 2 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 1 = 2 - 1
([(0,3),(1,4),(1,5),(3,5),(4,2)],6)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,7),(1,2),(1,7),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? ∊ {2,2,2,3} - 1
([(0,5),(1,4),(4,2),(5,3)],6)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,6),(0,7),(1,4),(1,5),(2,5),(2,7),(3,4),(3,6),(4,8),(5,8),(6,8),(7,8)],9)
=> ? ∊ {2,2,2,3} - 1
([(0,5),(1,4),(2,3)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6)],8)
=> ? ∊ {2,2,2,3} - 1
([(0,5),(1,3),(4,2),(5,4)],6)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? ∊ {2,2,2,3} - 1
Description
The cardinality of a minimal edge-isolating set of a graph. Let $\mathcal F$ be a set of graphs. A set of vertices $S$ is $\mathcal F$-isolating, if the subgraph induced by the vertices in the complement of the closed neighbourhood of $S$ does not contain any graph in $\mathcal F$. This statistic returns the cardinality of the smallest isolating set when $\mathcal F$ contains only the graph with one edge.
Mp00198: Posets incomparability graphGraphs
Mp00275: Graphs to edge-partition of connected componentsInteger partitions
St000897: Integer partitions ⟶ ℤResult quality: 67% values known / values provided: 99%distinct values known / distinct values provided: 67%
Values
([],1)
=> ([],1)
=> []
=> 0 = 1 - 1
([],2)
=> ([(0,1)],2)
=> [1]
=> 1 = 2 - 1
([(0,1)],2)
=> ([],2)
=> []
=> 0 = 1 - 1
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 = 2 - 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [2]
=> 1 = 2 - 1
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> [1]
=> 1 = 2 - 1
([(0,2),(2,1)],3)
=> ([],3)
=> []
=> 0 = 1 - 1
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [1]
=> 1 = 2 - 1
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> 1 = 2 - 1
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> 1 = 2 - 1
([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3]
=> 1 = 2 - 1
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> [2]
=> 1 = 2 - 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [1]
=> 1 = 2 - 1
([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [3]
=> 1 = 2 - 1
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> [1]
=> 1 = 2 - 1
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1 = 2 - 1
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> [1]
=> 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3]
=> 1 = 2 - 1
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> 1 = 2 - 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 1 = 2 - 1
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> []
=> 0 = 1 - 1
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2]
=> 1 = 2 - 1
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> 1 = 2 - 1
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> 1 = 2 - 1
([(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> 1 = 2 - 1
([(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3]
=> 1 = 2 - 1
([(1,3),(1,4),(4,2)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> 1 = 2 - 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4]
=> 1 = 2 - 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1 = 2 - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> [1]
=> 1 = 2 - 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> 1 = 2 - 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> 1 = 2 - 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 1 = 2 - 1
([(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> 1 = 2 - 1
([(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1 = 2 - 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3]
=> 1 = 2 - 1
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> 1 = 2 - 1
([(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1 = 2 - 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 1 = 2 - 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3]
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> 1 = 2 - 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> 1 = 2 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> 1 = 2 - 1
([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [15]
=> ? ∊ {2,2,3,3,3} - 1
([(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [14]
=> ? ∊ {2,2,3,3,3} - 1
([(3,4),(3,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [13]
=> ? ∊ {2,2,3,3,3} - 1
([(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [13]
=> ? ∊ {2,2,3,3,3} - 1
([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [13]
=> ? ∊ {2,2,3,3,3} - 1
Description
The number of different multiplicities of parts of an integer partition.
The following 95 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000258The burning number of a graph. St000299The number of nonisomorphic vertex-induced subtrees. St000452The number of distinct eigenvalues of a graph. St000453The number of distinct Laplacian eigenvalues of a graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St000918The 2-limited packing number of a graph. St001093The detour number of a graph. St001261The Castelnuovo-Mumford regularity of a graph. St001315The dissociation number of a graph. St001318The number of vertices of the largest induced subforest with the same number of connected components of a graph. St001321The number of vertices of the largest induced subforest of a graph. St001674The number of vertices of the largest induced star graph in the graph. St000259The diameter of a connected graph. St000260The radius of a connected graph. St000535The rank-width of a graph. St000985The number of positive eigenvalues of the adjacency matrix of the graph. St001271The competition number of a graph. St001340The cardinality of a minimal non-edge isolating set of a graph. St001349The number of different graphs obtained from the given graph by removing an edge. St001354The number of series nodes in the modular decomposition of a graph. St001393The induced matching number of a graph. St001512The minimum rank of a graph. St001057The Grundy value of the game of creating an independent set in a graph. St001704The size of the largest multi-subset-intersection of the deck of a graph with the deck of another graph. St000741The Colin de Verdière graph invariant. St000454The largest eigenvalue of a graph if it is integral. St001330The hat guessing number of a graph. St001625The Möbius invariant of a lattice. St001720The minimal length of a chain of small intervals in a lattice. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St000480The number of lower covers of a partition in dominance order. St000346The number of coarsenings of a partition. St000481The number of upper covers of a partition in dominance order. St000668The least common multiple of the parts of the partition. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St001337The upper domination number of a graph. St001338The upper irredundance number of a graph. St001323The independence gap of a graph. St000907The number of maximal antichains of minimal length in a poset. St001942The number of loops of the quiver corresponding to the reduced incidence algebra of a poset. St001624The breadth of a lattice. St001732The number of peaks visible from the left. St000660The number of rises of length at least 3 of a Dyck path. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001471The magnitude of a Dyck path. St000932The number of occurrences of the pattern UDU in a Dyck path. St001011Number of simple modules of projective dimension 2 in the Nakayama algebra corresponding to the Dyck path. St001067The number of simple modules of dominant dimension at least two in the corresponding Nakayama algebra. St001060The distinguishing index of a graph. St001118The acyclic chromatic index of a graph. St001545The second Elser number of a connected graph. St001217The projective dimension of the indecomposable injective module I[n-2] in the corresponding Nakayama algebra with simples enumerated from 0 to n-1. St001165Number of simple modules with even projective dimension in the corresponding Nakayama algebra. St001257The dominant dimension of the double dual of A/J when A is the corresponding Nakayama algebra with Jacobson radical J. St001185The number of indecomposable injective modules of grade at least 2 in the corresponding Nakayama algebra. St001192The maximal dimension of $Ext_A^2(S,A)$ for a simple module $S$ over the corresponding Nakayama algebra $A$. St001204Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001212The number of simple modules in the corresponding Nakayama algebra that have non-zero second Ext-group with the regular module. St001223Number of indecomposable projective non-injective modules P such that the modules X and Y in a an Auslander-Reiten sequence ending at P are torsionless. St001294The maximal torsionfree index of a simple non-projective module in the corresponding Nakayama algebra. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001035The convexity degree of the parallelogram polyomino associated with the Dyck path. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000456The monochromatic index of a connected graph. St001738The minimal order of a graph which is not an induced subgraph of the given graph. St001335The cardinality of a minimal cycle-isolating set of a graph. St000272The treewidth of a graph. St000536The pathwidth of a graph. St000544The cop number of a graph. St001029The size of the core of a graph. St001270The bandwidth of a graph. St001277The degeneracy of a graph. St001358The largest degree of a regular subgraph of a graph. St001494The Alon-Tarsi number of a graph. St001580The acyclic chromatic number of a graph. St001792The arboricity of a graph. St001883The mutual visibility number of a graph. St001951The number of factors in the disjoint direct product decomposition of the automorphism group of a graph. St001962The proper pathwidth of a graph. St000537The cutwidth of a graph. St000671The maximin edge-connectivity for choosing a subgraph. St001116The game chromatic number of a graph. St001331The size of the minimal feedback vertex set. St001592The maximal number of simple paths between any two different vertices of a graph. St001638The book thickness of a graph. St001644The dimension of a graph. St001743The discrepancy of a graph. St001746The coalition number of a graph. St001826The maximal number of leaves on a vertex of a graph.