Your data matches 379 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000808: Integer compositions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => 1 = 0 + 1
[1,1] => 1 = 0 + 1
[2] => 2 = 1 + 1
[1,1,1] => 1 = 0 + 1
[1,2] => 2 = 1 + 1
[2,1] => 2 = 1 + 1
[3] => 3 = 2 + 1
[1,1,1,1] => 1 = 0 + 1
[1,1,2] => 2 = 1 + 1
[1,2,1] => 2 = 1 + 1
[1,3] => 3 = 2 + 1
[2,1,1] => 2 = 1 + 1
[2,2] => 2 = 1 + 1
[3,1] => 3 = 2 + 1
[4] => 4 = 3 + 1
[1,1,1,1,1] => 1 = 0 + 1
[1,1,1,2] => 2 = 1 + 1
[1,1,2,1] => 2 = 1 + 1
[1,1,3] => 3 = 2 + 1
[1,2,1,1] => 2 = 1 + 1
[1,2,2] => 2 = 1 + 1
[1,3,1] => 3 = 2 + 1
[1,4] => 4 = 3 + 1
[2,1,1,1] => 2 = 1 + 1
[2,1,2] => 3 = 2 + 1
[2,2,1] => 2 = 1 + 1
[2,3] => 3 = 2 + 1
[3,1,1] => 3 = 2 + 1
[3,2] => 3 = 2 + 1
[4,1] => 4 = 3 + 1
[5] => 5 = 4 + 1
Description
The number of up steps of the associated bargraph. Interpret the composition as the sequence of heights of the bars of a bargraph. This statistic is the number of up steps.
Mp00231: Integer compositions bounce pathDyck paths
St000335: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> 1 = 0 + 1
[1,1] => [1,0,1,0]
=> 1 = 0 + 1
[2] => [1,1,0,0]
=> 2 = 1 + 1
[1,1,1] => [1,0,1,0,1,0]
=> 1 = 0 + 1
[1,2] => [1,0,1,1,0,0]
=> 2 = 1 + 1
[2,1] => [1,1,0,0,1,0]
=> 2 = 1 + 1
[3] => [1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,1,2] => [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,3] => [1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[2,1,1] => [1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[2,2] => [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[3,1] => [1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[4] => [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 3 = 2 + 1
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3 = 2 + 1
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 4 = 3 + 1
[5] => [1,1,1,1,1,0,0,0,0,0]
=> 5 = 4 + 1
Description
The difference of lower and upper interactions. An ''upper interaction'' in a Dyck path is the occurrence of a factor $0^k 1^k$ with $k \geq 1$ (see [[St000331]]), and a ''lower interaction'' is the occurrence of a factor $1^k 0^k$ with $k \geq 1$. In both cases, $1$ denotes an up-step $0$ denotes a a down-step.
Mp00094: Integer compositions to binary wordBinary words
Mp00178: Binary words to compositionInteger compositions
St000091: Integer compositions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => 1 => [1,1] => 0
[1,1] => 11 => [1,1,1] => 0
[2] => 10 => [1,2] => 1
[1,1,1] => 111 => [1,1,1,1] => 0
[1,2] => 110 => [1,1,2] => 1
[2,1] => 101 => [1,2,1] => 1
[3] => 100 => [1,3] => 2
[1,1,1,1] => 1111 => [1,1,1,1,1] => 0
[1,1,2] => 1110 => [1,1,1,2] => 1
[1,2,1] => 1101 => [1,1,2,1] => 1
[1,3] => 1100 => [1,1,3] => 2
[2,1,1] => 1011 => [1,2,1,1] => 1
[2,2] => 1010 => [1,2,2] => 1
[3,1] => 1001 => [1,3,1] => 2
[4] => 1000 => [1,4] => 3
[1,1,1,1,1] => 11111 => [1,1,1,1,1,1] => 0
[1,1,1,2] => 11110 => [1,1,1,1,2] => 1
[1,1,2,1] => 11101 => [1,1,1,2,1] => 1
[1,1,3] => 11100 => [1,1,1,3] => 2
[1,2,1,1] => 11011 => [1,1,2,1,1] => 1
[1,2,2] => 11010 => [1,1,2,2] => 1
[1,3,1] => 11001 => [1,1,3,1] => 2
[1,4] => 11000 => [1,1,4] => 3
[2,1,1,1] => 10111 => [1,2,1,1,1] => 1
[2,1,2] => 10110 => [1,2,1,2] => 2
[2,2,1] => 10101 => [1,2,2,1] => 1
[2,3] => 10100 => [1,2,3] => 2
[3,1,1] => 10011 => [1,3,1,1] => 2
[3,2] => 10010 => [1,3,2] => 2
[4,1] => 10001 => [1,4,1] => 3
[5] => 10000 => [1,5] => 4
Description
The descent variation of a composition. Defined in [1].
Mp00231: Integer compositions bounce pathDyck paths
Mp00296: Dyck paths Knuth-KrattenthalerDyck paths
St000306: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1,0]
=> 0
[1,1] => [1,0,1,0]
=> [1,1,0,0]
=> 0
[2] => [1,1,0,0]
=> [1,0,1,0]
=> 1
[1,1,1] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
[1,2] => [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
[2,1] => [1,1,0,0,1,0]
=> [1,0,1,0,1,0]
=> 2
[3] => [1,1,1,0,0,0]
=> [1,1,0,0,1,0]
=> 1
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 1
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[4] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 2
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 3
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 3
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 2
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
Description
The bounce count of a Dyck path. For a Dyck path $D$ of length $2n$, this is the number of points $(i,i)$ for $1 \leq i < n$ that are touching points of the [[Mp00099|bounce path]] of $D$.
Mp00184: Integer compositions to threshold graphGraphs
Mp00250: Graphs clique graphGraphs
St000778: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => ([],1)
=> ([],1)
=> 0
[1,1] => ([(0,1)],2)
=> ([],1)
=> 0
[2] => ([],2)
=> ([],2)
=> 1
[1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> 0
[1,2] => ([(1,2)],3)
=> ([],2)
=> 1
[2,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
[3] => ([],3)
=> ([],3)
=> 2
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 0
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> 1
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
[1,3] => ([(2,3)],4)
=> ([],3)
=> 2
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
[2,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> 1
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[4] => ([],4)
=> ([],4)
=> 3
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 0
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 1
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> 2
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 1
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,4] => ([(3,4)],5)
=> ([],4)
=> 3
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 1
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[2,3] => ([(2,4),(3,4)],5)
=> ([(2,3)],4)
=> 2
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[5] => ([],5)
=> ([],5)
=> 4
Description
The metric dimension of a graph. This is the length of the shortest vector of vertices, such that every vertex is uniquely determined by the vector of distances from these vertices.
Mp00231: Integer compositions bounce pathDyck paths
Mp00296: Dyck paths Knuth-KrattenthalerDyck paths
St001197: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1,0]
=> 0
[1,1] => [1,0,1,0]
=> [1,1,0,0]
=> 0
[2] => [1,1,0,0]
=> [1,0,1,0]
=> 1
[1,1,1] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
[1,2] => [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
[2,1] => [1,1,0,0,1,0]
=> [1,0,1,0,1,0]
=> 2
[3] => [1,1,1,0,0,0]
=> [1,1,0,0,1,0]
=> 1
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 1
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[4] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 2
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 3
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 3
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 2
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
Description
The global dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
Mp00231: Integer compositions bounce pathDyck paths
Mp00296: Dyck paths Knuth-KrattenthalerDyck paths
St001205: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1,0]
=> 0
[1,1] => [1,0,1,0]
=> [1,1,0,0]
=> 0
[2] => [1,1,0,0]
=> [1,0,1,0]
=> 1
[1,1,1] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
[1,2] => [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
[2,1] => [1,1,0,0,1,0]
=> [1,0,1,0,1,0]
=> 2
[3] => [1,1,1,0,0,0]
=> [1,1,0,0,1,0]
=> 1
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 1
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[4] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 2
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 3
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 3
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 2
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
Description
The number of non-simple indecomposable projective-injective modules of the algebra $eAe$ in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. See http://www.findstat.org/DyckPaths/NakayamaAlgebras for the definition of Nakayama algebra and the relation to Dyck paths.
Mp00231: Integer compositions bounce pathDyck paths
Mp00122: Dyck paths Elizalde-Deutsch bijectionDyck paths
St001233: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1,0]
=> 0
[1,1] => [1,0,1,0]
=> [1,1,0,0]
=> 1
[2] => [1,1,0,0]
=> [1,0,1,0]
=> 0
[1,1,1] => [1,0,1,0,1,0]
=> [1,1,0,0,1,0]
=> 1
[1,2] => [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
[2,1] => [1,1,0,0,1,0]
=> [1,1,1,0,0,0]
=> 2
[3] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 1
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> 3
[3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 2
[4] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 1
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 2
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 3
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 3
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 4
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 2
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
Description
The number of indecomposable 2-dimensional modules with projective dimension one.
Mp00094: Integer compositions to binary wordBinary words
Mp00105: Binary words complementBinary words
St001372: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => 1 => 0 => 0
[1,1] => 11 => 00 => 0
[2] => 10 => 01 => 1
[1,1,1] => 111 => 000 => 0
[1,2] => 110 => 001 => 1
[2,1] => 101 => 010 => 1
[3] => 100 => 011 => 2
[1,1,1,1] => 1111 => 0000 => 0
[1,1,2] => 1110 => 0001 => 1
[1,2,1] => 1101 => 0010 => 1
[1,3] => 1100 => 0011 => 2
[2,1,1] => 1011 => 0100 => 1
[2,2] => 1010 => 0101 => 1
[3,1] => 1001 => 0110 => 2
[4] => 1000 => 0111 => 3
[1,1,1,1,1] => 11111 => 00000 => 0
[1,1,1,2] => 11110 => 00001 => 1
[1,1,2,1] => 11101 => 00010 => 1
[1,1,3] => 11100 => 00011 => 2
[1,2,1,1] => 11011 => 00100 => 1
[1,2,2] => 11010 => 00101 => 1
[1,3,1] => 11001 => 00110 => 2
[1,4] => 11000 => 00111 => 3
[2,1,1,1] => 10111 => 01000 => 1
[2,1,2] => 10110 => 01001 => 1
[2,2,1] => 10101 => 01010 => 2
[2,3] => 10100 => 01011 => 2
[3,1,1] => 10011 => 01100 => 2
[3,2] => 10010 => 01101 => 2
[4,1] => 10001 => 01110 => 3
[5] => 10000 => 01111 => 4
Description
The length of a longest cyclic run of ones of a binary word. Consider the binary word as a cyclic arrangement of ones and zeros. Then this statistic is the length of the longest continuous sequence of ones in this arrangement.
Mp00231: Integer compositions bounce pathDyck paths
Mp00118: Dyck paths swap returns and last descentDyck paths
St001509: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1,0]
=> 0
[1,1] => [1,0,1,0]
=> [1,1,0,0]
=> 0
[2] => [1,1,0,0]
=> [1,0,1,0]
=> 1
[1,1,1] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
[1,2] => [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[2,1] => [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 1
[3] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[4] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 2
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 3
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 2
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 3
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
Description
The degree of the standard monomial associated to a Dyck path relative to the trivial lower boundary. Given two lattice paths $U,L$ from $(0,0)$ to $(d,n-d)$, [1] describes a bijection between lattice paths weakly between $U$ and $L$ and subsets of $\{1,\dots,n\}$ such that the set of all such subsets gives the standard complex of the lattice path matroid $M[U,L]$. This statistic gives the cardinality of the image of this bijection when a Dyck path is considered as a path weakly below the diagonal and relative to the trivial lower boundary.
The following 369 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001949The rigidity index of a graph. St000393The number of strictly increasing runs in a binary word. St000684The global dimension of the LNakayama algebra associated to a Dyck path. St001135The projective dimension of the first simple module in the Nakayama algebra corresponding to the Dyck path. St001203We associate to a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n-1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a Dyck path as follows: St001239The largest vector space dimension of the double dual of a simple module in the corresponding Nakayama algebra. St001315The dissociation number of a graph. St001318The number of vertices of the largest induced subforest with the same number of connected components of a graph. St001321The number of vertices of the largest induced subforest of a graph. St001655The general position number of a graph. St001656The monophonic position number of a graph. St001012Number of simple modules with projective dimension at most 2 in the Nakayama algebra corresponding to the Dyck path. St001028Number of simple modules with injective dimension equal to the dominant dimension in the Nakayama algebra corresponding to the Dyck path. St001179Number of indecomposable injective modules with projective dimension at most 2 in the corresponding Nakayama algebra. St001180Number of indecomposable injective modules with projective dimension at most 1. St001237The number of simple modules with injective dimension at most one or dominant dimension at least one. St000024The number of double up and double down steps of a Dyck path. St000028The number of stack-sorts needed to sort a permutation. St000120The number of left tunnels of a Dyck path. St000141The maximum drop size of a permutation. St000245The number of ascents of a permutation. St000329The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1. St000331The number of upper interactions of a Dyck path. St000337The lec statistic, the sum of the inversion numbers of the hook factors of a permutation. St000374The number of exclusive right-to-left minima of a permutation. St000533The minimum of the number of parts and the size of the first part of an integer partition. St000662The staircase size of the code of a permutation. St000783The side length of the largest staircase partition fitting into a partition. St000864The number of circled entries of the shifted recording tableau of a permutation. St000877The depth of the binary word interpreted as a path. St000931The number of occurrences of the pattern UUU in a Dyck path. St000996The number of exclusive left-to-right maxima of a permutation. St001035The convexity degree of the parallelogram polyomino associated with the Dyck path. St001067The number of simple modules of dominant dimension at least two in the corresponding Nakayama algebra. St001189The number of simple modules with dominant and codominant dimension equal to zero in the Nakayama algebra corresponding to the Dyck path. St001192The maximal dimension of $Ext_A^2(S,A)$ for a simple module $S$ over the corresponding Nakayama algebra $A$. St001194The injective dimension of $A/AfA$ in the corresponding Nakayama algebra $A$ when $Af$ is the minimal faithful projective-injective left $A$-module St001215Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001216The number of indecomposable injective modules in the corresponding Nakayama algebra that have non-vanishing second Ext-group with the regular module. St001223Number of indecomposable projective non-injective modules P such that the modules X and Y in a an Auslander-Reiten sequence ending at P are torsionless. St001274The number of indecomposable injective modules with projective dimension equal to two. St001294The maximal torsionfree index of a simple non-projective module in the corresponding Nakayama algebra. St001296The maximal torsionfree index of an indecomposable non-projective module in the corresponding Nakayama algebra. St001298The number of repeated entries in the Lehmer code of a permutation. St001489The maximum of the number of descents and the number of inverse descents. St001506Half the projective dimension of the unique simple module with even projective dimension in a magnitude 1 Nakayama algebra. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St000013The height of a Dyck path. St000031The number of cycles in the cycle decomposition of a permutation. St000050The depth or height of a binary tree. St000062The length of the longest increasing subsequence of the permutation. St000144The pyramid weight of the Dyck path. St000213The number of weak exceedances (also weak excedences) of a permutation. St000308The height of the tree associated to a permutation. St000314The number of left-to-right-maxima of a permutation. St000326The position of the first one in a binary word after appending a 1 at the end. St000381The largest part of an integer composition. St000384The maximal part of the shifted composition of an integer partition. St000392The length of the longest run of ones in a binary word. St000443The number of long tunnels of a Dyck path. St000444The length of the maximal rise of a Dyck path. St000451The length of the longest pattern of the form k 1 2. St000628The balance of a binary word. St000636The hull number of a graph. St000676The number of odd rises of a Dyck path. St000686The finitistic dominant dimension of a Dyck path. St000784The maximum of the length and the largest part of the integer partition. St000863The length of the first row of the shifted shape of a permutation. St000975The length of the boundary minus the length of the trunk of an ordered tree. St000991The number of right-to-left minima of a permutation. St001004The number of indices that are either left-to-right maxima or right-to-left minima. St001007Number of simple modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001024Maximum of dominant dimensions of the simple modules in the Nakayama algebra corresponding to the Dyck path. St001183The maximum of $projdim(S)+injdim(S)$ over all simple modules in the Nakayama algebra corresponding to the Dyck path. St001187The number of simple modules with grade at least one in the corresponding Nakayama algebra. St001224Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001258Gives the maximum of injective plus projective dimension of an indecomposable module over the corresponding Nakayama algebra. St001437The flex of a binary word. St001461The number of topologically connected components of the chord diagram of a permutation. St001530The depth of a Dyck path. St001554The number of distinct nonempty subtrees of a binary tree. St001654The monophonic hull number of a graph. St001733The number of weak left to right maxima of a Dyck path. St000380Half of the maximal perimeter of a rectangle fitting into the diagram of an integer partition. St000702The number of weak deficiencies of a permutation. St000969We make a CNakayama algebra out of the LNakayama algebra (corresponding to the Dyck path) $[c_0,c_1,...,c_{n-1}]$ by adding $c_0$ to $c_{n-1}$. St000998Number of indecomposable projective modules with injective dimension smaller than or equal to the dominant dimension in the Nakayama algebra corresponding to the Dyck path. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St001240The number of indecomposable modules e_i J^2 that have injective dimension at most one in the corresponding Nakayama algebra St001290The first natural number n such that the tensor product of n copies of D(A) is zero for the corresponding Nakayama algebra A. St000354The number of recoils of a permutation. St000442The maximal area to the right of an up step of a Dyck path. St000829The Ulam distance of a permutation to the identity permutation. St000932The number of occurrences of the pattern UDU in a Dyck path. St001418Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St000485The length of the longest cycle of a permutation. St000741The Colin de Verdière graph invariant. St000159The number of distinct parts of the integer partition. St000340The number of non-final maximal constant sub-paths of length greater than one. St000619The number of cyclic descents of a permutation. St001036The number of inner corners of the parallelogram polyomino associated with the Dyck path. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001247The number of parts of a partition that are not congruent 2 modulo 3. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001280The number of parts of an integer partition that are at least two. St001432The order dimension of the partition. St001571The Cartan determinant of the integer partition. St001933The largest multiplicity of a part in an integer partition. St000454The largest eigenvalue of a graph if it is integral. St001330The hat guessing number of a graph. St000075The orbit size of a standard tableau under promotion. St001644The dimension of a graph. St000259The diameter of a connected graph. St001142The projective dimension of the socle of the regular module as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001169Number of simple modules with projective dimension at least two in the corresponding Nakayama algebra. St001481The minimal height of a peak of a Dyck path. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St000420The number of Dyck paths that are weakly above a Dyck path. St001803The maximal overlap of the cylindrical tableau associated with a tableau. St001808The box weight or horizontal decoration of a Dyck path. St001414Half the length of the longest odd length palindromic prefix of a binary word. St000937The number of positive values of the symmetric group character corresponding to the partition. St001645The pebbling number of a connected graph. St000678The number of up steps after the last double rise of a Dyck path. St000681The Grundy value of Chomp on Ferrers diagrams. St000993The multiplicity of the largest part of an integer partition. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001613The binary logarithm of the size of the center of a lattice. St001617The dimension of the space of valuations of a lattice. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St001389The number of partitions of the same length below the given integer partition. St001527The cyclic permutation representation number of an integer partition. St001914The size of the orbit of an integer partition in Bulgarian solitaire. St000005The bounce statistic of a Dyck path. St000006The dinv of a Dyck path. St000010The length of the partition. St000015The number of peaks of a Dyck path. St000063The number of linear extensions of a certain poset defined for an integer partition. St000108The number of partitions contained in the given partition. St000147The largest part of an integer partition. St000288The number of ones in a binary word. St000290The major index of a binary word. St000296The length of the symmetric border of a binary word. St000318The number of addable cells of the Ferrers diagram of an integer partition. St000378The diagonal inversion number of an integer partition. St000456The monochromatic index of a connected graph. St000460The hook length of the last cell along the main diagonal of an integer partition. St000476The sum of the semi-lengths of tunnels before a valley of a Dyck path. St000511The number of invariant subsets when acting with a permutation of given cycle type. St000531The leading coefficient of the rook polynomial of an integer partition. St000532The total number of rook placements on a Ferrers board. St000548The number of different non-empty partial sums of an integer partition. St000668The least common multiple of the parts of the partition. St000674The number of hills of a Dyck path. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000733The row containing the largest entry of a standard tableau. St000734The last entry in the first row of a standard tableau. St000738The first entry in the last row of a standard tableau. St000753The Grundy value for the game of Kayles on a binary word. St000815The number of semistandard Young tableaux of partition weight of given shape. St000870The product of the hook lengths of the diagonal cells in an integer partition. St000876The number of factors in the Catalan decomposition of a binary word. St000885The number of critical steps in the Catalan decomposition of a binary word. St000933The number of multipartitions of sizes given by an integer partition. St000947The major index east count of a Dyck path. St000952Gives the number of irreducible factors of the Coxeter polynomial of the Dyck path over the rational numbers. St000968We make a CNakayama algebra out of the LNakayama algebra (corresponding to the Dyck path) $[c_0,c_1,...,c_{n−1}]$ by adding $c_0$ to $c_{n−1}$. St000982The length of the longest constant subword. St001014Number of indecomposable injective modules with codominant dimension equal to the dominant dimension of the Nakayama algebra corresponding to the Dyck path. St001015Number of indecomposable injective modules with codominant dimension equal to one in the Nakayama algebra corresponding to the Dyck path. St001016Number of indecomposable injective modules with codominant dimension at most 1 in the Nakayama algebra corresponding to the Dyck path. St001032The number of horizontal steps in the bicoloured Motzkin path associated with the Dyck path. St001038The minimal height of a column in the parallelogram polyomino associated with the Dyck path. St001068Number of torsionless simple modules in the corresponding Nakayama algebra. St001161The major index north count of a Dyck path. St001165Number of simple modules with even projective dimension in the corresponding Nakayama algebra. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001227The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra. St001241The number of non-zero radicals of the indecomposable projective modules that have injective dimension and projective dimension at most one. St001249Sum of the odd parts of a partition. St001291The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001297The number of indecomposable non-injective projective modules minus the number of indecomposable non-injective projective modules that have reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St001360The number of covering relations in Young's lattice below a partition. St001380The number of monomer-dimer tilings of a Ferrers diagram. St001400The total number of Littlewood-Richardson tableaux of given shape. St001415The length of the longest palindromic prefix of a binary word. St001419The length of the longest palindromic factor beginning with a one of a binary word. St001471The magnitude of a Dyck path. St001485The modular major index of a binary word. St001515The vector space dimension of the socle of the first syzygy module of the regular module (as a bimodule). St001523The degree of symmetry of a Dyck path. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St001614The cyclic permutation representation number of a skew partition. St001659The number of ways to place as many non-attacking rooks as possible on a Ferrers board. St001660The number of ways to place as many non-attacking rooks as possible on a skew Ferrers board. St001785The number of ways to obtain a partition as the multiset of antidiagonal lengths of the Ferrers diagram of a partition. St001809The index of the step at the first peak of maximal height in a Dyck path. St001814The number of partitions interlacing the given partition. St001955The number of natural descents for set-valued two row standard Young tableaux. St001959The product of the heights of the peaks of a Dyck path. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001863The number of weak excedances of a signed permutation. St000455The second largest eigenvalue of a graph if it is integral. St000260The radius of a connected graph. St001263The index of the maximal parabolic seaweed algebra associated with the composition. St001498The normalised height of a Nakayama algebra with magnitude 1. St001557The number of inversions of the second entry of a permutation. St001712The number of natural descents of a standard Young tableau. St001948The number of augmented double ascents of a permutation. St000983The length of the longest alternating subword. St001267The length of the Lyndon factorization of the binary word. St001589The nesting number of a perfect matching. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000939The number of characters of the symmetric group whose value on the partition is positive. St001118The acyclic chromatic index of a graph. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000770The major index of an integer partition when read from bottom to top. St001060The distinguishing index of a graph. St001568The smallest positive integer that does not appear twice in the partition. St000285The size of the preimage of the map 'to inverse des composition' from Parking functions to Integer compositions. St000327The number of cover relations in a poset. St000366The number of double descents of a permutation. St000371The number of mid points of decreasing subsequences of length 3 in a permutation. St000441The number of successions of a permutation. St000656The number of cuts of a poset. St000675The number of centered multitunnels of a Dyck path. St000680The Grundy value for Hackendot on posets. St000717The number of ordinal summands of a poset. St000744The length of the path to the largest entry in a standard Young tableau. St000762The sum of the positions of the weak records of an integer composition. St000782The indicator function of whether a given perfect matching is an L & P matching. St000817The sum of the entries in the column specified by the composition of the change of basis matrix from dual immaculate quasisymmetric functions to monomial quasisymmetric functions. St000818The sum of the entries in the column specified by the composition of the change of basis matrix from quasisymmetric Schur functions to monomial quasisymmetric functions. St000871The number of very big ascents of a permutation. St000906The length of the shortest maximal chain in a poset. St001499The number of indecomposable projective-injective modules of a magnitude 1 Nakayama algebra. St001500The global dimension of magnitude 1 Nakayama algebras. St001501The dominant dimension of magnitude 1 Nakayama algebras. St001637The number of (upper) dissectors of a poset. St001668The number of points of the poset minus the width of the poset. St000035The number of left outer peaks of a permutation. St000742The number of big ascents of a permutation after prepending zero. St000632The jump number of the poset. St000307The number of rowmotion orbits of a poset. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St000023The number of inner peaks of a permutation. St000173The segment statistic of a semistandard tableau. St000174The flush statistic of a semistandard tableau. St000234The number of global ascents of a permutation. St000284The Plancherel distribution on integer partitions. St000353The number of inner valleys of a permutation. St000375The number of non weak exceedences of a permutation that are mid-points of a decreasing subsequence of length $3$. St000486The number of cycles of length at least 3 of a permutation. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000646The number of big ascents of a permutation. St000663The number of right floats of a permutation. St000710The number of big deficiencies of a permutation. St000711The number of big exceedences of a permutation. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000929The constant term of the character polynomial of an integer partition. St001128The exponens consonantiae of a partition. St001388The number of non-attacking neighbors of a permutation. St001469The holeyness of a permutation. St001470The cyclic holeyness of a permutation. St001728The number of invisible descents of a permutation. St001816Eigenvalues of the top-to-random operator acting on a simple module. St001839The number of excedances of a set partition. St001840The number of descents of a set partition. St001862The number of crossings of a signed permutation. St001882The number of occurrences of a type-B 231 pattern in a signed permutation. St001960The number of descents of a permutation minus one if its first entry is not one. St000056The decomposition (or block) number of a permutation. St000092The number of outer peaks of a permutation. St000099The number of valleys of a permutation, including the boundary. St000239The number of small weak excedances. St000254The nesting number of a set partition. St000502The number of successions of a set partitions. St000887The maximal number of nonzero entries on a diagonal of a permutation matrix. St001061The number of indices that are both descents and recoils of a permutation. St001652The length of a longest interval of consecutive numbers. St001662The length of the longest factor of consecutive numbers in a permutation. St001665The number of pure excedances of a permutation. St001737The number of descents of type 2 in a permutation. St001859The number of factors of the Stanley symmetric function associated with a permutation. St001864The number of excedances of a signed permutation. St000824The sum of the number of descents and the number of recoils of a permutation. St000046The largest eigenvalue of the random to random operator acting on the simple module corresponding to the given partition. St000207Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000567The sum of the products of all pairs of parts. St000618The number of self-evacuating tableaux of given shape. St000667The greatest common divisor of the parts of the partition. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St000781The number of proper colouring schemes of a Ferrers diagram. St001099The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled binary trees. St001100The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled trees. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001262The dimension of the maximal parabolic seaweed algebra corresponding to the partition. St001283The number of finite solvable groups that are realised by the given partition over the complex numbers. St001284The number of finite groups that are realised by the given partition over the complex numbers. St001364The number of permutations whose cube equals a fixed permutation of given cycle type. St001378The product of the cohook lengths of the integer partition. St001442The number of standard Young tableaux whose major index is divisible by the size of a given integer partition. St001561The value of the elementary symmetric function evaluated at 1. St001562The value of the complete homogeneous symmetric function evaluated at 1. St001563The value of the power-sum symmetric function evaluated at 1. St001564The value of the forgotten symmetric functions when all variables set to 1. St001593This is the number of standard Young tableaux of the given shifted shape. St001599The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on rooted trees. St001600The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple graphs. St001601The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on trees. St001602The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on endofunctions. St001606The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on set partitions. St001607The number of coloured graphs such that the multiplicities of colours are given by a partition. St001608The number of coloured rooted trees such that the multiplicities of colours are given by a partition. St001609The number of coloured trees such that the multiplicities of colours are given by a partition. St001610The number of coloured endofunctions such that the multiplicities of colours are given by a partition. St001611The number of multiset partitions such that the multiplicities of elements are given by a partition. St001627The number of coloured connected graphs such that the multiplicities of colours are given by a partition. St001628The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple connected graphs. St001763The Hurwitz number of an integer partition. St001780The order of promotion on the set of standard tableaux of given shape. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001899The total number of irreducible representations contained in the higher Lie character for an integer partition. St001900The number of distinct irreducible representations contained in the higher Lie character for an integer partition. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St001913The number of preimages of an integer partition in Bulgarian solitaire. St001924The number of cells in an integer partition whose arm and leg length coincide. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St001936The number of transitive factorisations of a permutation of given cycle type into star transpositions. St001938The number of transitive monotone factorizations of genus zero of a permutation of given cycle type. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St000302The determinant of the distance matrix of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St000514The number of invariant simple graphs when acting with a permutation of given cycle type. St000515The number of invariant set partitions when acting with a permutation of given cycle type. St000706The product of the factorials of the multiplicities of an integer partition. St001097The coefficient of the monomial symmetric function indexed by the partition in the formal group law for linear orders. St001098The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for vertex labelled trees. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St001570The minimal number of edges to add to make a graph Hamiltonian. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St000112The sum of the entries reduced by the index of their row in a semistandard tableau. St000177The number of free tiles in the pattern. St000178Number of free entries. St001520The number of strict 3-descents. St001582The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order. St001811The Castelnuovo-Mumford regularity of a permutation. St000736The last entry in the first row of a semistandard tableau. St001208The number of connected components of the quiver of $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra $A$ of $K[x]/(x^n)$. St001569The maximal modular displacement of a permutation. St001722The number of minimal chains with small intervals between a binary word and the top element. St001235The global dimension of the corresponding Comp-Nakayama algebra.