Your data matches 41 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000319
Mp00193: Lattices to posetPosets
Mp00306: Posets rowmotion cycle typeInteger partitions
St000319: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> [2]
=> 1
([(0,1)],2)
=> ([(0,1)],2)
=> [3]
=> 2
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [4]
=> 3
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [4,2]
=> 3
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [5]
=> 4
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [4,2,2,2]
=> 3
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [8]
=> 7
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [5,2]
=> 4
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 5
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [5,2]
=> 4
Description
The spin of an integer partition. The Ferrers shape of an integer partition $\lambda$ can be decomposed into border strips. The spin is then defined to be the total number of crossings of border strips of $\lambda$ with the vertical lines in the Ferrers shape. The following example is taken from Appendix B in [1]: Let $\lambda = (5,5,4,4,2,1)$. Removing the border strips successively yields the sequence of partitions $$(5,5,4,4,2,1), (4,3,3,1), (2,2), (1), ().$$ The first strip $(5,5,4,4,2,1) \setminus (4,3,3,1)$ crosses $4$ times, the second strip $(4,3,3,1) \setminus (2,2)$ crosses $3$ times, the strip $(2,2) \setminus (1)$ crosses $1$ time, and the remaining strip $(1) \setminus ()$ does not cross. This yields the spin of $(5,5,4,4,2,1)$ to be $4+3+1 = 8$.
Matching statistic: St000320
Mp00193: Lattices to posetPosets
Mp00306: Posets rowmotion cycle typeInteger partitions
St000320: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> [2]
=> 1
([(0,1)],2)
=> ([(0,1)],2)
=> [3]
=> 2
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [4]
=> 3
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [4,2]
=> 3
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [5]
=> 4
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [4,2,2,2]
=> 3
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [8]
=> 7
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [5,2]
=> 4
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 5
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [5,2]
=> 4
Description
The dinv adjustment of an integer partition. The Ferrers shape of an integer partition $\lambda = (\lambda_1,\ldots,\lambda_k)$ can be decomposed into border strips. For $0 \leq j < \lambda_1$ let $n_j$ be the length of the border strip starting at $(\lambda_1-j,0)$. The dinv adjustment is then defined by $$\sum_{j:n_j > 0}(\lambda_1-1-j).$$ The following example is taken from Appendix B in [2]: Let $\lambda=(5,5,4,4,2,1)$. Removing the border strips successively yields the sequence of partitions $$(5,5,4,4,2,1),(4,3,3,1),(2,2),(1),(),$$ and we obtain $(n_0,\ldots,n_4) = (10,7,0,3,1)$. The dinv adjustment is thus $4+3+1+0 = 8$.
Matching statistic: St001392
Mp00193: Lattices to posetPosets
Mp00306: Posets rowmotion cycle typeInteger partitions
St001392: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> [2]
=> 1
([(0,1)],2)
=> ([(0,1)],2)
=> [3]
=> 2
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [4]
=> 3
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [4,2]
=> 3
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [5]
=> 4
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [4,2,2,2]
=> 3
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [8]
=> 7
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [5,2]
=> 4
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 5
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [5,2]
=> 4
Description
The largest nonnegative integer which is not a part and is smaller than the largest part of the partition.
Matching statistic: St000147
Mp00193: Lattices to posetPosets
Mp00306: Posets rowmotion cycle typeInteger partitions
St000147: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> [2]
=> 2 = 1 + 1
([(0,1)],2)
=> ([(0,1)],2)
=> [3]
=> 3 = 2 + 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [4]
=> 4 = 3 + 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [4,2]
=> 4 = 3 + 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [5]
=> 5 = 4 + 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [4,2,2,2]
=> 4 = 3 + 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [8]
=> 8 = 7 + 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [5,2]
=> 5 = 4 + 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 6 = 5 + 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [5,2]
=> 5 = 4 + 1
Description
The largest part of an integer partition.
Matching statistic: St000474
Mp00193: Lattices to posetPosets
Mp00306: Posets rowmotion cycle typeInteger partitions
St000474: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> [2]
=> 2 = 1 + 1
([(0,1)],2)
=> ([(0,1)],2)
=> [3]
=> 3 = 2 + 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [4]
=> 4 = 3 + 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [4,2]
=> 4 = 3 + 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [5]
=> 5 = 4 + 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [4,2,2,2]
=> 4 = 3 + 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [8]
=> 8 = 7 + 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [5,2]
=> 5 = 4 + 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 6 = 5 + 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [5,2]
=> 5 = 4 + 1
Description
Dyson's crank of a partition. Let $\lambda$ be a partition and let $o(\lambda)$ be the number of parts that are equal to 1 ([[St000475]]), and let $\mu(\lambda)$ be the number of parts that are strictly larger than $o(\lambda)$ ([[St000473]]). Dyson's crank is then defined as $$crank(\lambda) = \begin{cases} \text{ largest part of }\lambda & o(\lambda) = 0\\ \mu(\lambda) - o(\lambda) & o(\lambda) > 0. \end{cases}$$
Mp00193: Lattices to posetPosets
Mp00306: Posets rowmotion cycle typeInteger partitions
St000784: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> [2]
=> 2 = 1 + 1
([(0,1)],2)
=> ([(0,1)],2)
=> [3]
=> 3 = 2 + 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [4]
=> 4 = 3 + 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [4,2]
=> 4 = 3 + 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [5]
=> 5 = 4 + 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [4,2,2,2]
=> 4 = 3 + 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [8]
=> 8 = 7 + 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [5,2]
=> 5 = 4 + 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 6 = 5 + 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [5,2]
=> 5 = 4 + 1
Description
The maximum of the length and the largest part of the integer partition. This is the side length of the smallest square the Ferrers diagram of the partition fits into. It is also the minimal number of colours required to colour the cells of the Ferrers diagram such that no two cells in a column or in a row have the same colour, see [1]. See also [[St001214]].
Matching statistic: St000010
Mp00193: Lattices to posetPosets
Mp00306: Posets rowmotion cycle typeInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St000010: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> [2]
=> [1,1]
=> 2 = 1 + 1
([(0,1)],2)
=> ([(0,1)],2)
=> [3]
=> [1,1,1]
=> 3 = 2 + 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [4]
=> [1,1,1,1]
=> 4 = 3 + 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [4,2]
=> [2,2,1,1]
=> 4 = 3 + 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [5]
=> [1,1,1,1,1]
=> 5 = 4 + 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [4,2,2,2]
=> [4,4,1,1]
=> 4 = 3 + 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> 8 = 7 + 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [5,2]
=> [2,2,1,1,1]
=> 5 = 4 + 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> [1,1,1,1,1,1]
=> 6 = 5 + 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [5,2]
=> [2,2,1,1,1]
=> 5 = 4 + 1
Description
The length of the partition.
Matching statistic: St001250
Mp00193: Lattices to posetPosets
Mp00306: Posets rowmotion cycle typeInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St001250: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> [2]
=> [1,1]
=> 2 = 1 + 1
([(0,1)],2)
=> ([(0,1)],2)
=> [3]
=> [1,1,1]
=> 3 = 2 + 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [4]
=> [1,1,1,1]
=> 4 = 3 + 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [4,2]
=> [2,2,1,1]
=> 4 = 3 + 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [5]
=> [1,1,1,1,1]
=> 5 = 4 + 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [4,2,2,2]
=> [4,4,1,1]
=> 4 = 3 + 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> 8 = 7 + 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [5,2]
=> [2,2,1,1,1]
=> 5 = 4 + 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> [1,1,1,1,1,1]
=> 6 = 5 + 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [5,2]
=> [2,2,1,1,1]
=> 5 = 4 + 1
Description
The number of parts of a partition that are not congruent 0 modulo 3.
Matching statistic: St000643
Mp00193: Lattices to posetPosets
St000643: Posets ⟶ ℤResult quality: 83% values known / values provided: 90%distinct values known / distinct values provided: 83%
Values
([],1)
=> ([],1)
=> ? = 1 + 1
([(0,1)],2)
=> ([(0,1)],2)
=> 3 = 2 + 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 4 = 3 + 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 5 = 4 + 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 4 = 3 + 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 8 = 7 + 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 5 = 4 + 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 6 = 5 + 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 5 = 4 + 1
Description
The size of the largest orbit of antichains under Panyushev complementation.
Matching statistic: St001820
Mp00196: Lattices The modular quotient of a lattice.Lattices
Mp00193: Lattices to posetPosets
Mp00195: Posets order idealsLattices
St001820: Lattices ⟶ ℤResult quality: 83% values known / values provided: 90%distinct values known / distinct values provided: 83%
Values
([],1)
=> ([],1)
=> ([],1)
=> ([(0,1)],2)
=> 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 2
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 3
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
=> ? = 7
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 3
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 4
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 4
Description
The size of the image of the pop stack sorting operator. The pop stack sorting operator is defined by $Pop_L^\downarrow(x) = x\wedge\bigwedge\{y\in L\mid y\lessdot x\}$. This statistic returns the size of $Pop_L^\downarrow(L)\}$.
The following 31 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001623The number of doubly irreducible elements of a lattice. St001626The number of maximal proper sublattices of a lattice. St001720The minimal length of a chain of small intervals in a lattice. St001877Number of indecomposable injective modules with projective dimension 2. St001644The dimension of a graph. St000741The Colin de Verdière graph invariant. St000656The number of cuts of a poset. St000910The number of maximal chains of minimal length in a poset. St000907The number of maximal antichains of minimal length in a poset. St000680The Grundy value for Hackendot on posets. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St000259The diameter of a connected graph. St000454The largest eigenvalue of a graph if it is integral. St000455The second largest eigenvalue of a graph if it is integral. St001330The hat guessing number of a graph. St001621The number of atoms of a lattice. St001645The pebbling number of a connected graph. St001651The Frankl number of a lattice. St000327The number of cover relations in a poset. St001637The number of (upper) dissectors of a poset. St001668The number of points of the poset minus the width of the poset. St001875The number of simple modules with projective dimension at most 1. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001570The minimal number of edges to add to make a graph Hamiltonian. St000264The girth of a graph, which is not a tree. St001118The acyclic chromatic index of a graph. St000699The toughness times the least common multiple of 1,.