Your data matches 25 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000319
Mp00079: Set partitions shapeInteger partitions
St000319: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1]
=> 0
{{1,2}}
=> [2]
=> 1
{{1},{2}}
=> [1,1]
=> 0
{{1,2,3}}
=> [3]
=> 2
{{1,2},{3}}
=> [2,1]
=> 1
{{1,3},{2}}
=> [2,1]
=> 1
{{1},{2,3}}
=> [2,1]
=> 1
{{1},{2},{3}}
=> [1,1,1]
=> 0
{{1,2,3,4}}
=> [4]
=> 3
{{1,2,3},{4}}
=> [3,1]
=> 2
{{1,2,4},{3}}
=> [3,1]
=> 2
{{1,2},{3,4}}
=> [2,2]
=> 1
{{1,2},{3},{4}}
=> [2,1,1]
=> 1
{{1,3,4},{2}}
=> [3,1]
=> 2
{{1,3},{2,4}}
=> [2,2]
=> 1
{{1,3},{2},{4}}
=> [2,1,1]
=> 1
{{1,4},{2,3}}
=> [2,2]
=> 1
{{1},{2,3,4}}
=> [3,1]
=> 2
{{1},{2,3},{4}}
=> [2,1,1]
=> 1
{{1,4},{2},{3}}
=> [2,1,1]
=> 1
{{1},{2,4},{3}}
=> [2,1,1]
=> 1
{{1},{2},{3,4}}
=> [2,1,1]
=> 1
{{1},{2},{3},{4}}
=> [1,1,1,1]
=> 0
{{1,2,3,4,5}}
=> [5]
=> 4
{{1,2,3,4},{5}}
=> [4,1]
=> 3
{{1,2,3,5},{4}}
=> [4,1]
=> 3
{{1,2,3},{4,5}}
=> [3,2]
=> 2
{{1,2,3},{4},{5}}
=> [3,1,1]
=> 2
{{1,2,4,5},{3}}
=> [4,1]
=> 3
{{1,2,4},{3,5}}
=> [3,2]
=> 2
{{1,2,4},{3},{5}}
=> [3,1,1]
=> 2
{{1,2,5},{3,4}}
=> [3,2]
=> 2
{{1,2},{3,4,5}}
=> [3,2]
=> 2
{{1,2},{3,4},{5}}
=> [2,2,1]
=> 1
{{1,2,5},{3},{4}}
=> [3,1,1]
=> 2
{{1,2},{3,5},{4}}
=> [2,2,1]
=> 1
{{1,2},{3},{4,5}}
=> [2,2,1]
=> 1
{{1,2},{3},{4},{5}}
=> [2,1,1,1]
=> 1
{{1,3,4,5},{2}}
=> [4,1]
=> 3
{{1,3,4},{2,5}}
=> [3,2]
=> 2
{{1,3,4},{2},{5}}
=> [3,1,1]
=> 2
{{1,3,5},{2,4}}
=> [3,2]
=> 2
{{1,3},{2,4,5}}
=> [3,2]
=> 2
{{1,3},{2,4},{5}}
=> [2,2,1]
=> 1
{{1,3,5},{2},{4}}
=> [3,1,1]
=> 2
{{1,3},{2,5},{4}}
=> [2,2,1]
=> 1
{{1,3},{2},{4,5}}
=> [2,2,1]
=> 1
{{1,3},{2},{4},{5}}
=> [2,1,1,1]
=> 1
{{1,4,5},{2,3}}
=> [3,2]
=> 2
{{1,4},{2,3,5}}
=> [3,2]
=> 2
Description
The spin of an integer partition. The Ferrers shape of an integer partition $\lambda$ can be decomposed into border strips. The spin is then defined to be the total number of crossings of border strips of $\lambda$ with the vertical lines in the Ferrers shape. The following example is taken from Appendix B in [1]: Let $\lambda = (5,5,4,4,2,1)$. Removing the border strips successively yields the sequence of partitions $$(5,5,4,4,2,1), (4,3,3,1), (2,2), (1), ().$$ The first strip $(5,5,4,4,2,1) \setminus (4,3,3,1)$ crosses $4$ times, the second strip $(4,3,3,1) \setminus (2,2)$ crosses $3$ times, the strip $(2,2) \setminus (1)$ crosses $1$ time, and the remaining strip $(1) \setminus ()$ does not cross. This yields the spin of $(5,5,4,4,2,1)$ to be $4+3+1 = 8$.
Matching statistic: St000320
Mp00079: Set partitions shapeInteger partitions
St000320: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1]
=> 0
{{1,2}}
=> [2]
=> 1
{{1},{2}}
=> [1,1]
=> 0
{{1,2,3}}
=> [3]
=> 2
{{1,2},{3}}
=> [2,1]
=> 1
{{1,3},{2}}
=> [2,1]
=> 1
{{1},{2,3}}
=> [2,1]
=> 1
{{1},{2},{3}}
=> [1,1,1]
=> 0
{{1,2,3,4}}
=> [4]
=> 3
{{1,2,3},{4}}
=> [3,1]
=> 2
{{1,2,4},{3}}
=> [3,1]
=> 2
{{1,2},{3,4}}
=> [2,2]
=> 1
{{1,2},{3},{4}}
=> [2,1,1]
=> 1
{{1,3,4},{2}}
=> [3,1]
=> 2
{{1,3},{2,4}}
=> [2,2]
=> 1
{{1,3},{2},{4}}
=> [2,1,1]
=> 1
{{1,4},{2,3}}
=> [2,2]
=> 1
{{1},{2,3,4}}
=> [3,1]
=> 2
{{1},{2,3},{4}}
=> [2,1,1]
=> 1
{{1,4},{2},{3}}
=> [2,1,1]
=> 1
{{1},{2,4},{3}}
=> [2,1,1]
=> 1
{{1},{2},{3,4}}
=> [2,1,1]
=> 1
{{1},{2},{3},{4}}
=> [1,1,1,1]
=> 0
{{1,2,3,4,5}}
=> [5]
=> 4
{{1,2,3,4},{5}}
=> [4,1]
=> 3
{{1,2,3,5},{4}}
=> [4,1]
=> 3
{{1,2,3},{4,5}}
=> [3,2]
=> 2
{{1,2,3},{4},{5}}
=> [3,1,1]
=> 2
{{1,2,4,5},{3}}
=> [4,1]
=> 3
{{1,2,4},{3,5}}
=> [3,2]
=> 2
{{1,2,4},{3},{5}}
=> [3,1,1]
=> 2
{{1,2,5},{3,4}}
=> [3,2]
=> 2
{{1,2},{3,4,5}}
=> [3,2]
=> 2
{{1,2},{3,4},{5}}
=> [2,2,1]
=> 1
{{1,2,5},{3},{4}}
=> [3,1,1]
=> 2
{{1,2},{3,5},{4}}
=> [2,2,1]
=> 1
{{1,2},{3},{4,5}}
=> [2,2,1]
=> 1
{{1,2},{3},{4},{5}}
=> [2,1,1,1]
=> 1
{{1,3,4,5},{2}}
=> [4,1]
=> 3
{{1,3,4},{2,5}}
=> [3,2]
=> 2
{{1,3,4},{2},{5}}
=> [3,1,1]
=> 2
{{1,3,5},{2,4}}
=> [3,2]
=> 2
{{1,3},{2,4,5}}
=> [3,2]
=> 2
{{1,3},{2,4},{5}}
=> [2,2,1]
=> 1
{{1,3,5},{2},{4}}
=> [3,1,1]
=> 2
{{1,3},{2,5},{4}}
=> [2,2,1]
=> 1
{{1,3},{2},{4,5}}
=> [2,2,1]
=> 1
{{1,3},{2},{4},{5}}
=> [2,1,1,1]
=> 1
{{1,4,5},{2,3}}
=> [3,2]
=> 2
{{1,4},{2,3,5}}
=> [3,2]
=> 2
Description
The dinv adjustment of an integer partition. The Ferrers shape of an integer partition $\lambda = (\lambda_1,\ldots,\lambda_k)$ can be decomposed into border strips. For $0 \leq j < \lambda_1$ let $n_j$ be the length of the border strip starting at $(\lambda_1-j,0)$. The dinv adjustment is then defined by $$\sum_{j:n_j > 0}(\lambda_1-1-j).$$ The following example is taken from Appendix B in [2]: Let $\lambda=(5,5,4,4,2,1)$. Removing the border strips successively yields the sequence of partitions $$(5,5,4,4,2,1),(4,3,3,1),(2,2),(1),(),$$ and we obtain $(n_0,\ldots,n_4) = (10,7,0,3,1)$. The dinv adjustment is thus $4+3+1+0 = 8$.
Matching statistic: St000877
Mp00079: Set partitions shapeInteger partitions
Mp00042: Integer partitions initial tableauStandard tableaux
Mp00134: Standard tableaux descent wordBinary words
St000877: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1]
=> [[1]]
=> => ? = 0
{{1,2}}
=> [2]
=> [[1,2]]
=> 0 => 1
{{1},{2}}
=> [1,1]
=> [[1],[2]]
=> 1 => 0
{{1,2,3}}
=> [3]
=> [[1,2,3]]
=> 00 => 2
{{1,2},{3}}
=> [2,1]
=> [[1,2],[3]]
=> 01 => 1
{{1,3},{2}}
=> [2,1]
=> [[1,2],[3]]
=> 01 => 1
{{1},{2,3}}
=> [2,1]
=> [[1,2],[3]]
=> 01 => 1
{{1},{2},{3}}
=> [1,1,1]
=> [[1],[2],[3]]
=> 11 => 0
{{1,2,3,4}}
=> [4]
=> [[1,2,3,4]]
=> 000 => 3
{{1,2,3},{4}}
=> [3,1]
=> [[1,2,3],[4]]
=> 001 => 2
{{1,2,4},{3}}
=> [3,1]
=> [[1,2,3],[4]]
=> 001 => 2
{{1,2},{3,4}}
=> [2,2]
=> [[1,2],[3,4]]
=> 010 => 1
{{1,2},{3},{4}}
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 011 => 1
{{1,3,4},{2}}
=> [3,1]
=> [[1,2,3],[4]]
=> 001 => 2
{{1,3},{2,4}}
=> [2,2]
=> [[1,2],[3,4]]
=> 010 => 1
{{1,3},{2},{4}}
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 011 => 1
{{1,4},{2,3}}
=> [2,2]
=> [[1,2],[3,4]]
=> 010 => 1
{{1},{2,3,4}}
=> [3,1]
=> [[1,2,3],[4]]
=> 001 => 2
{{1},{2,3},{4}}
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 011 => 1
{{1,4},{2},{3}}
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 011 => 1
{{1},{2,4},{3}}
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 011 => 1
{{1},{2},{3,4}}
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 011 => 1
{{1},{2},{3},{4}}
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 111 => 0
{{1,2,3,4,5}}
=> [5]
=> [[1,2,3,4,5]]
=> 0000 => 4
{{1,2,3,4},{5}}
=> [4,1]
=> [[1,2,3,4],[5]]
=> 0001 => 3
{{1,2,3,5},{4}}
=> [4,1]
=> [[1,2,3,4],[5]]
=> 0001 => 3
{{1,2,3},{4,5}}
=> [3,2]
=> [[1,2,3],[4,5]]
=> 0010 => 2
{{1,2,3},{4},{5}}
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 0011 => 2
{{1,2,4,5},{3}}
=> [4,1]
=> [[1,2,3,4],[5]]
=> 0001 => 3
{{1,2,4},{3,5}}
=> [3,2]
=> [[1,2,3],[4,5]]
=> 0010 => 2
{{1,2,4},{3},{5}}
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 0011 => 2
{{1,2,5},{3,4}}
=> [3,2]
=> [[1,2,3],[4,5]]
=> 0010 => 2
{{1,2},{3,4,5}}
=> [3,2]
=> [[1,2,3],[4,5]]
=> 0010 => 2
{{1,2},{3,4},{5}}
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 0101 => 1
{{1,2,5},{3},{4}}
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 0011 => 2
{{1,2},{3,5},{4}}
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 0101 => 1
{{1,2},{3},{4,5}}
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 0101 => 1
{{1,2},{3},{4},{5}}
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 0111 => 1
{{1,3,4,5},{2}}
=> [4,1]
=> [[1,2,3,4],[5]]
=> 0001 => 3
{{1,3,4},{2,5}}
=> [3,2]
=> [[1,2,3],[4,5]]
=> 0010 => 2
{{1,3,4},{2},{5}}
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 0011 => 2
{{1,3,5},{2,4}}
=> [3,2]
=> [[1,2,3],[4,5]]
=> 0010 => 2
{{1,3},{2,4,5}}
=> [3,2]
=> [[1,2,3],[4,5]]
=> 0010 => 2
{{1,3},{2,4},{5}}
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 0101 => 1
{{1,3,5},{2},{4}}
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 0011 => 2
{{1,3},{2,5},{4}}
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 0101 => 1
{{1,3},{2},{4,5}}
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 0101 => 1
{{1,3},{2},{4},{5}}
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 0111 => 1
{{1,4,5},{2,3}}
=> [3,2]
=> [[1,2,3],[4,5]]
=> 0010 => 2
{{1,4},{2,3,5}}
=> [3,2]
=> [[1,2,3],[4,5]]
=> 0010 => 2
{{1,4},{2,3},{5}}
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 0101 => 1
Description
The depth of the binary word interpreted as a path. This is the maximal value of the number of zeros minus the number of ones occurring in a prefix of the binary word, see [1, sec.9.1.2]. The number of binary words of length $n$ with depth $k$ is $\binom{n}{\lfloor\frac{(n+1) - (-1)^{n-k}(k+1)}{2}\rfloor}$, see [2].
Matching statistic: St001727
Mp00079: Set partitions shapeInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00025: Dyck paths to 132-avoiding permutationPermutations
St001727: Permutations ⟶ ℤResult quality: 71% values known / values provided: 97%distinct values known / distinct values provided: 71%
Values
{{1}}
=> [1]
=> [1,0,1,0]
=> [2,1] => 0
{{1,2}}
=> [2]
=> [1,1,0,0,1,0]
=> [3,1,2] => 1
{{1},{2}}
=> [1,1]
=> [1,0,1,1,0,0]
=> [2,3,1] => 0
{{1,2,3}}
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 2
{{1,2},{3}}
=> [2,1]
=> [1,0,1,0,1,0]
=> [3,2,1] => 1
{{1,3},{2}}
=> [2,1]
=> [1,0,1,0,1,0]
=> [3,2,1] => 1
{{1},{2,3}}
=> [2,1]
=> [1,0,1,0,1,0]
=> [3,2,1] => 1
{{1},{2},{3}}
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 0
{{1,2,3,4}}
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => 3
{{1,2,3},{4}}
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 2
{{1,2,4},{3}}
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 2
{{1,2},{3,4}}
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 1
{{1,2},{3},{4}}
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 1
{{1,3,4},{2}}
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 2
{{1,3},{2,4}}
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 1
{{1,3},{2},{4}}
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 1
{{1,4},{2,3}}
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 1
{{1},{2,3,4}}
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 2
{{1},{2,3},{4}}
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 1
{{1,4},{2},{3}}
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 1
{{1},{2,4},{3}}
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 1
{{1},{2},{3,4}}
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 1
{{1},{2},{3},{4}}
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 0
{{1,2,3,4,5}}
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5] => 4
{{1,2,3,4},{5}}
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => 3
{{1,2,3,5},{4}}
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => 3
{{1,2,3},{4,5}}
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 2
{{1,2,3},{4},{5}}
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 2
{{1,2,4,5},{3}}
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => 3
{{1,2,4},{3,5}}
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 2
{{1,2,4},{3},{5}}
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 2
{{1,2,5},{3,4}}
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 2
{{1,2},{3,4,5}}
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 2
{{1,2},{3,4},{5}}
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 1
{{1,2,5},{3},{4}}
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 2
{{1,2},{3,5},{4}}
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 1
{{1,2},{3},{4,5}}
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 1
{{1,2},{3},{4},{5}}
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 1
{{1,3,4,5},{2}}
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => 3
{{1,3,4},{2,5}}
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 2
{{1,3,4},{2},{5}}
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 2
{{1,3,5},{2,4}}
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 2
{{1,3},{2,4,5}}
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 2
{{1,3},{2,4},{5}}
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 1
{{1,3,5},{2},{4}}
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 2
{{1,3},{2,5},{4}}
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 1
{{1,3},{2},{4,5}}
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 1
{{1,3},{2},{4},{5}}
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 1
{{1,4,5},{2,3}}
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 2
{{1,4},{2,3,5}}
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 2
{{1,2,3,4,5,6}}
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [7,1,2,3,4,5,6] => ? ∊ {0,5}
{{1},{2},{3},{4},{5},{6}}
=> [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => ? ∊ {0,5}
{{1,2,3,4,5,6,7}}
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [8,1,2,3,4,5,6,7] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,5,5,5,5,5,5,6}
{{1,2,3,4,5,6},{7}}
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [7,2,1,3,4,5,6] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,5,5,5,5,5,5,6}
{{1,2,3,4,5,7},{6}}
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [7,2,1,3,4,5,6] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,5,5,5,5,5,5,6}
{{1,2,3,4,6,7},{5}}
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [7,2,1,3,4,5,6] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,5,5,5,5,5,5,6}
{{1,2,3,5,6,7},{4}}
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [7,2,1,3,4,5,6] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,5,5,5,5,5,5,6}
{{1,2,4,5,6,7},{3}}
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [7,2,1,3,4,5,6] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,5,5,5,5,5,5,6}
{{1,2},{3},{4},{5},{6},{7}}
=> [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,5,5,5,5,5,5,6}
{{1,3,4,5,6,7},{2}}
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [7,2,1,3,4,5,6] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,5,5,5,5,5,5,6}
{{1,3},{2},{4},{5},{6},{7}}
=> [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,5,5,5,5,5,5,6}
{{1},{2,3,4,5,6,7}}
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [7,2,1,3,4,5,6] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,5,5,5,5,5,5,6}
{{1},{2,3},{4},{5},{6},{7}}
=> [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,5,5,5,5,5,5,6}
{{1,4},{2},{3},{5},{6},{7}}
=> [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,5,5,5,5,5,5,6}
{{1},{2,4},{3},{5},{6},{7}}
=> [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,5,5,5,5,5,5,6}
{{1},{2},{3,4},{5},{6},{7}}
=> [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,5,5,5,5,5,5,6}
{{1,5},{2},{3},{4},{6},{7}}
=> [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,5,5,5,5,5,5,6}
{{1},{2,5},{3},{4},{6},{7}}
=> [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,5,5,5,5,5,5,6}
{{1},{2},{3,5},{4},{6},{7}}
=> [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,5,5,5,5,5,5,6}
{{1},{2},{3},{4,5},{6},{7}}
=> [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,5,5,5,5,5,5,6}
{{1,6},{2},{3},{4},{5},{7}}
=> [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,5,5,5,5,5,5,6}
{{1},{2,6},{3},{4},{5},{7}}
=> [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,5,5,5,5,5,5,6}
{{1},{2},{3,6},{4},{5},{7}}
=> [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,5,5,5,5,5,5,6}
{{1},{2},{3},{4,6},{5},{7}}
=> [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,5,5,5,5,5,5,6}
{{1},{2},{3},{4},{5,6},{7}}
=> [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,5,5,5,5,5,5,6}
{{1,7},{2},{3},{4},{5},{6}}
=> [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,5,5,5,5,5,5,6}
{{1},{2,7},{3},{4},{5},{6}}
=> [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,5,5,5,5,5,5,6}
{{1},{2},{3,7},{4},{5},{6}}
=> [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,5,5,5,5,5,5,6}
{{1},{2},{3},{4,7},{5},{6}}
=> [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,5,5,5,5,5,5,6}
{{1},{2},{3},{4},{5,7},{6}}
=> [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,5,5,5,5,5,5,6}
{{1},{2},{3},{4},{5},{6,7}}
=> [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,5,5,5,5,5,5,6}
{{1},{2},{3},{4},{5},{6},{7}}
=> [1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,1] => ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,5,5,5,5,5,5,6}
Description
The number of invisible inversions of a permutation. A visible inversion of a permutation $\pi$ is a pair $i < j$ such that $\pi(j) \leq \min(i, \pi(i))$. Thus, an invisible inversion satisfies $\pi(i) > \pi(j) > i$.
Matching statistic: St000993
Mp00079: Set partitions shapeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000993: Integer partitions ⟶ ℤResult quality: 63% values known / values provided: 63%distinct values known / distinct values provided: 71%
Values
{{1}}
=> [1]
=> []
=> ?
=> ? = 0
{{1,2}}
=> [2]
=> []
=> ?
=> ? ∊ {0,1}
{{1},{2}}
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1}
{{1,2,3}}
=> [3]
=> []
=> ?
=> ? ∊ {0,1,1,1,2}
{{1,2},{3}}
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,2}
{{1,3},{2}}
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,2}
{{1},{2,3}}
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,2}
{{1},{2},{3}}
=> [1,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,1,1,1,2}
{{1,2,3,4}}
=> [4]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,3}
{{1,2,3},{4}}
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,3}
{{1,2,4},{3}}
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,3}
{{1,2},{3,4}}
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,3}
{{1,2},{3},{4}}
=> [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,3}
{{1,3,4},{2}}
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,3}
{{1,3},{2,4}}
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,3}
{{1,3},{2},{4}}
=> [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,3}
{{1,4},{2,3}}
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,3}
{{1},{2,3,4}}
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,3}
{{1},{2,3},{4}}
=> [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,3}
{{1,4},{2},{3}}
=> [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,3}
{{1},{2,4},{3}}
=> [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,3}
{{1},{2},{3,4}}
=> [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,2,2,2,3}
{{1},{2},{3},{4}}
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
{{1,2,3,4,5}}
=> [5]
=> []
=> ?
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
{{1,2,3,4},{5}}
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
{{1,2,3,5},{4}}
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
{{1,2,3},{4,5}}
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
{{1,2,3},{4},{5}}
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
{{1,2,4,5},{3}}
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
{{1,2,4},{3,5}}
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
{{1,2,4},{3},{5}}
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
{{1,2,5},{3,4}}
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
{{1,2},{3,4,5}}
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
{{1,2},{3,4},{5}}
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
{{1,2,5},{3},{4}}
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
{{1,2},{3,5},{4}}
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
{{1,2},{3},{4,5}}
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
{{1,2},{3},{4},{5}}
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
{{1,3,4,5},{2}}
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
{{1,3,4},{2,5}}
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
{{1,3,4},{2},{5}}
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
{{1,3,5},{2,4}}
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
{{1,3},{2,4,5}}
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
{{1,3},{2,4},{5}}
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
{{1,3,5},{2},{4}}
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
{{1,3},{2,5},{4}}
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
{{1,3},{2},{4,5}}
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
{{1,3},{2},{4},{5}}
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
{{1,4,5},{2,3}}
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
{{1,4},{2,3,5}}
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
{{1,4},{2,3},{5}}
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
{{1,5},{2,3,4}}
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
{{1},{2,3,4,5}}
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4}
{{1},{2,3},{4},{5}}
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
{{1,4},{2},{3},{5}}
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
{{1},{2,4},{3},{5}}
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
{{1},{2},{3,4},{5}}
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
{{1,5},{2},{3},{4}}
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
{{1},{2,5},{3},{4}}
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
{{1},{2},{3,5},{4}}
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
{{1},{2},{3},{4,5}}
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
{{1},{2},{3},{4},{5}}
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 3
{{1,2,3},{4},{5},{6}}
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
{{1,2,4},{3},{5},{6}}
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
{{1,2},{3,4},{5,6}}
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
{{1,2},{3,4},{5},{6}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 2
{{1,2,5},{3},{4},{6}}
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
{{1,2},{3,5},{4,6}}
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
{{1,2},{3,5},{4},{6}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 2
{{1,2},{3,6},{4,5}}
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
{{1,2},{3},{4,5},{6}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 2
{{1,2,6},{3},{4},{5}}
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
{{1,2},{3,6},{4},{5}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 2
{{1,2},{3},{4,6},{5}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 2
{{1,2},{3},{4},{5,6}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 2
{{1,2},{3},{4},{5},{6}}
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 3
{{1,3,4},{2},{5},{6}}
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
{{1,3},{2,4},{5,6}}
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
{{1,3},{2,4},{5},{6}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 2
{{1,3,5},{2},{4},{6}}
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
{{1,3},{2,5},{4,6}}
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
{{1,3},{2,5},{4},{6}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 2
{{1,3},{2,6},{4,5}}
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
{{1,3},{2},{4,5},{6}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 2
{{1,3,6},{2},{4},{5}}
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
{{1,3},{2,6},{4},{5}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 2
{{1,3},{2},{4,6},{5}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 2
{{1,3},{2},{4},{5,6}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 2
{{1,3},{2},{4},{5},{6}}
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 3
{{1,4},{2,3},{5,6}}
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
{{1,4},{2,3},{5},{6}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 2
{{1},{2,3,4},{5},{6}}
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
{{1,5},{2,3},{4,6}}
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
{{1,5},{2,3},{4},{6}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 2
{{1},{2,3,5},{4},{6}}
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
{{1,6},{2,3},{4,5}}
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
{{1},{2,3},{4,5},{6}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 2
{{1,6},{2,3},{4},{5}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 2
{{1},{2,3,6},{4},{5}}
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
{{1},{2,3},{4,6},{5}}
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 2
Description
The multiplicity of the largest part of an integer partition.
Mp00080: Set partitions to permutationPermutations
Mp00062: Permutations Lehmer-code to major-code bijectionPermutations
Mp00160: Permutations graph of inversionsGraphs
St000260: Graphs ⟶ ℤResult quality: 52% values known / values provided: 52%distinct values known / distinct values provided: 57%
Values
{{1}}
=> [1] => [1] => ([],1)
=> 0
{{1,2}}
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
{{1},{2}}
=> [1,2] => [1,2] => ([],2)
=> ? = 0
{{1,2,3}}
=> [2,3,1] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {0,1,2}
{{1,2},{3}}
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {0,1,2}
{{1,3},{2}}
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
{{1},{2,3}}
=> [1,3,2] => [3,1,2] => ([(0,2),(1,2)],3)
=> 1
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {0,1,2}
{{1,2,3,4}}
=> [2,3,4,1] => [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {0,1,1,1,1,2,2,3}
{{1,2,3},{4}}
=> [2,3,1,4] => [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {0,1,1,1,1,2,2,3}
{{1,2,4},{3}}
=> [2,4,3,1] => [4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
{{1,2},{3,4}}
=> [2,1,4,3] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,1,2,2,3}
{{1,2},{3},{4}}
=> [2,1,3,4] => [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {0,1,1,1,1,2,2,3}
{{1,3,4},{2}}
=> [3,2,4,1] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? ∊ {0,1,1,1,1,2,2,3}
{{1,3},{2,4}}
=> [3,4,1,2] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 2
{{1,3},{2},{4}}
=> [3,2,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,1,2,2,3}
{{1,4},{2,3}}
=> [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
{{1},{2,3,4}}
=> [1,3,4,2] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 2
{{1},{2,3},{4}}
=> [1,3,2,4] => [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,1,2,2,3}
{{1,4},{2},{3}}
=> [4,2,3,1] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
{{1},{2,4},{3}}
=> [1,4,3,2] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {0,1,1,1,1,2,2,3}
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,2,3,5,4] => ([(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [5,1,2,4,3] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,3,2,4,5] => ([(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [3,1,2,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [4,1,3,2,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [5,4,1,3,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [5,1,4,2,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [1,5,3,2,4] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [3,1,4,2,5] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [4,2,1,5,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 2
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
{{1,5},{2,3,4}}
=> [5,3,4,2,1] => [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
{{1},{2,3,4,5}}
=> [1,3,4,5,2] => [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
{{1},{2,3,4},{5}}
=> [1,3,4,2,5] => [2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
{{1,5},{2,3},{4}}
=> [5,3,2,4,1] => [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
{{1},{2,3,5},{4}}
=> [1,3,5,4,2] => [5,2,4,1,3] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
{{1},{2,3},{4,5}}
=> [1,3,2,5,4] => [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
{{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
{{1,4,5},{2},{3}}
=> [4,2,3,5,1] => [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
{{1,4},{2,5},{3}}
=> [4,5,3,1,2] => [4,1,5,3,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
{{1,4},{2},{3,5}}
=> [4,2,5,1,3] => [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
{{1,4},{2},{3},{5}}
=> [4,2,3,1,5] => [2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
{{1,5},{2,4},{3}}
=> [5,4,3,2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
{{1},{2,4,5},{3}}
=> [1,4,3,5,2] => [3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 2
{{1},{2,4},{3,5}}
=> [1,4,5,2,3] => [4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
{{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => [4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
{{1,5},{2},{3,4}}
=> [5,2,4,3,1] => [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
{{1},{2,5},{3,4}}
=> [1,5,4,3,2] => [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
{{1},{2},{3,4,5}}
=> [1,2,4,5,3] => [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
{{1},{2},{3,4},{5}}
=> [1,2,4,3,5] => [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
{{1,5},{2},{3},{4}}
=> [5,2,3,4,1] => [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
{{1},{2,5},{3},{4}}
=> [1,5,3,4,2] => [3,5,4,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
{{1},{2},{3,5},{4}}
=> [1,2,5,4,3] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
{{1},{2},{3},{4,5}}
=> [1,2,3,5,4] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
{{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
{{1,2,3,4,5,6}}
=> [2,3,4,5,6,1] => [1,2,3,4,6,5] => ([(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,2,3,4,5},{6}}
=> [2,3,4,5,1,6] => [1,2,3,5,4,6] => ([(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,2,3,4,6},{5}}
=> [2,3,4,6,5,1] => [6,1,2,3,5,4] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
{{1,2,3,4},{5,6}}
=> [2,3,4,1,6,5] => [1,2,3,6,4,5] => ([(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,2,3,4},{5},{6}}
=> [2,3,4,1,5,6] => [1,2,4,3,5,6] => ([(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,2,3,5,6},{4}}
=> [2,3,5,4,6,1] => [4,1,2,3,6,5] => ([(0,1),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,2,3,5},{4,6}}
=> [2,3,5,6,1,4] => [5,1,2,3,6,4] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2
{{1,2,3,5},{4},{6}}
=> [2,3,5,4,1,6] => [5,1,2,4,3,6] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,2,3,6},{4,5}}
=> [2,3,6,5,4,1] => [6,5,1,2,4,3] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
{{1,2,3},{4,5,6}}
=> [2,3,1,5,6,4] => [1,2,4,6,3,5] => ([(2,5),(3,4),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,2,3},{4,5},{6}}
=> [2,3,1,5,4,6] => [1,2,5,3,4,6] => ([(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,2,3,6},{4},{5}}
=> [2,3,6,4,5,1] => [4,6,1,2,5,3] => ([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> 2
{{1,2,3},{4,6},{5}}
=> [2,3,1,6,5,4] => [6,1,2,5,3,4] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
{{1,2,3},{4},{5,6}}
=> [2,3,1,4,6,5] => [1,2,6,3,4,5] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,2,4,5},{3,6}}
=> [2,4,6,5,1,3] => [2,5,6,1,4,3] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
{{1,2,4,6},{3,5}}
=> [2,4,5,6,3,1] => [2,3,6,1,5,4] => ([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> 2
{{1,2,4},{3,5,6}}
=> [2,4,5,1,6,3] => [2,6,1,4,3,5] => ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 2
{{1,2,4,6},{3},{5}}
=> [2,4,3,6,5,1] => [2,6,1,3,5,4] => ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 2
{{1,2,4},{3,6},{5}}
=> [2,4,6,1,5,3] => [2,6,1,4,5,3] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> 2
{{1,2,5},{3,4,6}}
=> [2,5,4,6,1,3] => [5,3,1,2,6,4] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> 2
{{1,2,6},{3,4,5}}
=> [2,6,4,5,3,1] => [3,6,5,1,4,2] => ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 2
{{1,2,6},{3,4},{5}}
=> [2,6,4,3,5,1] => [4,3,6,1,5,2] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> 2
{{1,2},{3,4,6},{5}}
=> [2,1,4,6,5,3] => [6,1,3,5,2,4] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
{{1,2,5},{3,6},{4}}
=> [2,5,6,4,1,3] => [5,2,6,1,4,3] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> 2
{{1,2,5},{3},{4,6}}
=> [2,5,3,6,1,4] => [3,5,1,2,6,4] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 2
Description
The radius of a connected graph. This is the minimum eccentricity of any vertex.
Mp00080: Set partitions to permutationPermutations
Mp00160: Permutations graph of inversionsGraphs
Mp00247: Graphs de-duplicateGraphs
St000259: Graphs ⟶ ℤResult quality: 48% values known / values provided: 48%distinct values known / distinct values provided: 71%
Values
{{1}}
=> [1] => ([],1)
=> ([],1)
=> 0
{{1,2}}
=> [2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1
{{1},{2}}
=> [1,2] => ([],2)
=> ([],1)
=> 0
{{1,2,3}}
=> [2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
{{1,2},{3}}
=> [2,1,3] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {1,2}
{{1,3},{2}}
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
{{1},{2,3}}
=> [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {1,2}
{{1},{2},{3}}
=> [1,2,3] => ([],3)
=> ([],1)
=> 0
{{1,2,3,4}}
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
{{1,2,3},{4}}
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,2,2,3}
{{1,2,4},{3}}
=> [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
{{1,2},{3,4}}
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ? ∊ {1,1,1,1,1,2,2,3}
{{1,2},{3},{4}}
=> [2,1,3,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,2,2,3}
{{1,3,4},{2}}
=> [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
{{1,3},{2,4}}
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> 1
{{1,3},{2},{4}}
=> [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,2,2,3}
{{1,4},{2,3}}
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
{{1},{2,3,4}}
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,2,2,3}
{{1},{2,3},{4}}
=> [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,2,2,3}
{{1,4},{2},{3}}
=> [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
{{1},{2,4},{3}}
=> [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,2,2,3}
{{1},{2},{3,4}}
=> [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,2,2,3}
{{1},{2},{3},{4}}
=> [1,2,3,4] => ([],4)
=> ([],1)
=> 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,4}
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,4}
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,4}
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> 3
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,4}
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,4}
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,4}
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,4}
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,4}
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,4}
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,4}
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> 3
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,4}
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 2
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,4}
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,4}
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,4}
{{1,5},{2,3,4}}
=> [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
{{1},{2,3,4,5}}
=> [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,4}
{{1},{2,3,4},{5}}
=> [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,4}
{{1,5},{2,3},{4}}
=> [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
{{1},{2,3,5},{4}}
=> [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,4}
{{1},{2,3},{4,5}}
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,4}
{{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,4}
{{1,4,5},{2},{3}}
=> [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
{{1,4},{2,5},{3}}
=> [4,5,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
{{1,4},{2},{3,5}}
=> [4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
{{1,4},{2},{3},{5}}
=> [4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,4}
{{1,5},{2,4},{3}}
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
{{1},{2,4,5},{3}}
=> [1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,4}
{{1},{2,4},{3,5}}
=> [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,4}
{{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,4}
{{1,5},{2},{3,4}}
=> [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
{{1},{2,5},{3,4}}
=> [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,4}
{{1},{2},{3,4,5}}
=> [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,4}
{{1},{2},{3,4},{5}}
=> [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,4}
{{1,5},{2},{3},{4}}
=> [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
{{1},{2,5},{3},{4}}
=> [1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,4}
{{1},{2},{3,5},{4}}
=> [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,4}
{{1},{2},{3},{4,5}}
=> [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,4}
{{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
{{1,2,3,4,5,6}}
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
{{1,2,3,4,5},{6}}
=> [2,3,4,5,1,6] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2,3,4,6},{5}}
=> [2,3,4,6,5,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
{{1,2,3,4},{5,6}}
=> [2,3,4,1,6,5] => ([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2,3,4},{5},{6}}
=> [2,3,4,1,5,6] => ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2,3,5,6},{4}}
=> [2,3,5,4,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
{{1,2,3,5},{4,6}}
=> [2,3,5,6,1,4] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> 3
{{1,2,3,5},{4},{6}}
=> [2,3,5,4,1,6] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2,3,6},{4,5}}
=> [2,3,6,5,4,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
{{1,2,3},{4,5,6}}
=> [2,3,1,5,6,4] => ([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,3),(1,2)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2,3},{4,5},{6}}
=> [2,3,1,5,4,6] => ([(1,2),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2,3,6},{4},{5}}
=> [2,3,6,4,5,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
{{1,2,3},{4,6},{5}}
=> [2,3,1,6,5,4] => ([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2,3},{4},{5,6}}
=> [2,3,1,4,6,5] => ([(1,2),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2,3},{4},{5},{6}}
=> [2,3,1,4,5,6] => ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2,4,5,6},{3}}
=> [2,4,3,5,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
{{1,2,4,5},{3,6}}
=> [2,4,6,5,1,3] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 3
{{1,2,4,5},{3},{6}}
=> [2,4,3,5,1,6] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2,4,6},{3,5}}
=> [2,4,5,6,3,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
{{1,2,4},{3,5,6}}
=> [2,4,5,1,6,3] => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4
{{1,2,4},{3,5},{6}}
=> [2,4,5,1,3,6] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
{{1,2,4,6},{3},{5}}
=> [2,4,3,6,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 2
{{1,2,4},{3,6},{5}}
=> [2,4,6,1,5,3] => ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 3
{{1,2,5,6},{3,4}}
=> [2,5,4,3,6,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
{{1,2,5},{3,4,6}}
=> [2,5,4,6,1,3] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 3
Description
The diameter of a connected graph. This is the greatest distance between any pair of vertices.
Mp00079: Set partitions shapeInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
St001431: Dyck paths ⟶ ℤResult quality: 46% values known / values provided: 46%distinct values known / distinct values provided: 71%
Values
{{1}}
=> [1]
=> [1]
=> [1,0]
=> ? = 0
{{1,2}}
=> [2]
=> [1,1]
=> [1,1,0,0]
=> 1
{{1},{2}}
=> [1,1]
=> [2]
=> [1,0,1,0]
=> 0
{{1,2,3}}
=> [3]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
{{1,2},{3}}
=> [2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
{{1,3},{2}}
=> [2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
{{1},{2,3}}
=> [2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
{{1},{2},{3}}
=> [1,1,1]
=> [3]
=> [1,0,1,0,1,0]
=> 0
{{1,2,3,4}}
=> [4]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 3
{{1,2,3},{4}}
=> [3,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2
{{1,2,4},{3}}
=> [3,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2
{{1,2},{3,4}}
=> [2,2]
=> [2,2]
=> [1,1,1,0,0,0]
=> 1
{{1,2},{3},{4}}
=> [2,1,1]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 1
{{1,3,4},{2}}
=> [3,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2
{{1,3},{2,4}}
=> [2,2]
=> [2,2]
=> [1,1,1,0,0,0]
=> 1
{{1,3},{2},{4}}
=> [2,1,1]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 1
{{1,4},{2,3}}
=> [2,2]
=> [2,2]
=> [1,1,1,0,0,0]
=> 1
{{1},{2,3,4}}
=> [3,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2
{{1},{2,3},{4}}
=> [2,1,1]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 1
{{1,4},{2},{3}}
=> [2,1,1]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 1
{{1},{2,4},{3}}
=> [2,1,1]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 1
{{1},{2},{3,4}}
=> [2,1,1]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 1
{{1},{2},{3},{4}}
=> [1,1,1,1]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 0
{{1,2,3,4,5}}
=> [5]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4
{{1,2,3,4},{5}}
=> [4,1]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3
{{1,2,3,5},{4}}
=> [4,1]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3
{{1,2,3},{4,5}}
=> [3,2]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2
{{1,2,3},{4},{5}}
=> [3,1,1]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2
{{1,2,4,5},{3}}
=> [4,1]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3
{{1,2,4},{3,5}}
=> [3,2]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2
{{1,2,4},{3},{5}}
=> [3,1,1]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2
{{1,2,5},{3,4}}
=> [3,2]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2
{{1,2},{3,4,5}}
=> [3,2]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2
{{1,2},{3,4},{5}}
=> [2,2,1]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 1
{{1,2,5},{3},{4}}
=> [3,1,1]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2
{{1,2},{3,5},{4}}
=> [2,2,1]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 1
{{1,2},{3},{4,5}}
=> [2,2,1]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 1
{{1,2},{3},{4},{5}}
=> [2,1,1,1]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
{{1,3,4,5},{2}}
=> [4,1]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3
{{1,3,4},{2,5}}
=> [3,2]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2
{{1,3,4},{2},{5}}
=> [3,1,1]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2
{{1,3,5},{2,4}}
=> [3,2]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2
{{1,3},{2,4,5}}
=> [3,2]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2
{{1,3},{2,4},{5}}
=> [2,2,1]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 1
{{1,3,5},{2},{4}}
=> [3,1,1]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2
{{1,3},{2,5},{4}}
=> [2,2,1]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 1
{{1,3},{2},{4,5}}
=> [2,2,1]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 1
{{1,3},{2},{4},{5}}
=> [2,1,1,1]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
{{1,4,5},{2,3}}
=> [3,2]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2
{{1,4},{2,3,5}}
=> [3,2]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2
{{1,4},{2,3},{5}}
=> [2,2,1]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 1
{{1,2,3,4,5,6}}
=> [6]
=> [1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,2,3,4,5},{6}}
=> [5,1]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,2,3,4,6},{5}}
=> [5,1]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,2,3,4},{5},{6}}
=> [4,1,1]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,2,3,5,6},{4}}
=> [5,1]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,2,3,5},{4},{6}}
=> [4,1,1]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,2,3,6},{4},{5}}
=> [4,1,1]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,2,3},{4},{5},{6}}
=> [3,1,1,1]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,2,4,5,6},{3}}
=> [5,1]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,2,4,5},{3},{6}}
=> [4,1,1]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,2,4,6},{3},{5}}
=> [4,1,1]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,2,4},{3},{5},{6}}
=> [3,1,1,1]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,2,5,6},{3},{4}}
=> [4,1,1]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,2,5},{3},{4},{6}}
=> [3,1,1,1]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,2,6},{3},{4},{5}}
=> [3,1,1,1]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,2},{3},{4},{5},{6}}
=> [2,1,1,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,3,4,5,6},{2}}
=> [5,1]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,3,4,5},{2},{6}}
=> [4,1,1]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,3,4,6},{2},{5}}
=> [4,1,1]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,3,4},{2},{5},{6}}
=> [3,1,1,1]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,3,5,6},{2},{4}}
=> [4,1,1]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,3,5},{2},{4},{6}}
=> [3,1,1,1]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,3,6},{2},{4},{5}}
=> [3,1,1,1]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,3},{2},{4},{5},{6}}
=> [2,1,1,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1},{2,3,4,5,6}}
=> [5,1]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1},{2,3,4,5},{6}}
=> [4,1,1]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1},{2,3,4,6},{5}}
=> [4,1,1]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1},{2,3,4},{5},{6}}
=> [3,1,1,1]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1},{2,3,5,6},{4}}
=> [4,1,1]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1},{2,3,5},{4},{6}}
=> [3,1,1,1]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1},{2,3,6},{4},{5}}
=> [3,1,1,1]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1},{2,3},{4},{5},{6}}
=> [2,1,1,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,4,5,6},{2},{3}}
=> [4,1,1]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,4,5},{2},{3},{6}}
=> [3,1,1,1]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,4,6},{2},{3},{5}}
=> [3,1,1,1]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,4},{2},{3},{5},{6}}
=> [2,1,1,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1},{2,4,5,6},{3}}
=> [4,1,1]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1},{2,4,5},{3},{6}}
=> [3,1,1,1]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1},{2,4,6},{3},{5}}
=> [3,1,1,1]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1},{2,4},{3},{5},{6}}
=> [2,1,1,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1},{2},{3,4,5,6}}
=> [4,1,1]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1},{2},{3,4,5},{6}}
=> [3,1,1,1]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1},{2},{3,4,6},{5}}
=> [3,1,1,1]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1},{2},{3,4},{5},{6}}
=> [2,1,1,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,5,6},{2},{3},{4}}
=> [3,1,1,1]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,5},{2},{3},{4},{6}}
=> [2,1,1,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1},{2,5,6},{3},{4}}
=> [3,1,1,1]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1},{2,5},{3},{4},{6}}
=> [2,1,1,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1},{2},{3,5,6},{4}}
=> [3,1,1,1]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
Description
Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. The modified algebra B is obtained from the stable Auslander algebra kQ/I by deleting all relations which contain walks of length at least three (conjectural this step of deletion is not necessary as the stable higher Auslander algebras might be quadratic) and taking as B then the algebra kQ^(op)/J when J is the quadratic perp of the ideal I. See http://www.findstat.org/DyckPaths/NakayamaAlgebras for the definition of Loewy length and Nakayama algebras associated to Dyck paths.
Mp00079: Set partitions shapeInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
St001553: Dyck paths ⟶ ℤResult quality: 46% values known / values provided: 46%distinct values known / distinct values provided: 71%
Values
{{1}}
=> [1]
=> [1]
=> [1,0]
=> 0
{{1,2}}
=> [2]
=> [1,1]
=> [1,1,0,0]
=> 1
{{1},{2}}
=> [1,1]
=> [2]
=> [1,0,1,0]
=> 0
{{1,2,3}}
=> [3]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
{{1,2},{3}}
=> [2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
{{1,3},{2}}
=> [2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
{{1},{2,3}}
=> [2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
{{1},{2},{3}}
=> [1,1,1]
=> [3]
=> [1,0,1,0,1,0]
=> 0
{{1,2,3,4}}
=> [4]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 3
{{1,2,3},{4}}
=> [3,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2
{{1,2,4},{3}}
=> [3,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2
{{1,2},{3,4}}
=> [2,2]
=> [2,2]
=> [1,1,1,0,0,0]
=> 1
{{1,2},{3},{4}}
=> [2,1,1]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 1
{{1,3,4},{2}}
=> [3,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2
{{1,3},{2,4}}
=> [2,2]
=> [2,2]
=> [1,1,1,0,0,0]
=> 1
{{1,3},{2},{4}}
=> [2,1,1]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 1
{{1,4},{2,3}}
=> [2,2]
=> [2,2]
=> [1,1,1,0,0,0]
=> 1
{{1},{2,3,4}}
=> [3,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2
{{1},{2,3},{4}}
=> [2,1,1]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 1
{{1,4},{2},{3}}
=> [2,1,1]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 1
{{1},{2,4},{3}}
=> [2,1,1]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 1
{{1},{2},{3,4}}
=> [2,1,1]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 1
{{1},{2},{3},{4}}
=> [1,1,1,1]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 0
{{1,2,3,4,5}}
=> [5]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4
{{1,2,3,4},{5}}
=> [4,1]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3
{{1,2,3,5},{4}}
=> [4,1]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3
{{1,2,3},{4,5}}
=> [3,2]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2
{{1,2,3},{4},{5}}
=> [3,1,1]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2
{{1,2,4,5},{3}}
=> [4,1]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3
{{1,2,4},{3,5}}
=> [3,2]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2
{{1,2,4},{3},{5}}
=> [3,1,1]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2
{{1,2,5},{3,4}}
=> [3,2]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2
{{1,2},{3,4,5}}
=> [3,2]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2
{{1,2},{3,4},{5}}
=> [2,2,1]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 1
{{1,2,5},{3},{4}}
=> [3,1,1]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2
{{1,2},{3,5},{4}}
=> [2,2,1]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 1
{{1,2},{3},{4,5}}
=> [2,2,1]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 1
{{1,2},{3},{4},{5}}
=> [2,1,1,1]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
{{1,3,4,5},{2}}
=> [4,1]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3
{{1,3,4},{2,5}}
=> [3,2]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2
{{1,3,4},{2},{5}}
=> [3,1,1]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2
{{1,3,5},{2,4}}
=> [3,2]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2
{{1,3},{2,4,5}}
=> [3,2]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2
{{1,3},{2,4},{5}}
=> [2,2,1]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 1
{{1,3,5},{2},{4}}
=> [3,1,1]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2
{{1,3},{2,5},{4}}
=> [2,2,1]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 1
{{1,3},{2},{4,5}}
=> [2,2,1]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 1
{{1,3},{2},{4},{5}}
=> [2,1,1,1]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
{{1,4,5},{2,3}}
=> [3,2]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2
{{1,4},{2,3,5}}
=> [3,2]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2
{{1,2,3,4,5,6}}
=> [6]
=> [1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,2,3,4,5},{6}}
=> [5,1]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,2,3,4,6},{5}}
=> [5,1]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,2,3,4},{5},{6}}
=> [4,1,1]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,2,3,5,6},{4}}
=> [5,1]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,2,3,5},{4},{6}}
=> [4,1,1]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,2,3,6},{4},{5}}
=> [4,1,1]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,2,3},{4},{5},{6}}
=> [3,1,1,1]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,2,4,5,6},{3}}
=> [5,1]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,2,4,5},{3},{6}}
=> [4,1,1]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,2,4,6},{3},{5}}
=> [4,1,1]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,2,4},{3},{5},{6}}
=> [3,1,1,1]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,2,5,6},{3},{4}}
=> [4,1,1]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,2,5},{3},{4},{6}}
=> [3,1,1,1]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,2,6},{3},{4},{5}}
=> [3,1,1,1]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,2},{3},{4},{5},{6}}
=> [2,1,1,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,3,4,5,6},{2}}
=> [5,1]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,3,4,5},{2},{6}}
=> [4,1,1]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,3,4,6},{2},{5}}
=> [4,1,1]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,3,4},{2},{5},{6}}
=> [3,1,1,1]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,3,5,6},{2},{4}}
=> [4,1,1]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,3,5},{2},{4},{6}}
=> [3,1,1,1]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,3,6},{2},{4},{5}}
=> [3,1,1,1]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,3},{2},{4},{5},{6}}
=> [2,1,1,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1},{2,3,4,5,6}}
=> [5,1]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1},{2,3,4,5},{6}}
=> [4,1,1]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1},{2,3,4,6},{5}}
=> [4,1,1]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1},{2,3,4},{5},{6}}
=> [3,1,1,1]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1},{2,3,5,6},{4}}
=> [4,1,1]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1},{2,3,5},{4},{6}}
=> [3,1,1,1]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1},{2,3,6},{4},{5}}
=> [3,1,1,1]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1},{2,3},{4},{5},{6}}
=> [2,1,1,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,4,5,6},{2},{3}}
=> [4,1,1]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,4,5},{2},{3},{6}}
=> [3,1,1,1]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,4,6},{2},{3},{5}}
=> [3,1,1,1]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,4},{2},{3},{5},{6}}
=> [2,1,1,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1},{2,4,5,6},{3}}
=> [4,1,1]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1},{2,4,5},{3},{6}}
=> [3,1,1,1]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1},{2,4,6},{3},{5}}
=> [3,1,1,1]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1},{2,4},{3},{5},{6}}
=> [2,1,1,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1},{2},{3,4,5,6}}
=> [4,1,1]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1},{2},{3,4,5},{6}}
=> [3,1,1,1]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1},{2},{3,4,6},{5}}
=> [3,1,1,1]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1},{2},{3,4},{5},{6}}
=> [2,1,1,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,5,6},{2},{3},{4}}
=> [3,1,1,1]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1,5},{2},{3},{4},{6}}
=> [2,1,1,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1},{2,5,6},{3},{4}}
=> [3,1,1,1]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1},{2,5},{3},{4},{6}}
=> [2,1,1,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1},{2},{3,5,6},{4}}
=> [3,1,1,1]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
{{1},{2},{3,5},{4},{6}}
=> [2,1,1,1,1]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
Description
The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. The statistic returns zero in case that bimodule is the zero module.
Matching statistic: St000329
Mp00079: Set partitions shapeInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
St000329: Dyck paths ⟶ ℤResult quality: 46% values known / values provided: 46%distinct values known / distinct values provided: 71%
Values
{{1}}
=> [1]
=> [1,0]
=> [1,1,0,0]
=> 1 = 0 + 1
{{1,2}}
=> [2]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 2 = 1 + 1
{{1},{2}}
=> [1,1]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> 1 = 0 + 1
{{1,2,3}}
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
{{1,2},{3}}
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2 = 1 + 1
{{1,3},{2}}
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2 = 1 + 1
{{1},{2,3}}
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2 = 1 + 1
{{1},{2},{3}}
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1 = 0 + 1
{{1,2,3,4}}
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4 = 3 + 1
{{1,2,3},{4}}
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
{{1,2,4},{3}}
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
{{1,2},{3,4}}
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 2 = 1 + 1
{{1,2},{3},{4}}
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 2 = 1 + 1
{{1,3,4},{2}}
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
{{1,3},{2,4}}
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 2 = 1 + 1
{{1,3},{2},{4}}
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 2 = 1 + 1
{{1,4},{2,3}}
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 2 = 1 + 1
{{1},{2,3,4}}
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
{{1},{2,3},{4}}
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 2 = 1 + 1
{{1,4},{2},{3}}
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 2 = 1 + 1
{{1},{2,4},{3}}
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 2 = 1 + 1
{{1},{2},{3,4}}
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 2 = 1 + 1
{{1},{2},{3},{4}}
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1 = 0 + 1
{{1,2,3,4,5}}
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 5 = 4 + 1
{{1,2,3,4},{5}}
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 4 = 3 + 1
{{1,2,3,5},{4}}
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 4 = 3 + 1
{{1,2,3},{4,5}}
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 3 = 2 + 1
{{1,2,3},{4},{5}}
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 3 = 2 + 1
{{1,2,4,5},{3}}
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 4 = 3 + 1
{{1,2,4},{3,5}}
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 3 = 2 + 1
{{1,2,4},{3},{5}}
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 3 = 2 + 1
{{1,2,5},{3,4}}
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 3 = 2 + 1
{{1,2},{3,4,5}}
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 3 = 2 + 1
{{1,2},{3,4},{5}}
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 2 = 1 + 1
{{1,2,5},{3},{4}}
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 3 = 2 + 1
{{1,2},{3,5},{4}}
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 2 = 1 + 1
{{1,2},{3},{4,5}}
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 2 = 1 + 1
{{1,2},{3},{4},{5}}
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> 2 = 1 + 1
{{1,3,4,5},{2}}
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 4 = 3 + 1
{{1,3,4},{2,5}}
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 3 = 2 + 1
{{1,3,4},{2},{5}}
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 3 = 2 + 1
{{1,3,5},{2,4}}
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 3 = 2 + 1
{{1,3},{2,4,5}}
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 3 = 2 + 1
{{1,3},{2,4},{5}}
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 2 = 1 + 1
{{1,3,5},{2},{4}}
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 3 = 2 + 1
{{1,3},{2,5},{4}}
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 2 = 1 + 1
{{1,3},{2},{4,5}}
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 2 = 1 + 1
{{1,3},{2},{4},{5}}
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> 2 = 1 + 1
{{1,4,5},{2,3}}
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 3 = 2 + 1
{{1,4},{2,3,5}}
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 3 = 2 + 1
{{1,2,3,4,5,6}}
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1,2,3,4,5},{6}}
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1,2,3,4,6},{5}}
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1,2,3,4},{5},{6}}
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1,2,3,5,6},{4}}
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1,2,3,5},{4},{6}}
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1,2,3,6},{4},{5}}
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1,2,3},{4},{5},{6}}
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1,2,4,5,6},{3}}
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1,2,4,5},{3},{6}}
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1,2,4,6},{3},{5}}
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1,2,4},{3},{5},{6}}
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1,2,5,6},{3},{4}}
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1,2,5},{3},{4},{6}}
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1,2,6},{3},{4},{5}}
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1,2},{3},{4},{5},{6}}
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1,3,4,5,6},{2}}
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1,3,4,5},{2},{6}}
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1,3,4,6},{2},{5}}
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1,3,4},{2},{5},{6}}
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1,3,5,6},{2},{4}}
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1,3,5},{2},{4},{6}}
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1,3,6},{2},{4},{5}}
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1,3},{2},{4},{5},{6}}
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1},{2,3,4,5,6}}
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1},{2,3,4,5},{6}}
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1},{2,3,4,6},{5}}
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1},{2,3,4},{5},{6}}
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1},{2,3,5,6},{4}}
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1},{2,3,5},{4},{6}}
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1},{2,3,6},{4},{5}}
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1},{2,3},{4},{5},{6}}
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1,4,5,6},{2},{3}}
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1,4,5},{2},{3},{6}}
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1,4,6},{2},{3},{5}}
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1,4},{2},{3},{5},{6}}
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1},{2,4,5,6},{3}}
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1},{2,4,5},{3},{6}}
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1},{2,4,6},{3},{5}}
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1},{2,4},{3},{5},{6}}
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1},{2},{3,4,5,6}}
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1},{2},{3,4,5},{6}}
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1},{2},{3,4,6},{5}}
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1},{2},{3,4},{5},{6}}
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1,5,6},{2},{3},{4}}
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1,5},{2},{3},{4},{6}}
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1},{2,5,6},{3},{4}}
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1},{2,5},{3},{4},{6}}
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1},{2},{3,5,6},{4}}
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
{{1},{2},{3,5},{4},{6}}
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5} + 1
Description
The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1.
The following 15 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001330The hat guessing number of a graph. St000454The largest eigenvalue of a graph if it is integral. St001205The number of non-simple indecomposable projective-injective modules of the algebra $eAe$ in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St001024Maximum of dominant dimensions of the simple modules in the Nakayama algebra corresponding to the Dyck path. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000028The number of stack-sorts needed to sort a permutation. St001589The nesting number of a perfect matching. St001414Half the length of the longest odd length palindromic prefix of a binary word. St000455The second largest eigenvalue of a graph if it is integral. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001624The breadth of a lattice.