Your data matches 111 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000363: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> 1 = 2 - 1
([],2)
=> 1 = 2 - 1
([(0,1)],2)
=> 2 = 3 - 1
([],3)
=> 1 = 2 - 1
([(1,2)],3)
=> 2 = 3 - 1
([(0,2),(1,2)],3)
=> 1 = 2 - 1
([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
([],4)
=> 1 = 2 - 1
([(2,3)],4)
=> 2 = 3 - 1
([(1,3),(2,3)],4)
=> 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> 1 = 2 - 1
([(0,3),(1,2)],4)
=> 4 = 5 - 1
([(0,3),(1,2),(2,3)],4)
=> 3 = 4 - 1
([(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 3 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
([],5)
=> 1 = 2 - 1
([(3,4)],5)
=> 2 = 3 - 1
([(2,4),(3,4)],5)
=> 1 = 2 - 1
([(1,4),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(1,4),(2,3)],5)
=> 4 = 5 - 1
([(1,4),(2,3),(3,4)],5)
=> 3 = 4 - 1
([(0,1),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> 2 = 3 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> 2 = 3 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 1 = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 2 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> 6 = 7 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 5 = 6 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 5 = 6 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 3 = 4 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
Description
The number of minimal vertex covers of a graph. A '''vertex cover''' of a graph $G$ is a subset $S$ of the vertices of $G$ such that each edge of $G$ contains at least one vertex of $S$. A vertex cover is minimal if it contains the least possible number of vertices. This is also the leading coefficient of the clique polynomial of the complement of $G$. This is also the number of independent sets of maximal cardinality of $G$.
Matching statistic: St000297
Mp00251: Graphs clique sizesInteger partitions
Mp00095: Integer partitions to binary wordBinary words
St000297: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> 10 => 1 = 2 - 1
([],2)
=> [1,1]
=> 110 => 2 = 3 - 1
([(0,1)],2)
=> [2]
=> 100 => 1 = 2 - 1
([],3)
=> [1,1,1]
=> 1110 => 3 = 4 - 1
([(1,2)],3)
=> [2,1]
=> 1010 => 1 = 2 - 1
([(0,2),(1,2)],3)
=> [2,2]
=> 1100 => 2 = 3 - 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1000 => 1 = 2 - 1
([],4)
=> [1,1,1,1]
=> 11110 => 4 = 5 - 1
([(2,3)],4)
=> [2,1,1]
=> 10110 => 1 = 2 - 1
([(1,3),(2,3)],4)
=> [2,2,1]
=> 11010 => 2 = 3 - 1
([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> 11100 => 3 = 4 - 1
([(0,3),(1,2)],4)
=> [2,2]
=> 1100 => 2 = 3 - 1
([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> 11100 => 3 = 4 - 1
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 10010 => 1 = 2 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> 10100 => 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> 111100 => 4 = 5 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,3]
=> 11000 => 2 = 3 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 10000 => 1 = 2 - 1
([],5)
=> [1,1,1,1,1]
=> 111110 => 5 = 6 - 1
([(3,4)],5)
=> [2,1,1,1]
=> 101110 => 1 = 2 - 1
([(2,4),(3,4)],5)
=> [2,2,1,1]
=> 110110 => 2 = 3 - 1
([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> 111010 => 3 = 4 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> 111100 => 4 = 5 - 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> 11010 => 2 = 3 - 1
([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> 111010 => 3 = 4 - 1
([(0,1),(2,4),(3,4)],5)
=> [2,2,2]
=> 11100 => 3 = 4 - 1
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 100110 => 1 = 2 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> 111100 => 4 = 5 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,1]
=> 101010 => 1 = 2 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> 101100 => 1 = 2 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,1]
=> 1111010 => 4 = 5 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> 1111100 => 5 = 6 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,1]
=> 110010 => 2 = 3 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> 101100 => 1 = 2 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> 110100 => 2 = 3 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> 11111100 => 6 = 7 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> 111000 => 3 = 4 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> 111100 => 4 = 5 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> 10100 => 1 = 2 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,2,2]
=> 101100 => 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> 11000 => 2 = 3 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,2,2,2]
=> 1111100 => 5 = 6 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2,2]
=> 1011100 => 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> 111000 => 3 = 4 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> 110100 => 2 = 3 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 100010 => 1 = 2 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,2]
=> 100100 => 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,3]
=> 101000 => 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,3,2,2]
=> 1101100 => 2 = 3 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [3,3,3,3]
=> 1111000 => 4 = 5 - 1
Description
The number of leading ones in a binary word.
Matching statistic: St000326
Mp00251: Graphs clique sizesInteger partitions
Mp00095: Integer partitions to binary wordBinary words
Mp00105: Binary words complementBinary words
St000326: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> 10 => 01 => 2
([],2)
=> [1,1]
=> 110 => 001 => 3
([(0,1)],2)
=> [2]
=> 100 => 011 => 2
([],3)
=> [1,1,1]
=> 1110 => 0001 => 4
([(1,2)],3)
=> [2,1]
=> 1010 => 0101 => 2
([(0,2),(1,2)],3)
=> [2,2]
=> 1100 => 0011 => 3
([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1000 => 0111 => 2
([],4)
=> [1,1,1,1]
=> 11110 => 00001 => 5
([(2,3)],4)
=> [2,1,1]
=> 10110 => 01001 => 2
([(1,3),(2,3)],4)
=> [2,2,1]
=> 11010 => 00101 => 3
([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> 11100 => 00011 => 4
([(0,3),(1,2)],4)
=> [2,2]
=> 1100 => 0011 => 3
([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> 11100 => 00011 => 4
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 10010 => 01101 => 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> 10100 => 01011 => 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> 111100 => 000011 => 5
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,3]
=> 11000 => 00111 => 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 10000 => 01111 => 2
([],5)
=> [1,1,1,1,1]
=> 111110 => 000001 => 6
([(3,4)],5)
=> [2,1,1,1]
=> 101110 => 010001 => 2
([(2,4),(3,4)],5)
=> [2,2,1,1]
=> 110110 => 001001 => 3
([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> 111010 => 000101 => 4
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> 111100 => 000011 => 5
([(1,4),(2,3)],5)
=> [2,2,1]
=> 11010 => 00101 => 3
([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> 111010 => 000101 => 4
([(0,1),(2,4),(3,4)],5)
=> [2,2,2]
=> 11100 => 00011 => 4
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 100110 => 011001 => 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> 111100 => 000011 => 5
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,1]
=> 101010 => 010101 => 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> 101100 => 010011 => 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,1]
=> 1111010 => 0000101 => 5
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> 1111100 => 0000011 => 6
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,1]
=> 110010 => 001101 => 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> 101100 => 010011 => 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> 110100 => 001011 => 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> 11111100 => 00000011 => 7
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> 111000 => 000111 => 4
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> 111100 => 000011 => 5
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> 10100 => 01011 => 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,2,2]
=> 101100 => 010011 => 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> 11000 => 00111 => 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,2,2,2]
=> 1111100 => 0000011 => 6
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2,2]
=> 1011100 => 0100011 => 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> 111000 => 000111 => 4
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> 110100 => 001011 => 3
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 100010 => 011101 => 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,2]
=> 100100 => 011011 => 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,3]
=> 101000 => 010111 => 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,3,2,2]
=> 1101100 => 0010011 => 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [3,3,3,3]
=> 1111000 => 0000111 => 5
Description
The position of the first one in a binary word after appending a 1 at the end. Regarding the binary word as a subset of $\{1,\dots,n,n+1\}$ that contains $n+1$, this is the minimal element of the set.
Matching statistic: St000617
Mp00251: Graphs clique sizesInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00227: Dyck paths Delest-Viennot-inverseDyck paths
St000617: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> [1,0]
=> [1,0]
=> 1 = 2 - 1
([],2)
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2 = 3 - 1
([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1 = 2 - 1
([],3)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 3 = 4 - 1
([(1,2)],3)
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1 = 2 - 1
([(0,2),(1,2)],3)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 2 = 3 - 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1 = 2 - 1
([],4)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
([(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(1,3),(2,3)],4)
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2 = 3 - 1
([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 4 - 1
([(0,3),(1,2)],4)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 2 = 3 - 1
([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 4 - 1
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4 = 5 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2 = 3 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 1 = 2 - 1
([],5)
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5 = 6 - 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1 = 2 - 1
([(2,4),(3,4)],5)
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2 = 3 - 1
([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 3 = 4 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4 = 5 - 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2 = 3 - 1
([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 3 = 4 - 1
([(0,1),(2,4),(3,4)],5)
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 4 - 1
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4 = 5 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 1 = 2 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1 = 2 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,1]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> 4 = 5 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 5 = 6 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2 = 3 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1 = 2 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 2 = 3 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> 6 = 7 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 3 = 4 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4 = 5 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 1 = 2 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2 = 3 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 5 = 6 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2,2]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 3 = 4 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 2 = 3 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,3,2,2]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> 2 = 3 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [3,3,3,3]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> 4 = 5 - 1
Description
The number of global maxima of a Dyck path.
Matching statistic: St001733
Mp00251: Graphs clique sizesInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00227: Dyck paths Delest-Viennot-inverseDyck paths
St001733: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> [1,0]
=> [1,0]
=> 1 = 2 - 1
([],2)
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2 = 3 - 1
([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1 = 2 - 1
([],3)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 3 = 4 - 1
([(1,2)],3)
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1 = 2 - 1
([(0,2),(1,2)],3)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 2 = 3 - 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1 = 2 - 1
([],4)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
([(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(1,3),(2,3)],4)
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2 = 3 - 1
([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 4 - 1
([(0,3),(1,2)],4)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 2 = 3 - 1
([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 4 - 1
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4 = 5 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2 = 3 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 1 = 2 - 1
([],5)
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5 = 6 - 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1 = 2 - 1
([(2,4),(3,4)],5)
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2 = 3 - 1
([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 3 = 4 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4 = 5 - 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2 = 3 - 1
([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 3 = 4 - 1
([(0,1),(2,4),(3,4)],5)
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 4 - 1
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4 = 5 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 1 = 2 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1 = 2 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,1]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> 4 = 5 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 5 = 6 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2 = 3 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1 = 2 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 2 = 3 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> 6 = 7 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 3 = 4 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4 = 5 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 1 = 2 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2 = 3 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 5 = 6 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2,2]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 3 = 4 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 2 = 3 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,3,2,2]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> 2 = 3 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [3,3,3,3]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> 4 = 5 - 1
Description
The number of weak left to right maxima of a Dyck path. A weak left to right maximum is a peak whose height is larger than or equal to the height of all peaks to its left.
Mp00251: Graphs clique sizesInteger partitions
St000993: Integer partitions ⟶ ℤResult quality: 98% values known / values provided: 98%distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> ? = 2 - 1
([],2)
=> [1,1]
=> 2 = 3 - 1
([(0,1)],2)
=> [2]
=> 1 = 2 - 1
([],3)
=> [1,1,1]
=> 3 = 4 - 1
([(1,2)],3)
=> [2,1]
=> 1 = 2 - 1
([(0,2),(1,2)],3)
=> [2,2]
=> 2 = 3 - 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1 = 2 - 1
([],4)
=> [1,1,1,1]
=> 4 = 5 - 1
([(2,3)],4)
=> [2,1,1]
=> 1 = 2 - 1
([(1,3),(2,3)],4)
=> [2,2,1]
=> 2 = 3 - 1
([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> 3 = 4 - 1
([(0,3),(1,2)],4)
=> [2,2]
=> 2 = 3 - 1
([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> 3 = 4 - 1
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 1 = 2 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> 4 = 5 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,3]
=> 2 = 3 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1 = 2 - 1
([],5)
=> [1,1,1,1,1]
=> 5 = 6 - 1
([(3,4)],5)
=> [2,1,1,1]
=> 1 = 2 - 1
([(2,4),(3,4)],5)
=> [2,2,1,1]
=> 2 = 3 - 1
([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> 3 = 4 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> 4 = 5 - 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> 2 = 3 - 1
([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> 3 = 4 - 1
([(0,1),(2,4),(3,4)],5)
=> [2,2,2]
=> 3 = 4 - 1
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 1 = 2 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> 4 = 5 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,1]
=> 1 = 2 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> 1 = 2 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,1]
=> 4 = 5 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> 5 = 6 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,1]
=> 2 = 3 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> 1 = 2 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> 2 = 3 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> 6 = 7 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> 3 = 4 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> 4 = 5 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> 1 = 2 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,2,2]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> 2 = 3 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,2,2,2]
=> 5 = 6 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2,2]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> 3 = 4 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> 2 = 3 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,2]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,3]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,3,2,2]
=> 2 = 3 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [3,3,3,3]
=> 4 = 5 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,4]
=> 2 = 3 - 1
Description
The multiplicity of the largest part of an integer partition.
Matching statistic: St000733
Mp00251: Graphs clique sizesInteger partitions
Mp00045: Integer partitions reading tableauStandard tableaux
St000733: Standard tableaux ⟶ ℤResult quality: 98% values known / values provided: 98%distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> [[1]]
=> 1 = 2 - 1
([],2)
=> [1,1]
=> [[1],[2]]
=> 2 = 3 - 1
([(0,1)],2)
=> [2]
=> [[1,2]]
=> 1 = 2 - 1
([],3)
=> [1,1,1]
=> [[1],[2],[3]]
=> 3 = 4 - 1
([(1,2)],3)
=> [2,1]
=> [[1,3],[2]]
=> 1 = 2 - 1
([(0,2),(1,2)],3)
=> [2,2]
=> [[1,2],[3,4]]
=> 2 = 3 - 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [[1,2,3]]
=> 1 = 2 - 1
([],4)
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 4 = 5 - 1
([(2,3)],4)
=> [2,1,1]
=> [[1,4],[2],[3]]
=> 1 = 2 - 1
([(1,3),(2,3)],4)
=> [2,2,1]
=> [[1,3],[2,5],[4]]
=> 2 = 3 - 1
([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> 3 = 4 - 1
([(0,3),(1,2)],4)
=> [2,2]
=> [[1,2],[3,4]]
=> 2 = 3 - 1
([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> 3 = 4 - 1
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [[1,3,4],[2]]
=> 1 = 2 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> [[1,2,5],[3,4]]
=> 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> 4 = 5 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> 2 = 3 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> 1 = 2 - 1
([],5)
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 5 = 6 - 1
([(3,4)],5)
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 1 = 2 - 1
([(2,4),(3,4)],5)
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 2 = 3 - 1
([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> [[1,3],[2,5],[4,7],[6]]
=> 3 = 4 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> 4 = 5 - 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [[1,3],[2,5],[4]]
=> 2 = 3 - 1
([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> [[1,3],[2,5],[4,7],[6]]
=> 3 = 4 - 1
([(0,1),(2,4),(3,4)],5)
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> 3 = 4 - 1
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> 1 = 2 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> 4 = 5 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> 1 = 2 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> 1 = 2 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,1]
=> [[1,3],[2,5],[4,7],[6,9],[8]]
=> 4 = 5 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10]]
=> 5 = 6 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,1]
=> [[1,3,4],[2,6,7],[5]]
=> 2 = 3 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> 1 = 2 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [[1,2,5],[3,4,8],[6,7]]
=> 2 = 3 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12]]
=> 6 = 7 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9]]
=> 3 = 4 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> 4 = 5 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [[1,2,5],[3,4]]
=> 1 = 2 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> 2 = 3 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10]]
=> 5 = 6 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2,2]
=> [[1,2,9],[3,4],[5,6],[7,8]]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9]]
=> 3 = 4 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [[1,2,5],[3,4,8],[6,7]]
=> 2 = 3 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [[1,3,4,5],[2]]
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,3]
=> [[1,2,3,7],[4,5,6]]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,3,2,2]
=> [[1,2,7],[3,4,10],[5,6],[8,9]]
=> 2 = 3 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
=> ? = 5 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,4]
=> [[1,2,3,4],[5,6,7,8]]
=> 2 = 3 - 1
Description
The row containing the largest entry of a standard tableau.
Matching statistic: St001038
Mp00251: Graphs clique sizesInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
St001038: Dyck paths ⟶ ℤResult quality: 98% values known / values provided: 98%distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> [1]
=> [1,0]
=> ? = 2 - 1
([],2)
=> [1,1]
=> [2]
=> [1,0,1,0]
=> 2 = 3 - 1
([(0,1)],2)
=> [2]
=> [1,1]
=> [1,1,0,0]
=> 1 = 2 - 1
([],3)
=> [1,1,1]
=> [3]
=> [1,0,1,0,1,0]
=> 3 = 4 - 1
([(1,2)],3)
=> [2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1 = 2 - 1
([(0,2),(1,2)],3)
=> [2,2]
=> [2,2]
=> [1,1,1,0,0,0]
=> 2 = 3 - 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1 = 2 - 1
([],4)
=> [1,1,1,1]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
([(2,3)],4)
=> [2,1,1]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
([(1,3),(2,3)],4)
=> [2,2,1]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 2 = 3 - 1
([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> 3 = 4 - 1
([(0,3),(1,2)],4)
=> [2,2]
=> [2,2]
=> [1,1,1,0,0,0]
=> 2 = 3 - 1
([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> 3 = 4 - 1
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 1 = 2 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> [4,4]
=> [1,1,1,0,1,0,1,0,0,0]
=> 4 = 5 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,3]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> 2 = 3 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 1 = 2 - 1
([],5)
=> [1,1,1,1,1]
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5 = 6 - 1
([(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
([(2,4),(3,4)],5)
=> [2,2,1,1]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2 = 3 - 1
([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> [4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> 3 = 4 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> [4,4]
=> [1,1,1,0,1,0,1,0,0,0]
=> 4 = 5 - 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 2 = 3 - 1
([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> [4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> 3 = 4 - 1
([(0,1),(2,4),(3,4)],5)
=> [2,2,2]
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> 3 = 4 - 1
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1 = 2 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> [4,4]
=> [1,1,1,0,1,0,1,0,0,0]
=> 4 = 5 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,1]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1 = 2 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 2 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,1]
=> [5,4]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> 4 = 5 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> 5 = 6 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,1]
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2 = 3 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 2 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2 = 3 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> 6 = 7 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> 3 = 4 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> [4,4]
=> [1,1,1,0,1,0,1,0,0,0]
=> 4 = 5 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 1 = 2 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,2,2]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> 2 = 3 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,2,2,2]
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> 5 = 6 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2,2]
=> [4,4,1]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> 3 = 4 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2 = 3 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,2]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,3]
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,3,2,2]
=> [4,4,2]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 2 = 3 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [3,3,3,3]
=> [4,4,4]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 4 = 5 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,4]
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 3 - 1
Description
The minimal height of a column in the parallelogram polyomino associated with the Dyck path.
Matching statistic: St001107
Mp00251: Graphs clique sizesInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00132: Dyck paths switch returns and last double riseDyck paths
St001107: Dyck paths ⟶ ℤResult quality: 83% values known / values provided: 98%distinct values known / distinct values provided: 83%
Values
([],1)
=> [1]
=> [1,0,1,0]
=> [1,0,1,0]
=> 0 = 2 - 2
([],2)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1 = 3 - 2
([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 0 = 2 - 2
([],3)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2 = 4 - 2
([(1,2)],3)
=> [2,1]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 0 = 2 - 2
([(0,2),(1,2)],3)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 1 = 3 - 2
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 0 = 2 - 2
([],4)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 3 = 5 - 2
([(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 0 = 2 - 2
([(1,3),(2,3)],4)
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1 = 3 - 2
([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 2 = 4 - 2
([(0,3),(1,2)],4)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 1 = 3 - 2
([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 2 = 4 - 2
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 0 = 2 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 0 = 2 - 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 3 = 5 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1 = 3 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0 = 2 - 2
([],5)
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 4 = 6 - 2
([(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 0 = 2 - 2
([(2,4),(3,4)],5)
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1 = 3 - 2
([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 2 = 4 - 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 3 = 5 - 2
([(1,4),(2,3)],5)
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1 = 3 - 2
([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 2 = 4 - 2
([(0,1),(2,4),(3,4)],5)
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 2 = 4 - 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 0 = 2 - 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 3 = 5 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 0 = 2 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 0 = 2 - 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 3 = 5 - 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 4 = 6 - 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1 = 3 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 0 = 2 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1 = 3 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> ? = 7 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 2 = 4 - 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 3 = 5 - 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 0 = 2 - 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 0 = 2 - 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1 = 3 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 4 = 6 - 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2,2]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> 0 = 2 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 2 = 4 - 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1 = 3 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 0 = 2 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0 = 2 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 0 = 2 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,3,2,2]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> 1 = 3 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [3,3,3,3]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> 3 = 5 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 1 = 3 - 2
Description
The number of times one can erase the first up and the last down step in a Dyck path and still remain a Dyck path. In other words, this is the lowest height of a valley of a Dyck path, or its semilength in case of the unique path without valleys.
Matching statistic: St001264
Mp00251: Graphs clique sizesInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
St001264: Dyck paths ⟶ ℤResult quality: 83% values known / values provided: 92%distinct values known / distinct values provided: 83%
Values
([],1)
=> [1]
=> [1,0,1,0]
=> 0 = 2 - 2
([],2)
=> [1,1]
=> [1,0,1,1,0,0]
=> 1 = 3 - 2
([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 0 = 2 - 2
([],3)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 2 = 4 - 2
([(1,2)],3)
=> [2,1]
=> [1,0,1,0,1,0]
=> 0 = 2 - 2
([(0,2),(1,2)],3)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 1 = 3 - 2
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0 = 2 - 2
([],4)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 3 = 5 - 2
([(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 0 = 2 - 2
([(1,3),(2,3)],4)
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 1 = 3 - 2
([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2 = 4 - 2
([(0,3),(1,2)],4)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 1 = 3 - 2
([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2 = 4 - 2
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 0 = 2 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 0 = 2 - 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> 3 = 5 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1 = 3 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0 = 2 - 2
([],5)
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 4 = 6 - 2
([(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 0 = 2 - 2
([(2,4),(3,4)],5)
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> 1 = 3 - 2
([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2 = 4 - 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> 3 = 5 - 2
([(1,4),(2,3)],5)
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 1 = 3 - 2
([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2 = 4 - 2
([(0,1),(2,4),(3,4)],5)
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2 = 4 - 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 0 = 2 - 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> 3 = 5 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> 0 = 2 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> 0 = 2 - 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 3 = 5 - 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {5,6,6,7} - 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1 = 3 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> 0 = 2 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1 = 3 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {5,6,6,7} - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> 2 = 4 - 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> 3 = 5 - 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 0 = 2 - 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> 0 = 2 - 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1 = 3 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {5,6,6,7} - 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2,2]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> 0 = 2 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> 2 = 4 - 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1 = 3 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 0 = 2 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> 0 = 2 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> 0 = 2 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,3,2,2]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> 1 = 3 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [3,3,3,3]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> ? ∊ {5,6,6,7} - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 1 = 3 - 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 0 = 2 - 2
Description
The smallest index i such that the i-th simple module has projective dimension equal to the global dimension of the corresponding Nakayama algebra.
The following 101 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000160The multiplicity of the smallest part of a partition. St001803The maximal overlap of the cylindrical tableau associated with a tableau. St000668The least common multiple of the parts of the partition. St000708The product of the parts of an integer partition. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001290The first natural number n such that the tensor product of n copies of D(A) is zero for the corresponding Nakayama algebra A. St001118The acyclic chromatic index of a graph. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000260The radius of a connected graph. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St001645The pebbling number of a connected graph. St000454The largest eigenvalue of a graph if it is integral. St001613The binary logarithm of the size of the center of a lattice. St001881The number of factors of a lattice as a Cartesian product of lattices. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001060The distinguishing index of a graph. St001515The vector space dimension of the socle of the first syzygy module of the regular module (as a bimodule). St001615The number of join prime elements of a lattice. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001704The size of the largest multi-subset-intersection of the deck of a graph with the deck of another graph. St000014The number of parking functions supported by a Dyck path. St000063The number of linear extensions of a certain poset defined for an integer partition. St000108The number of partitions contained in the given partition. St000144The pyramid weight of the Dyck path. St000294The number of distinct factors of a binary word. St000318The number of addable cells of the Ferrers diagram of an integer partition. St000380Half of the maximal perimeter of a rectangle fitting into the diagram of an integer partition. St000393The number of strictly increasing runs in a binary word. St000395The sum of the heights of the peaks of a Dyck path. St000420The number of Dyck paths that are weakly above a Dyck path. St000438The position of the last up step in a Dyck path. St000439The position of the first down step of a Dyck path. St000518The number of distinct subsequences in a binary word. St000532The total number of rook placements on a Ferrers board. St000543The size of the conjugacy class of a binary word. St000626The minimal period of a binary word. St000806The semiperimeter of the associated bargraph. St000953The largest degree of an irreducible factor of the Coxeter polynomial of the Dyck path over the rational numbers. St000969We make a CNakayama algebra out of the LNakayama algebra (corresponding to the Dyck path) $[c_0,c_1,...,c_{n-1}]$ by adding $c_0$ to $c_{n-1}$. St000998Number of indecomposable projective modules with injective dimension smaller than or equal to the dominant dimension in the Nakayama algebra corresponding to the Dyck path. St001012Number of simple modules with projective dimension at most 2 in the Nakayama algebra corresponding to the Dyck path. St001018Sum of projective dimension of the indecomposable injective modules of the Nakayama algebra corresponding to the Dyck path. St001019Sum of the projective dimensions of the simple modules in the Nakayama algebra corresponding to the Dyck path. St001020Sum of the codominant dimensions of the non-projective indecomposable injective modules of the Nakayama algebra corresponding to the Dyck path. St001023Number of simple modules with projective dimension at most 3 in the Nakayama algebra corresponding to the Dyck path. St001028Number of simple modules with injective dimension equal to the dominant dimension in the Nakayama algebra corresponding to the Dyck path. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St001065Number of indecomposable reflexive modules in the corresponding Nakayama algebra. St001166Number of indecomposable projective non-injective modules with dominant dimension equal to the global dimension plus the number of indecomposable projective injective modules in the corresponding Nakayama algebra. St001170Number of indecomposable injective modules whose socle has projective dimension at most g-1 when g denotes the global dimension in the corresponding Nakayama algebra. St001179Number of indecomposable injective modules with projective dimension at most 2 in the corresponding Nakayama algebra. St001180Number of indecomposable injective modules with projective dimension at most 1. St001183The maximum of $projdim(S)+injdim(S)$ over all simple modules in the Nakayama algebra corresponding to the Dyck path. St001190Number of simple modules with projective dimension at most 4 in the corresponding Nakayama algebra. St001211The number of simple modules in the corresponding Nakayama algebra that have vanishing second Ext-group with the regular module. St001226The number of integers i such that the radical of the i-th indecomposable projective module has vanishing first extension group with the Jacobson radical J in the corresponding Nakayama algebra. St001237The number of simple modules with injective dimension at most one or dominant dimension at least one. St001240The number of indecomposable modules e_i J^2 that have injective dimension at most one in the corresponding Nakayama algebra St001258Gives the maximum of injective plus projective dimension of an indecomposable module over the corresponding Nakayama algebra. St001267The length of the Lyndon factorization of the binary word. St001291The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001348The bounce of the parallelogram polyomino associated with the Dyck path. St001365The number of lattice paths of the same length weakly above the path given by a binary word. St001400The total number of Littlewood-Richardson tableaux of given shape. St001437The flex of a binary word. St001492The number of simple modules that do not appear in the socle of the regular module or have no nontrivial selfextensions with the regular module in the corresponding Nakayama algebra. St001504The sum of all indegrees of vertices with indegree at least two in the resolution quiver of a Nakayama algebra corresponding to the Dyck path. St001505The number of elements generated by the Dyck path as a map in the full transformation monoid. St001643The Frobenius dimension of the Nakayama algebra corresponding to the Dyck path. St001650The order of Ringel's homological bijection associated to the linear Nakayama algebra corresponding to the Dyck path. St001658The total number of rook placements on a Ferrers board. St001814The number of partitions interlacing the given partition. St001838The number of nonempty primitive factors of a binary word. St001330The hat guessing number of a graph. St001621The number of atoms of a lattice. St001636The number of indecomposable injective modules with projective dimension at most one in the incidence algebra of the poset. St000264The girth of a graph, which is not a tree. St001545The second Elser number of a connected graph. St000515The number of invariant set partitions when acting with a permutation of given cycle type. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001875The number of simple modules with projective dimension at most 1. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000642The size of the smallest orbit of antichains under Panyushev complementation. St000939The number of characters of the symmetric group whose value on the partition is positive. St000937The number of positive values of the symmetric group character corresponding to the partition. St000514The number of invariant simple graphs when acting with a permutation of given cycle type. St000981The length of the longest zigzag subpath. St000422The energy of a graph, if it is integral. St001644The dimension of a graph. St000455The second largest eigenvalue of a graph if it is integral. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001816Eigenvalues of the top-to-random operator acting on a simple module. St000259The diameter of a connected graph. St001651The Frankl number of a lattice. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St000302The determinant of the distance matrix of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph.