Your data matches 44 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St001839: Set partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1,2}}
=> 0
{{1},{2}}
=> 0
{{1,2,3}}
=> 0
{{1,2},{3}}
=> 0
{{1,3},{2}}
=> 1
{{1},{2,3}}
=> 0
{{1},{2},{3}}
=> 0
{{1,2,3,4}}
=> 0
{{1,2,3},{4}}
=> 0
{{1,2,4},{3}}
=> 1
{{1,2},{3,4}}
=> 0
{{1,2},{3},{4}}
=> 0
{{1,3,4},{2}}
=> 1
{{1,3},{2,4}}
=> 1
{{1,3},{2},{4}}
=> 1
{{1,4},{2,3}}
=> 1
{{1},{2,3,4}}
=> 0
{{1},{2,3},{4}}
=> 0
{{1,4},{2},{3}}
=> 1
{{1},{2,4},{3}}
=> 1
{{1},{2},{3,4}}
=> 0
{{1},{2},{3},{4}}
=> 0
{{1,2,3,4,5}}
=> 0
{{1,2,3,4},{5}}
=> 0
{{1,2,3,5},{4}}
=> 1
{{1,2,3},{4,5}}
=> 0
{{1,2,3},{4},{5}}
=> 0
{{1,2,4,5},{3}}
=> 1
{{1,2,4},{3,5}}
=> 1
{{1,2,4},{3},{5}}
=> 1
{{1,2,5},{3,4}}
=> 2
{{1,2},{3,4,5}}
=> 0
{{1,2},{3,4},{5}}
=> 0
{{1,2,5},{3},{4}}
=> 2
{{1,2},{3,5},{4}}
=> 1
{{1,2},{3},{4,5}}
=> 0
{{1,2},{3},{4},{5}}
=> 0
{{1,3,4,5},{2}}
=> 1
{{1,3,4},{2,5}}
=> 1
{{1,3,4},{2},{5}}
=> 1
{{1,3,5},{2,4}}
=> 1
{{1,3},{2,4,5}}
=> 1
{{1,3},{2,4},{5}}
=> 1
{{1,3,5},{2},{4}}
=> 1
{{1,3},{2,5},{4}}
=> 1
{{1,3},{2},{4,5}}
=> 1
{{1,3},{2},{4},{5}}
=> 1
{{1,4,5},{2,3}}
=> 1
{{1,4},{2,3,5}}
=> 1
{{1,4},{2,3},{5}}
=> 1
Description
The number of excedances of a set partition. The Mahonian representation of a set partition $\{B_1,\dots,B_k\}$ of $\{1,\dots,n\}$ is the restricted growth word $w_1 \dots w_n$ obtained by sorting the blocks of the set partition according to their maximal element, and setting $w_i$ to the index of the block containing $i$. Let $\bar w$ be the nondecreasing rearrangement of $w$. The word $w$ has an excedance at position $i$ if $w_i > \bar w_i$.
Matching statistic: St001840
St001840: Set partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1,2}}
=> 0
{{1},{2}}
=> 0
{{1,2,3}}
=> 0
{{1,2},{3}}
=> 0
{{1,3},{2}}
=> 1
{{1},{2,3}}
=> 0
{{1},{2},{3}}
=> 0
{{1,2,3,4}}
=> 0
{{1,2,3},{4}}
=> 0
{{1,2,4},{3}}
=> 1
{{1,2},{3,4}}
=> 0
{{1,2},{3},{4}}
=> 0
{{1,3,4},{2}}
=> 1
{{1,3},{2,4}}
=> 1
{{1,3},{2},{4}}
=> 1
{{1,4},{2,3}}
=> 1
{{1},{2,3,4}}
=> 0
{{1},{2,3},{4}}
=> 0
{{1,4},{2},{3}}
=> 1
{{1},{2,4},{3}}
=> 1
{{1},{2},{3,4}}
=> 0
{{1},{2},{3},{4}}
=> 0
{{1,2,3,4,5}}
=> 0
{{1,2,3,4},{5}}
=> 0
{{1,2,3,5},{4}}
=> 1
{{1,2,3},{4,5}}
=> 0
{{1,2,3},{4},{5}}
=> 0
{{1,2,4,5},{3}}
=> 1
{{1,2,4},{3,5}}
=> 1
{{1,2,4},{3},{5}}
=> 1
{{1,2,5},{3,4}}
=> 1
{{1,2},{3,4,5}}
=> 0
{{1,2},{3,4},{5}}
=> 0
{{1,2,5},{3},{4}}
=> 1
{{1,2},{3,5},{4}}
=> 1
{{1,2},{3},{4,5}}
=> 0
{{1,2},{3},{4},{5}}
=> 0
{{1,3,4,5},{2}}
=> 1
{{1,3,4},{2,5}}
=> 1
{{1,3,4},{2},{5}}
=> 1
{{1,3,5},{2,4}}
=> 2
{{1,3},{2,4,5}}
=> 1
{{1,3},{2,4},{5}}
=> 1
{{1,3,5},{2},{4}}
=> 2
{{1,3},{2,5},{4}}
=> 1
{{1,3},{2},{4,5}}
=> 1
{{1,3},{2},{4},{5}}
=> 1
{{1,4,5},{2,3}}
=> 1
{{1,4},{2,3,5}}
=> 1
{{1,4},{2,3},{5}}
=> 1
Description
The number of descents of a set partition. The Mahonian representation of a set partition $\{B_1,\dots,B_k\}$ of $\{1,\dots,n\}$ is the restricted growth word $w_1\dots w_n\}$ obtained by sorting the blocks of the set partition according to their maximal element, and setting $w_i$ to the index of the block containing $i$. The word $w$ has a descent at position $i$ if $w_i > w_{i+1}$.
Mp00080: Set partitions to permutationPermutations
Mp00090: Permutations cycle-as-one-line notationPermutations
St000354: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1,2}}
=> [2,1] => [1,2] => 0
{{1},{2}}
=> [1,2] => [1,2] => 0
{{1,2,3}}
=> [2,3,1] => [1,2,3] => 0
{{1,2},{3}}
=> [2,1,3] => [1,2,3] => 0
{{1,3},{2}}
=> [3,2,1] => [1,3,2] => 1
{{1},{2,3}}
=> [1,3,2] => [1,2,3] => 0
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => 0
{{1,2,3,4}}
=> [2,3,4,1] => [1,2,3,4] => 0
{{1,2,3},{4}}
=> [2,3,1,4] => [1,2,3,4] => 0
{{1,2,4},{3}}
=> [2,4,3,1] => [1,2,4,3] => 1
{{1,2},{3,4}}
=> [2,1,4,3] => [1,2,3,4] => 0
{{1,2},{3},{4}}
=> [2,1,3,4] => [1,2,3,4] => 0
{{1,3,4},{2}}
=> [3,2,4,1] => [1,3,4,2] => 1
{{1,3},{2,4}}
=> [3,4,1,2] => [1,3,2,4] => 1
{{1,3},{2},{4}}
=> [3,2,1,4] => [1,3,2,4] => 1
{{1,4},{2,3}}
=> [4,3,2,1] => [1,4,2,3] => 1
{{1},{2,3,4}}
=> [1,3,4,2] => [1,2,3,4] => 0
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,2,3,4] => 0
{{1,4},{2},{3}}
=> [4,2,3,1] => [1,4,2,3] => 1
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,2,4,3] => 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,3,4] => 0
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,2,3,4,5] => 0
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,2,3,4,5] => 0
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,2,3,5,4] => 1
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,2,3,4,5] => 0
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,2,3,4,5] => 0
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,2,4,5,3] => 1
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [1,2,4,3,5] => 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [1,2,4,3,5] => 1
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,2,5,3,4] => 1
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,2,3,4,5] => 0
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,2,3,4,5] => 0
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,2,5,3,4] => 1
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [1,2,3,5,4] => 1
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,2,3,4,5] => 0
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [1,2,3,4,5] => 0
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [1,3,4,5,2] => 1
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [1,3,4,2,5] => 1
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [1,3,4,2,5] => 1
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [1,3,5,2,4] => 2
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [1,3,2,4,5] => 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [1,3,2,4,5] => 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [1,3,5,2,4] => 2
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [1,3,2,5,4] => 2
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [1,3,2,4,5] => 1
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [1,3,2,4,5] => 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [1,4,5,2,3] => 1
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [1,4,2,3,5] => 1
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => [1,4,2,3,5] => 1
Description
The number of recoils of a permutation. A '''recoil''', or '''inverse descent''' of a permutation $\pi$ is a value $i$ such that $i+1$ appears to the left of $i$ in $\pi_1,\pi_2,\dots,\pi_n$. In other words, this is the number of descents of the inverse permutation. It can be also be described as the number of occurrences of the mesh pattern $([2,1], {(0,1),(1,1),(2,1)})$, i.e., the middle row is shaded.
Matching statistic: St000662
Mp00080: Set partitions to permutationPermutations
Mp00090: Permutations cycle-as-one-line notationPermutations
St000662: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1,2}}
=> [2,1] => [1,2] => 0
{{1},{2}}
=> [1,2] => [1,2] => 0
{{1,2,3}}
=> [2,3,1] => [1,2,3] => 0
{{1,2},{3}}
=> [2,1,3] => [1,2,3] => 0
{{1,3},{2}}
=> [3,2,1] => [1,3,2] => 1
{{1},{2,3}}
=> [1,3,2] => [1,2,3] => 0
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => 0
{{1,2,3,4}}
=> [2,3,4,1] => [1,2,3,4] => 0
{{1,2,3},{4}}
=> [2,3,1,4] => [1,2,3,4] => 0
{{1,2,4},{3}}
=> [2,4,3,1] => [1,2,4,3] => 1
{{1,2},{3,4}}
=> [2,1,4,3] => [1,2,3,4] => 0
{{1,2},{3},{4}}
=> [2,1,3,4] => [1,2,3,4] => 0
{{1,3,4},{2}}
=> [3,2,4,1] => [1,3,4,2] => 1
{{1,3},{2,4}}
=> [3,4,1,2] => [1,3,2,4] => 1
{{1,3},{2},{4}}
=> [3,2,1,4] => [1,3,2,4] => 1
{{1,4},{2,3}}
=> [4,3,2,1] => [1,4,2,3] => 1
{{1},{2,3,4}}
=> [1,3,4,2] => [1,2,3,4] => 0
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,2,3,4] => 0
{{1,4},{2},{3}}
=> [4,2,3,1] => [1,4,2,3] => 1
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,2,4,3] => 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,3,4] => 0
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,2,3,4,5] => 0
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,2,3,4,5] => 0
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,2,3,5,4] => 1
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,2,3,4,5] => 0
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,2,3,4,5] => 0
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,2,4,5,3] => 1
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [1,2,4,3,5] => 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [1,2,4,3,5] => 1
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,2,5,3,4] => 1
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,2,3,4,5] => 0
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,2,3,4,5] => 0
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,2,5,3,4] => 1
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [1,2,3,5,4] => 1
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,2,3,4,5] => 0
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [1,2,3,4,5] => 0
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [1,3,4,5,2] => 1
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [1,3,4,2,5] => 1
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [1,3,4,2,5] => 1
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [1,3,5,2,4] => 1
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [1,3,2,4,5] => 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [1,3,2,4,5] => 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [1,3,5,2,4] => 1
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [1,3,2,5,4] => 1
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [1,3,2,4,5] => 1
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [1,3,2,4,5] => 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [1,4,5,2,3] => 2
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [1,4,2,3,5] => 1
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => [1,4,2,3,5] => 1
Description
The staircase size of the code of a permutation. The code $c(\pi)$ of a permutation $\pi$ of length $n$ is given by the sequence $(c_1,\ldots,c_{n})$ with $c_i = |\{j > i : \pi(j) < \pi(i)\}|$. This is a bijection between permutations and all sequences $(c_1,\ldots,c_n)$ with $0 \leq c_i \leq n-i$. The staircase size of the code is the maximal $k$ such that there exists a subsequence $(c_{i_k},\ldots,c_{i_1})$ of $c(\pi)$ with $c_{i_j} \geq j$. This statistic is mapped through [[Mp00062]] to the number of descents, showing that together with the number of inversions [[St000018]] it is Euler-Mahonian.
Mp00080: Set partitions to permutationPermutations
Mp00087: Permutations inverse first fundamental transformationPermutations
St000779: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1,2}}
=> [2,1] => [2,1] => 0
{{1},{2}}
=> [1,2] => [1,2] => 0
{{1,2,3}}
=> [2,3,1] => [3,1,2] => 0
{{1,2},{3}}
=> [2,1,3] => [2,1,3] => 0
{{1,3},{2}}
=> [3,2,1] => [2,3,1] => 1
{{1},{2,3}}
=> [1,3,2] => [1,3,2] => 0
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => 0
{{1,2,3,4}}
=> [2,3,4,1] => [4,1,2,3] => 0
{{1,2,3},{4}}
=> [2,3,1,4] => [3,1,2,4] => 0
{{1,2,4},{3}}
=> [2,4,3,1] => [3,4,1,2] => 1
{{1,2},{3,4}}
=> [2,1,4,3] => [2,1,4,3] => 0
{{1,2},{3},{4}}
=> [2,1,3,4] => [2,1,3,4] => 0
{{1,3,4},{2}}
=> [3,2,4,1] => [2,4,1,3] => 1
{{1,3},{2,4}}
=> [3,4,1,2] => [3,1,4,2] => 1
{{1,3},{2},{4}}
=> [3,2,1,4] => [2,3,1,4] => 1
{{1,4},{2,3}}
=> [4,3,2,1] => [3,2,4,1] => 1
{{1},{2,3,4}}
=> [1,3,4,2] => [1,4,2,3] => 0
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,3,2,4] => 0
{{1,4},{2},{3}}
=> [4,2,3,1] => [2,3,4,1] => 1
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,3,4,2] => 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,4,3] => 0
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [5,1,2,3,4] => 0
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [4,1,2,3,5] => 0
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [4,5,1,2,3] => 1
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [3,1,2,5,4] => 0
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [3,1,2,4,5] => 0
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [3,5,1,2,4] => 1
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [4,1,2,5,3] => 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [3,4,1,2,5] => 1
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [4,3,5,1,2] => 1
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [2,1,5,3,4] => 0
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [2,1,4,3,5] => 0
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [3,4,5,1,2] => 1
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [2,1,4,5,3] => 1
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [2,1,3,5,4] => 0
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [2,1,3,4,5] => 0
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [2,5,1,3,4] => 1
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [4,1,3,5,2] => 1
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [2,4,1,3,5] => 1
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [4,2,5,1,3] => 2
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [3,1,5,2,4] => 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [3,1,4,2,5] => 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [2,4,5,1,3] => 2
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [3,1,4,5,2] => 1
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [2,3,1,5,4] => 1
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [2,3,1,4,5] => 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [3,2,5,1,4] => 1
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [4,1,5,2,3] => 1
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => [3,2,4,1,5] => 1
Description
The tier of a permutation. This is the number of elements $i$ such that $[i+1,k,i]$ is an occurrence of the pattern $[2,3,1]$. For example, $[3,5,6,1,2,4]$ has tier $2$, with witnesses $[3,5,2]$ (or $[3,6,2]$) and $[5,6,4]$. According to [1], this is the number of passes minus one needed to sort the permutation using a single stack. The generating function for this statistic appears as [[OEIS:A122890]] and [[OEIS:A158830]] in the form of triangles read by rows, see [sec. 4, 1].
Mp00080: Set partitions to permutationPermutations
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00062: Permutations Lehmer-code to major-code bijectionPermutations
St000021: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1,2}}
=> [2,1] => [1,2] => [1,2] => 0
{{1},{2}}
=> [1,2] => [1,2] => [1,2] => 0
{{1,2,3}}
=> [2,3,1] => [1,2,3] => [1,2,3] => 0
{{1,2},{3}}
=> [2,1,3] => [1,2,3] => [1,2,3] => 0
{{1,3},{2}}
=> [3,2,1] => [1,3,2] => [3,1,2] => 1
{{1},{2,3}}
=> [1,3,2] => [1,2,3] => [1,2,3] => 0
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => [1,2,3] => 0
{{1,2,3,4}}
=> [2,3,4,1] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2,3},{4}}
=> [2,3,1,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2,4},{3}}
=> [2,4,3,1] => [1,2,4,3] => [4,1,2,3] => 1
{{1,2},{3,4}}
=> [2,1,4,3] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2},{3},{4}}
=> [2,1,3,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,3,4},{2}}
=> [3,2,4,1] => [1,3,4,2] => [2,4,1,3] => 1
{{1,3},{2,4}}
=> [3,4,1,2] => [1,3,2,4] => [3,1,2,4] => 1
{{1,3},{2},{4}}
=> [3,2,1,4] => [1,3,2,4] => [3,1,2,4] => 1
{{1,4},{2,3}}
=> [4,3,2,1] => [1,4,2,3] => [3,4,1,2] => 1
{{1},{2,3,4}}
=> [1,3,4,2] => [1,2,3,4] => [1,2,3,4] => 0
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,4},{2},{3}}
=> [4,2,3,1] => [1,4,2,3] => [3,4,1,2] => 1
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,2,4,3] => [4,1,2,3] => 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,3,4] => [1,2,3,4] => 0
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,2,3,5,4] => [5,1,2,3,4] => 1
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,2,4,5,3] => [3,5,1,2,4] => 1
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [1,2,4,3,5] => [4,1,2,3,5] => 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [1,2,4,3,5] => [4,1,2,3,5] => 1
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,2,5,3,4] => [4,5,1,2,3] => 1
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,2,5,3,4] => [4,5,1,2,3] => 1
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [1,2,3,5,4] => [5,1,2,3,4] => 1
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [1,3,4,5,2] => [2,3,5,1,4] => 1
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [1,3,4,2,5] => [2,4,1,3,5] => 1
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [1,3,4,2,5] => [2,4,1,3,5] => 1
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [1,3,5,2,4] => [2,4,5,1,3] => 1
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [1,3,2,4,5] => [3,1,2,4,5] => 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [1,3,2,4,5] => [3,1,2,4,5] => 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [1,3,5,2,4] => [2,4,5,1,3] => 1
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [1,3,2,5,4] => [2,5,1,3,4] => 1
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [1,3,2,4,5] => [3,1,2,4,5] => 1
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [1,3,2,4,5] => [3,1,2,4,5] => 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [1,4,5,2,3] => [4,2,5,1,3] => 2
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [1,4,2,3,5] => [3,4,1,2,5] => 1
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => [1,4,2,3,5] => [3,4,1,2,5] => 1
Description
The number of descents of a permutation. This can be described as an occurrence of the vincular mesh pattern ([2,1], {(1,0),(1,1),(1,2)}), i.e., the middle column is shaded, see [3].
Matching statistic: St000157
Mp00080: Set partitions to permutationPermutations
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00059: Permutations Robinson-Schensted insertion tableauStandard tableaux
St000157: Standard tableaux ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1,2}}
=> [2,1] => [1,2] => [[1,2]]
=> 0
{{1},{2}}
=> [1,2] => [1,2] => [[1,2]]
=> 0
{{1,2,3}}
=> [2,3,1] => [1,2,3] => [[1,2,3]]
=> 0
{{1,2},{3}}
=> [2,1,3] => [1,2,3] => [[1,2,3]]
=> 0
{{1,3},{2}}
=> [3,2,1] => [1,3,2] => [[1,2],[3]]
=> 1
{{1},{2,3}}
=> [1,3,2] => [1,2,3] => [[1,2,3]]
=> 0
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => [[1,2,3]]
=> 0
{{1,2,3,4}}
=> [2,3,4,1] => [1,2,3,4] => [[1,2,3,4]]
=> 0
{{1,2,3},{4}}
=> [2,3,1,4] => [1,2,3,4] => [[1,2,3,4]]
=> 0
{{1,2,4},{3}}
=> [2,4,3,1] => [1,2,4,3] => [[1,2,3],[4]]
=> 1
{{1,2},{3,4}}
=> [2,1,4,3] => [1,2,3,4] => [[1,2,3,4]]
=> 0
{{1,2},{3},{4}}
=> [2,1,3,4] => [1,2,3,4] => [[1,2,3,4]]
=> 0
{{1,3,4},{2}}
=> [3,2,4,1] => [1,3,4,2] => [[1,2,4],[3]]
=> 1
{{1,3},{2,4}}
=> [3,4,1,2] => [1,3,2,4] => [[1,2,4],[3]]
=> 1
{{1,3},{2},{4}}
=> [3,2,1,4] => [1,3,2,4] => [[1,2,4],[3]]
=> 1
{{1,4},{2,3}}
=> [4,3,2,1] => [1,4,2,3] => [[1,2,3],[4]]
=> 1
{{1},{2,3,4}}
=> [1,3,4,2] => [1,2,3,4] => [[1,2,3,4]]
=> 0
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,2,3,4] => [[1,2,3,4]]
=> 0
{{1,4},{2},{3}}
=> [4,2,3,1] => [1,4,2,3] => [[1,2,3],[4]]
=> 1
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,2,4,3] => [[1,2,3],[4]]
=> 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,3,4] => [[1,2,3,4]]
=> 0
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => [[1,2,3,4]]
=> 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,2,3,5,4] => [[1,2,3,4],[5]]
=> 1
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,2,4,5,3] => [[1,2,3,5],[4]]
=> 1
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [1,2,4,3,5] => [[1,2,3,5],[4]]
=> 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [1,2,4,3,5] => [[1,2,3,5],[4]]
=> 1
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,2,5,3,4] => [[1,2,3,4],[5]]
=> 1
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,2,5,3,4] => [[1,2,3,4],[5]]
=> 1
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [1,2,3,5,4] => [[1,2,3,4],[5]]
=> 1
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [1,3,4,5,2] => [[1,2,4,5],[3]]
=> 1
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [1,3,4,2,5] => [[1,2,4,5],[3]]
=> 1
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [1,3,4,2,5] => [[1,2,4,5],[3]]
=> 1
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [1,3,5,2,4] => [[1,2,4],[3,5]]
=> 2
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [1,3,2,4,5] => [[1,2,4,5],[3]]
=> 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [1,3,2,4,5] => [[1,2,4,5],[3]]
=> 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [1,3,5,2,4] => [[1,2,4],[3,5]]
=> 2
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [1,3,2,5,4] => [[1,2,4],[3,5]]
=> 2
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [1,3,2,4,5] => [[1,2,4,5],[3]]
=> 1
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [1,3,2,4,5] => [[1,2,4,5],[3]]
=> 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [1,4,5,2,3] => [[1,2,3],[4,5]]
=> 1
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [1,4,2,3,5] => [[1,2,3,5],[4]]
=> 1
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => [1,4,2,3,5] => [[1,2,3,5],[4]]
=> 1
Description
The number of descents of a standard tableau. Entry $i$ of a standard Young tableau is a descent if $i+1$ appears in a row below the row of $i$.
Matching statistic: St000647
Mp00080: Set partitions to permutationPermutations
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00062: Permutations Lehmer-code to major-code bijectionPermutations
St000647: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1,2}}
=> [2,1] => [1,2] => [1,2] => 0
{{1},{2}}
=> [1,2] => [1,2] => [1,2] => 0
{{1,2,3}}
=> [2,3,1] => [1,2,3] => [1,2,3] => 0
{{1,2},{3}}
=> [2,1,3] => [1,2,3] => [1,2,3] => 0
{{1,3},{2}}
=> [3,2,1] => [1,3,2] => [3,1,2] => 1
{{1},{2,3}}
=> [1,3,2] => [1,2,3] => [1,2,3] => 0
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => [1,2,3] => 0
{{1,2,3,4}}
=> [2,3,4,1] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2,3},{4}}
=> [2,3,1,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2,4},{3}}
=> [2,4,3,1] => [1,2,4,3] => [4,1,2,3] => 1
{{1,2},{3,4}}
=> [2,1,4,3] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2},{3},{4}}
=> [2,1,3,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,3,4},{2}}
=> [3,2,4,1] => [1,3,4,2] => [2,4,1,3] => 1
{{1,3},{2,4}}
=> [3,4,1,2] => [1,3,2,4] => [3,1,2,4] => 1
{{1,3},{2},{4}}
=> [3,2,1,4] => [1,3,2,4] => [3,1,2,4] => 1
{{1,4},{2,3}}
=> [4,3,2,1] => [1,4,2,3] => [3,4,1,2] => 1
{{1},{2,3,4}}
=> [1,3,4,2] => [1,2,3,4] => [1,2,3,4] => 0
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,4},{2},{3}}
=> [4,2,3,1] => [1,4,2,3] => [3,4,1,2] => 1
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,2,4,3] => [4,1,2,3] => 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,3,4] => [1,2,3,4] => 0
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,2,3,5,4] => [5,1,2,3,4] => 1
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,2,4,5,3] => [3,5,1,2,4] => 1
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [1,2,4,3,5] => [4,1,2,3,5] => 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [1,2,4,3,5] => [4,1,2,3,5] => 1
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,2,5,3,4] => [4,5,1,2,3] => 1
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,2,5,3,4] => [4,5,1,2,3] => 1
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [1,2,3,5,4] => [5,1,2,3,4] => 1
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [1,3,4,5,2] => [2,3,5,1,4] => 1
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [1,3,4,2,5] => [2,4,1,3,5] => 1
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [1,3,4,2,5] => [2,4,1,3,5] => 1
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [1,3,5,2,4] => [2,4,5,1,3] => 1
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [1,3,2,4,5] => [3,1,2,4,5] => 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [1,3,2,4,5] => [3,1,2,4,5] => 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [1,3,5,2,4] => [2,4,5,1,3] => 1
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [1,3,2,5,4] => [2,5,1,3,4] => 1
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [1,3,2,4,5] => [3,1,2,4,5] => 1
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [1,3,2,4,5] => [3,1,2,4,5] => 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [1,4,5,2,3] => [4,2,5,1,3] => 2
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [1,4,2,3,5] => [3,4,1,2,5] => 1
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => [1,4,2,3,5] => [3,4,1,2,5] => 1
Description
The number of big descents of a permutation. For a permutation $\pi$, this is the number of indices $i$ such that $\pi(i)-\pi(i+1) > 1$. The generating functions of big descents is equal to the generating function of (normal) descents after sending a permutation from cycle to one-line notation [[Mp00090]], see [Theorem 2.5, 1]. For the number of small descents, see [[St000214]].
Mp00080: Set partitions to permutationPermutations
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00064: Permutations reversePermutations
St001298: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1,2}}
=> [2,1] => [1,2] => [2,1] => 0
{{1},{2}}
=> [1,2] => [1,2] => [2,1] => 0
{{1,2,3}}
=> [2,3,1] => [1,2,3] => [3,2,1] => 0
{{1,2},{3}}
=> [2,1,3] => [1,2,3] => [3,2,1] => 0
{{1,3},{2}}
=> [3,2,1] => [1,3,2] => [2,3,1] => 1
{{1},{2,3}}
=> [1,3,2] => [1,2,3] => [3,2,1] => 0
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => [3,2,1] => 0
{{1,2,3,4}}
=> [2,3,4,1] => [1,2,3,4] => [4,3,2,1] => 0
{{1,2,3},{4}}
=> [2,3,1,4] => [1,2,3,4] => [4,3,2,1] => 0
{{1,2,4},{3}}
=> [2,4,3,1] => [1,2,4,3] => [3,4,2,1] => 1
{{1,2},{3,4}}
=> [2,1,4,3] => [1,2,3,4] => [4,3,2,1] => 0
{{1,2},{3},{4}}
=> [2,1,3,4] => [1,2,3,4] => [4,3,2,1] => 0
{{1,3,4},{2}}
=> [3,2,4,1] => [1,3,4,2] => [2,4,3,1] => 1
{{1,3},{2,4}}
=> [3,4,1,2] => [1,3,2,4] => [4,2,3,1] => 1
{{1,3},{2},{4}}
=> [3,2,1,4] => [1,3,2,4] => [4,2,3,1] => 1
{{1,4},{2,3}}
=> [4,3,2,1] => [1,4,2,3] => [3,2,4,1] => 1
{{1},{2,3,4}}
=> [1,3,4,2] => [1,2,3,4] => [4,3,2,1] => 0
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,2,3,4] => [4,3,2,1] => 0
{{1,4},{2},{3}}
=> [4,2,3,1] => [1,4,2,3] => [3,2,4,1] => 1
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,2,4,3] => [3,4,2,1] => 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,3,4] => [4,3,2,1] => 0
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => [4,3,2,1] => 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,2,3,4,5] => [5,4,3,2,1] => 0
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,2,3,4,5] => [5,4,3,2,1] => 0
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,2,3,5,4] => [4,5,3,2,1] => 1
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,2,3,4,5] => [5,4,3,2,1] => 0
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,2,3,4,5] => [5,4,3,2,1] => 0
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,2,4,5,3] => [3,5,4,2,1] => 1
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [1,2,4,3,5] => [5,3,4,2,1] => 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [1,2,4,3,5] => [5,3,4,2,1] => 1
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,2,5,3,4] => [4,3,5,2,1] => 1
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,2,3,4,5] => [5,4,3,2,1] => 0
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,2,3,4,5] => [5,4,3,2,1] => 0
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,2,5,3,4] => [4,3,5,2,1] => 1
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [1,2,3,5,4] => [4,5,3,2,1] => 1
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,2,3,4,5] => [5,4,3,2,1] => 0
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [1,2,3,4,5] => [5,4,3,2,1] => 0
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [1,3,4,5,2] => [2,5,4,3,1] => 1
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [1,3,4,2,5] => [5,2,4,3,1] => 1
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [1,3,4,2,5] => [5,2,4,3,1] => 1
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [1,3,5,2,4] => [4,2,5,3,1] => 1
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [1,3,2,4,5] => [5,4,2,3,1] => 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [1,3,2,4,5] => [5,4,2,3,1] => 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [1,3,5,2,4] => [4,2,5,3,1] => 1
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [1,3,2,5,4] => [4,5,2,3,1] => 2
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [1,3,2,4,5] => [5,4,2,3,1] => 1
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [1,3,2,4,5] => [5,4,2,3,1] => 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [1,4,5,2,3] => [3,2,5,4,1] => 2
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [1,4,2,3,5] => [5,3,2,4,1] => 1
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => [1,4,2,3,5] => [5,3,2,4,1] => 1
Description
The number of repeated entries in the Lehmer code of a permutation. The Lehmer code of a permutation $\pi$ is the sequence $(v_1,\dots,v_n)$, with $v_i=|\{j > i: \pi(j) < \pi(i)\}$. This statistic counts the number of distinct elements in this sequence.
Matching statistic: St001729
Mp00080: Set partitions to permutationPermutations
Mp00236: Permutations Clarke-Steingrimsson-Zeng inversePermutations
Mp00090: Permutations cycle-as-one-line notationPermutations
St001729: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1,2}}
=> [2,1] => [2,1] => [1,2] => 0
{{1},{2}}
=> [1,2] => [1,2] => [1,2] => 0
{{1,2,3}}
=> [2,3,1] => [3,2,1] => [1,3,2] => 1
{{1,2},{3}}
=> [2,1,3] => [2,1,3] => [1,2,3] => 0
{{1,3},{2}}
=> [3,2,1] => [2,3,1] => [1,2,3] => 0
{{1},{2,3}}
=> [1,3,2] => [1,3,2] => [1,2,3] => 0
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => [1,2,3] => 0
{{1,2,3,4}}
=> [2,3,4,1] => [4,3,2,1] => [1,4,2,3] => 1
{{1,2,3},{4}}
=> [2,3,1,4] => [3,2,1,4] => [1,3,2,4] => 1
{{1,2,4},{3}}
=> [2,4,3,1] => [3,4,2,1] => [1,3,2,4] => 1
{{1,2},{3,4}}
=> [2,1,4,3] => [2,1,4,3] => [1,2,3,4] => 0
{{1,2},{3},{4}}
=> [2,1,3,4] => [2,1,3,4] => [1,2,3,4] => 0
{{1,3,4},{2}}
=> [3,2,4,1] => [2,4,3,1] => [1,2,4,3] => 1
{{1,3},{2,4}}
=> [3,4,1,2] => [4,1,3,2] => [1,4,2,3] => 1
{{1,3},{2},{4}}
=> [3,2,1,4] => [2,3,1,4] => [1,2,3,4] => 0
{{1,4},{2,3}}
=> [4,3,2,1] => [3,2,4,1] => [1,3,4,2] => 1
{{1},{2,3,4}}
=> [1,3,4,2] => [1,4,3,2] => [1,2,4,3] => 1
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,3,2,4] => [1,2,3,4] => 0
{{1,4},{2},{3}}
=> [4,2,3,1] => [2,3,4,1] => [1,2,3,4] => 0
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,3,4,2] => [1,2,3,4] => 0
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,4,3] => [1,2,3,4] => 0
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [5,4,3,2,1] => [1,5,2,4,3] => 2
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [4,3,2,1,5] => [1,4,2,3,5] => 1
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [4,5,3,2,1] => [1,4,2,5,3] => 2
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [3,2,1,5,4] => [1,3,2,4,5] => 1
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [3,2,1,4,5] => [1,3,2,4,5] => 1
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [3,5,4,2,1] => [1,3,4,2,5] => 1
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [5,2,1,4,3] => [1,5,3,2,4] => 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [3,4,2,1,5] => [1,3,2,4,5] => 1
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [4,3,5,2,1] => [1,4,2,3,5] => 1
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [2,1,5,4,3] => [1,2,3,5,4] => 1
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [2,1,4,3,5] => [1,2,3,4,5] => 0
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [3,4,5,2,1] => [1,3,5,2,4] => 1
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [2,1,4,5,3] => [1,2,3,4,5] => 0
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [2,1,3,5,4] => [1,2,3,4,5] => 0
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [2,1,3,4,5] => [1,2,3,4,5] => 0
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [2,5,4,3,1] => [1,2,5,3,4] => 1
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [4,1,5,3,2] => [1,4,3,5,2] => 1
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [2,4,3,1,5] => [1,2,4,3,5] => 1
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [5,2,4,3,1] => [1,5,2,3,4] => 1
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [5,4,1,3,2] => [1,5,2,4,3] => 2
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [4,1,3,2,5] => [1,4,2,3,5] => 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [2,4,5,3,1] => [1,2,4,3,5] => 1
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [4,5,1,3,2] => [1,4,3,2,5] => 1
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [2,3,1,5,4] => [1,2,3,4,5] => 0
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [2,3,1,4,5] => [1,2,3,4,5] => 0
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [3,2,5,4,1] => [1,3,5,2,4] => 1
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [5,3,1,4,2] => [1,5,2,3,4] => 1
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => [3,2,4,1,5] => [1,3,4,2,5] => 1
Description
The number of visible descents of a permutation. A visible descent of a permutation $\pi$ is a position $i$ such that $\pi(i+1) \leq \min(i, \pi(i))$.
The following 34 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000325The width of the tree associated to a permutation. St000470The number of runs in a permutation. St000619The number of cyclic descents of a permutation. St001390The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000454The largest eigenvalue of a graph if it is integral. St001597The Frobenius rank of a skew partition. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St000284The Plancherel distribution on integer partitions. St000668The least common multiple of the parts of the partition. St000681The Grundy value of Chomp on Ferrers diagrams. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000929The constant term of the character polynomial of an integer partition. St000933The number of multipartitions of sizes given by an integer partition. St000937The number of positive values of the symmetric group character corresponding to the partition. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St001128The exponens consonantiae of a partition. St000260The radius of a connected graph. St001896The number of right descents of a signed permutations. St001960The number of descents of a permutation minus one if its first entry is not one. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001487The number of inner corners of a skew partition. St001582The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order. St001823The Stasinski-Voll length of a signed permutation. St001946The number of descents in a parking function.