searching the database
Your data matches 254 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000392
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00131: Permutations —descent bottoms⟶ Binary words
Mp00278: Binary words —rowmotion⟶ Binary words
St000392: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00131: Permutations —descent bottoms⟶ Binary words
Mp00278: Binary words —rowmotion⟶ Binary words
St000392: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [2,1] => 1 => 1 => 1
[1,1,0,0]
=> [1,2] => 0 => 0 => 0
[1,0,1,0,1,0]
=> [3,2,1] => 11 => 11 => 2
[1,0,1,1,0,0]
=> [2,3,1] => 10 => 01 => 1
[1,1,0,0,1,0]
=> [3,1,2] => 10 => 01 => 1
[1,1,0,1,0,0]
=> [2,1,3] => 10 => 01 => 1
[1,1,1,0,0,0]
=> [1,2,3] => 00 => 00 => 0
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 111 => 111 => 3
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 110 => 011 => 2
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 110 => 011 => 2
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 110 => 011 => 2
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 100 => 001 => 1
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 101 => 110 => 2
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 100 => 001 => 1
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 110 => 011 => 2
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 110 => 011 => 2
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 100 => 001 => 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 100 => 001 => 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 100 => 001 => 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 100 => 001 => 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 000 => 000 => 0
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => 1111 => 1111 => 4
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => 1110 => 0111 => 3
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => 1110 => 0111 => 3
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => 1110 => 0111 => 3
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => 1100 => 0011 => 2
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => 1101 => 1110 => 3
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => 1100 => 0011 => 2
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => 1110 => 0111 => 3
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => 1110 => 0111 => 3
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => 1100 => 0011 => 2
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => 1100 => 0011 => 2
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => 1100 => 0011 => 2
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 1100 => 0011 => 2
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 1000 => 0001 => 1
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => 1011 => 1101 => 2
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => 1010 => 1100 => 2
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => 1010 => 1100 => 2
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => 1010 => 1100 => 2
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => 1000 => 0001 => 1
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => 1101 => 1110 => 3
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => 1100 => 0011 => 2
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => 1110 => 0111 => 3
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => 1110 => 0111 => 3
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => 1100 => 0011 => 2
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => 1100 => 0011 => 2
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => 1100 => 0011 => 2
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => 1100 => 0011 => 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => 1000 => 0001 => 1
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => 1001 => 0110 => 2
Description
The length of the longest run of ones in a binary word.
Matching statistic: St000771
(load all 18 compositions to match this statistic)
(load all 18 compositions to match this statistic)
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000771: Graphs ⟶ ℤResult quality: 69% ●values known / values provided: 69%●distinct values known / distinct values provided: 86%
Mp00160: Permutations —graph of inversions⟶ Graphs
St000771: Graphs ⟶ ℤResult quality: 69% ●values known / values provided: 69%●distinct values known / distinct values provided: 86%
Values
[1,0,1,0]
=> [2,1] => ([(0,1)],2)
=> 1
[1,1,0,0]
=> [1,2] => ([],2)
=> ? = 0
[1,0,1,0,1,0]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[1,0,1,1,0,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 1
[1,1,0,0,1,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[1,1,0,1,0,0]
=> [2,1,3] => ([(1,2)],3)
=> ? ∊ {0,1}
[1,1,1,0,0,0]
=> [1,2,3] => ([],3)
=> ? ∊ {0,1}
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,1}
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,1}
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,1}
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {0,1,1,1,1}
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ? ∊ {0,1,1,1,1}
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,3,3,3}
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,3,3,3}
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,3,3,3}
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,3,3,3}
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,3,3,3}
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,3,3,3}
[1,1,1,0,0,1,1,0,0,0]
=> [3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,3,3,3}
[1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,3,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,3,3,3}
[1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,3,3,3}
[1,1,1,0,1,1,0,0,0,0]
=> [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,3,3,3}
[1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,3,3,3}
[1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,3,3,3}
[1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,3,3,3}
[1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([],5)
=> ? ∊ {0,1,1,1,1,2,2,2,2,2,2,3,3,3}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [5,6,4,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [6,4,5,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [5,4,6,3,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [4,5,6,3,2,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [6,5,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [5,6,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [6,4,3,5,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [5,4,3,6,2,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,1,6] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [4,5,3,2,1,6] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [5,3,4,2,1,6] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [4,3,5,2,1,6] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [3,4,5,2,1,6] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [5,4,2,3,1,6] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [4,5,2,3,1,6] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [5,3,2,4,1,6] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [4,3,2,5,1,6] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [3,4,2,5,1,6] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [5,2,3,4,1,6] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [4,2,3,5,1,6] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,1,6] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,1,6] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [5,4,3,1,2,6] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [4,5,3,1,2,6] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [5,3,4,1,2,6] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [4,3,5,1,2,6] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,4,5,1,2,6] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [5,4,2,1,3,6] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [4,5,2,1,3,6] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [5,3,2,1,4,6] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [4,3,2,1,5,6] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [3,4,2,1,5,6] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [5,2,3,1,4,6] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [4,2,3,1,5,6] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [3,2,4,1,5,6] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [2,3,4,1,5,6] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums 0, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
(4−1−2−1−14−1−2−2−14−1−1−2−14).
Its eigenvalues are 0,4,4,6, so the statistic is 2.
The path on four vertices has eigenvalues 0,4.7…,6,9.2… and therefore statistic 1.
Matching statistic: St001644
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St001644: Graphs ⟶ ℤResult quality: 66% ●values known / values provided: 66%●distinct values known / distinct values provided: 100%
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St001644: Graphs ⟶ ℤResult quality: 66% ●values known / values provided: 66%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,1,0,0]
=> [1,2] => ([],2)
=> ([],1)
=> 0
[1,0,1,0,1,0]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,0,1,1,0,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
[1,1,0,0,1,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
[1,1,0,1,0,0]
=> [2,1,3] => ([(1,2)],3)
=> ([(1,2)],3)
=> 1
[1,1,1,0,0,0]
=> [1,2,3] => ([],3)
=> ([],1)
=> 0
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> 1
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,3,3}
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,3,3}
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,3,3}
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> 1
[1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [5,4,6,3,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [6,4,3,5,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [5,4,3,6,2,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [4,5,3,6,2,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [5,3,4,6,2,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [4,3,5,6,2,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [5,4,6,2,3,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,4,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [5,6,3,2,4,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,5,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [6,3,4,2,5,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [4,3,5,2,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [6,4,2,3,5,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [6,3,2,4,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [5,3,2,4,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [5,4,6,3,1,2] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [6,4,3,5,1,2] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,1,3] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [5,6,4,2,1,3] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [6,4,5,2,1,3] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [5,4,6,2,1,3] => ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,1,4] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [4,3,5,2,1,6] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,1,0,1,1,0,0,0,1,0,1,0]
=> [6,5,2,3,1,4] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [6,3,2,4,1,5] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [5,3,2,4,1,6] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,1,1,0,0,1,0,0,1,0,1,0]
=> [6,5,3,1,2,4] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,1,1,0,1,0,0,0,1,0,1,0]
=> [6,5,2,1,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,1,1,0,1,0,0,1,0,0,1,0]
=> [6,4,2,1,3,5] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [5,4,2,1,3,6] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [6,5,7,4,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5}
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [7,5,4,6,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5}
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [6,5,4,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5}
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [5,6,4,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5}
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [6,4,5,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5}
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [5,4,6,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5}
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [6,5,7,3,4,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5}
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,6,4,3,5,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5}
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [6,7,4,3,5,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5}
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [7,5,4,3,6,2,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5}
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,7,2,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5}
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [5,6,4,3,7,2,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5}
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [7,4,5,3,6,2,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5}
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [6,4,5,3,7,2,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5}
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [5,4,6,3,7,2,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5}
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [4,5,6,3,7,2,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5}
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [7,5,3,4,6,2,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5}
Description
The dimension of a graph.
The dimension of a graph is the least integer n such that there exists a representation of the graph in the Euclidean space of dimension n with all vertices distinct and all edges having unit length. Edges are allowed to intersect, however.
Matching statistic: St000741
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St000741: Graphs ⟶ ℤResult quality: 63% ●values known / values provided: 63%●distinct values known / distinct values provided: 86%
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St000741: Graphs ⟶ ℤResult quality: 63% ●values known / values provided: 63%●distinct values known / distinct values provided: 86%
Values
[1,0,1,0]
=> [1,2] => ([],2)
=> ([],1)
=> 0
[1,1,0,0]
=> [2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,0,1,0,1,0]
=> [1,2,3] => ([],3)
=> ([],1)
=> 0
[1,0,1,1,0,0]
=> [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {1,1}
[1,1,0,0,1,0]
=> [2,1,3] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {1,1}
[1,1,0,1,0,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
[1,1,1,0,0,0]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,2}
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,2}
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,2}
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,2}
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ? ∊ {1,1,1,1,1,2}
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,2}
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3}
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3}
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3}
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3}
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3}
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3}
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3}
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3}
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3}
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3}
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3}
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3}
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3}
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3}
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 2
[1,1,1,0,1,0,0,0,1,0]
=> [4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[1,1,1,0,1,0,0,1,0,0]
=> [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,1,0,1,0,1,0,0,0]
=> [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,1,1,0,1,1,0,0,0,0]
=> [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,1,1,0,0,1,0,0,0]
=> [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,1,1,0,1,0,0,0,0]
=> [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4}
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4}
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4}
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,5,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4}
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => ([(2,5),(3,4)],6)
=> ([(1,4),(2,3)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4}
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,4,5,3,6] => ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4}
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,4,5,6,3] => ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4}
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,4,6,5,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,5,4,3,6] => ([(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,5,4,6,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,6,4,5,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,6,5,4,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4}
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,4,6,5] => ([(2,5),(3,4)],6)
=> ([(1,4),(2,3)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4}
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,6] => ([(2,5),(3,4)],6)
=> ([(1,4),(2,3)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4}
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,3,2,5,6,4] => ([(1,2),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4}
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,6,5,4] => ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,3,4,2,5,6] => ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4}
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,3,4,2,6,5] => ([(1,2),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4}
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,3,4,5,2,6] => ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4}
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4}
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,3,4,6,5,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4}
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,3,4,6,5] => ([(2,5),(3,4)],6)
=> ([(1,4),(2,3)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4}
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,3,5,4,6] => ([(2,5),(3,4)],6)
=> ([(1,4),(2,3)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4}
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,1,3,5,6,4] => ([(1,2),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4}
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,1,4,3,5,6] => ([(2,5),(3,4)],6)
=> ([(1,4),(2,3)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4}
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,6,5] => ([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4}
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,1,4,5,3,6] => ([(1,2),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4}
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [2,1,4,5,6,3] => ([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4}
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [2,3,1,4,5,6] => ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4}
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [2,3,1,4,6,5] => ([(1,2),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4}
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [2,3,1,5,4,6] => ([(1,2),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4}
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [2,3,1,5,6,4] => ([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,3),(1,2)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4}
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [2,3,4,1,5,6] => ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4}
Description
The Colin de Verdière graph invariant.
Matching statistic: St000259
(load all 36 compositions to match this statistic)
(load all 36 compositions to match this statistic)
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00310: Permutations —toric promotion⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000259: Graphs ⟶ ℤResult quality: 57% ●values known / values provided: 61%●distinct values known / distinct values provided: 57%
Mp00310: Permutations —toric promotion⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000259: Graphs ⟶ ℤResult quality: 57% ●values known / values provided: 61%●distinct values known / distinct values provided: 57%
Values
[1,0,1,0]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
[1,1,0,0]
=> [1,2] => [1,2] => ([],2)
=> ? = 0
[1,0,1,0,1,0]
=> [3,2,1] => [1,2,3] => ([],3)
=> ? ∊ {0,1,1}
[1,0,1,1,0,0]
=> [2,3,1] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {0,1,1}
[1,1,0,0,1,0]
=> [3,1,2] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {0,1,1}
[1,1,0,1,0,0]
=> [2,1,3] => [3,1,2] => ([(0,2),(1,2)],3)
=> 2
[1,1,1,0,0,0]
=> [1,2,3] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {0,1,1,1,1,1,1,2}
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {0,1,1,1,1,1,1,2}
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 3
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? ∊ {0,1,1,1,1,1,1,2}
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,1,1,1,2}
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,1,1,1,2}
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,1,1,1,2}
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {0,1,1,1,1,1,1,2}
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,1,1,1,2}
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3}
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [3,1,4,2,5] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3}
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [4,2,1,3,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3}
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3}
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3}
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [4,2,1,5,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 3
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3}
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3}
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [4,5,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [3,5,2,1,4] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [2,5,3,1,4] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,2,3,1,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3}
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [3,4,2,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3}
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3}
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [3,2,4,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3}
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3}
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3}
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3}
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3}
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3}
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3}
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [5,2,1,3,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => [4,3,5,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => [4,2,5,3,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 2
[1,1,1,0,0,1,1,0,0,0]
=> [3,4,1,2,5] => [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3}
[1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,3,5] => [1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3}
[1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,4,5] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3}
[1,1,1,0,1,1,0,0,0,0]
=> [2,3,1,4,5] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3}
[1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => [4,5,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
[1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => [3,5,2,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => [2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1] => [1,5,4,3,2,6] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [5,6,4,3,2,1] => [4,1,5,3,2,6] => ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [6,4,5,3,2,1] => [5,3,1,4,2,6] => ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [5,4,6,3,2,1] => [4,3,1,5,2,6] => ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [4,5,6,3,2,1] => [3,4,1,5,2,6] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [6,5,3,4,2,1] => [5,4,2,1,3,6] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [5,6,3,4,2,1] => [4,5,2,1,3,6] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [6,4,3,5,2,1] => [5,3,2,1,4,6] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [5,4,3,6,2,1] => [4,3,2,1,5,6] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [4,5,3,6,2,1] => [3,4,2,1,5,6] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [6,3,4,5,2,1] => [5,2,3,1,4,6] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [5,3,4,6,2,1] => [4,2,3,1,5,6] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [4,3,5,6,2,1] => [3,2,4,1,5,6] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [3,4,5,6,2,1] => [2,3,4,1,5,6] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,3,1] => [5,4,3,1,6,2] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [5,6,4,2,3,1] => [4,5,3,1,6,2] => ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [6,4,5,2,3,1] => [5,3,4,1,6,2] => ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [5,4,6,2,3,1] => [4,3,5,1,6,2] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 3
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [4,5,6,2,3,1] => [3,4,5,1,6,2] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 3
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,4,1] => [5,4,2,1,6,3] => ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [5,6,3,2,4,1] => [4,5,2,1,6,3] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,5,1] => [5,3,2,1,6,4] => ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,6,1] => [4,3,2,1,6,5] => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [4,5,3,2,6,1] => [3,4,2,1,6,5] => ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [6,3,4,2,5,1] => [5,2,3,1,6,4] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> 3
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [5,3,4,2,6,1] => [4,2,3,1,6,5] => ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [6,5,2,3,4,1] => [5,4,6,2,1,3] => ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [5,6,2,3,4,1] => [4,5,6,2,1,3] => ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [6,4,2,3,5,1] => [5,3,6,2,1,4] => ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [5,4,2,3,6,1] => [4,3,6,2,1,5] => ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [4,5,2,3,6,1] => [3,4,6,2,1,5] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [6,3,2,4,5,1] => [5,2,6,3,1,4] => ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [5,3,2,4,6,1] => [4,2,6,3,1,5] => ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 3
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [4,3,2,5,6,1] => [3,2,6,4,1,5] => ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [3,4,2,5,6,1] => [2,3,6,4,1,5] => ([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [6,2,3,4,5,1] => [5,6,2,3,1,4] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [5,2,3,4,6,1] => [4,6,2,3,1,5] => ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
Description
The diameter of a connected graph.
This is the greatest distance between any pair of vertices.
Matching statistic: St001060
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00252: Permutations —restriction⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001060: Graphs ⟶ ℤResult quality: 54% ●values known / values provided: 54%●distinct values known / distinct values provided: 57%
Mp00252: Permutations —restriction⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001060: Graphs ⟶ ℤResult quality: 54% ●values known / values provided: 54%●distinct values known / distinct values provided: 57%
Values
[1,0,1,0]
=> [1,2] => [1] => ([],1)
=> ? ∊ {0,1}
[1,1,0,0]
=> [2,1] => [1] => ([],1)
=> ? ∊ {0,1}
[1,0,1,0,1,0]
=> [1,2,3] => [1,2] => ([],2)
=> ? ∊ {0,1,1,1,2}
[1,0,1,1,0,0]
=> [1,3,2] => [1,2] => ([],2)
=> ? ∊ {0,1,1,1,2}
[1,1,0,0,1,0]
=> [2,1,3] => [2,1] => ([(0,1)],2)
=> ? ∊ {0,1,1,1,2}
[1,1,0,1,0,0]
=> [2,3,1] => [2,1] => ([(0,1)],2)
=> ? ∊ {0,1,1,1,2}
[1,1,1,0,0,0]
=> [3,1,2] => [1,2] => ([],2)
=> ? ∊ {0,1,1,1,2}
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3] => ([],3)
=> ? ∊ {0,1,1,1,1,1,1,2,3}
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,3] => ([],3)
=> ? ∊ {0,1,1,1,1,1,1,2,3}
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {0,1,1,1,1,1,1,2,3}
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {0,1,1,1,1,1,1,2,3}
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [1,2,3] => ([],3)
=> ? ∊ {0,1,1,1,1,1,1,2,3}
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {0,1,1,1,1,1,1,2,3}
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {0,1,1,1,1,1,1,2,3}
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [2,3,1] => ([(0,2),(1,2)],3)
=> 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [2,3,1] => ([(0,2),(1,2)],3)
=> 2
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {0,1,1,1,1,1,1,2,3}
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [3,1,2] => ([(0,2),(1,2)],3)
=> 2
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [3,1,2] => ([(0,2),(1,2)],3)
=> 2
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [3,1,2] => ([(0,2),(1,2)],3)
=> 2
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {0,1,1,1,1,1,1,2,3}
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4] => ([],4)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4}
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,4] => ([],4)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4}
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4}
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4}
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4}
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4}
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4}
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4}
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4}
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4}
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4}
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4}
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4}
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4}
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4}
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [3,1,2,4] => ([(1,3),(2,3)],4)
=> 2
[1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => [3,1,2,4] => ([(1,3),(2,3)],4)
=> 2
[1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 2
[1,1,1,0,0,1,0,1,0,0]
=> [3,1,4,5,2] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 2
[1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => [3,1,2,4] => ([(1,3),(2,3)],4)
=> 2
[1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 3
[1,1,1,0,1,0,0,1,0,0]
=> [3,4,1,5,2] => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 3
[1,1,1,0,1,0,1,0,0,0]
=> [3,4,5,1,2] => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 3
[1,1,1,0,1,1,0,0,0,0]
=> [3,5,1,2,4] => [3,1,2,4] => ([(1,3),(2,3)],4)
=> 2
[1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 3
[1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,5,3] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 3
[1,1,1,1,0,0,1,0,0,0]
=> [4,1,5,2,3] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 3
[1,1,1,1,0,1,0,0,0,0]
=> [4,5,1,2,3] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 3
[1,1,1,1,1,0,0,0,0,0]
=> [5,1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,4}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => [1,2,3,4,5] => ([],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => [1,2,3,4,5] => ([],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => [1,2,3,5,4] => ([(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,4,5] => [1,2,3,4,5] => ([],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => [1,2,4,3,5] => ([(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,4,5,3,6] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,4,5,6,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,4,6,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,5,3,4,6] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,5,3,6,4] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,5,6,3,4] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,6,3,4,5] => [1,2,3,4,5] => ([],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6] => [1,3,2,4,5] => ([(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,4,6,5] => [1,3,2,4,5] => ([(3,4)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,6] => [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,3,2,5,6,4] => [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5}
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,3,4,5,2,6] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,2] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,3,5,2,4,6] => [1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> 2
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,3,5,2,6,4] => [1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> 2
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,3,5,6,2,4] => [1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> 2
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,4,2,5,3,6] => [1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> 2
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,4,2,5,6,3] => [1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> 2
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,4,5,2,3,6] => [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 3
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,4,5,2,6,3] => [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 3
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,4,5,6,2,3] => [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 3
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,5,2,3,4,6] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> 3
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,5,2,3,6,4] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> 3
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,5,2,6,3,4] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> 3
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,5,6,2,3,4] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> 3
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [2,3,4,1,5,6] => [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> 3
[1,1,0,1,0,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5] => [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> 3
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [2,3,4,5,1,6] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,6,1,5] => [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> 3
Description
The distinguishing index of a graph.
This is the smallest number of colours such that there is a colouring of the edges which is not preserved by any automorphism.
If the graph has a connected component which is a single edge, or at least two isolated vertices, this statistic is undefined.
Matching statistic: St001028
Mp00233: Dyck paths —skew partition⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001028: Dyck paths ⟶ ℤResult quality: 52% ●values known / values provided: 52%●distinct values known / distinct values provided: 71%
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001028: Dyck paths ⟶ ℤResult quality: 52% ●values known / values provided: 52%●distinct values known / distinct values provided: 71%
Values
[1,0,1,0]
=> [[1,1],[]]
=> []
=> []
=> ? ∊ {0,1}
[1,1,0,0]
=> [[2],[]]
=> []
=> []
=> ? ∊ {0,1}
[1,0,1,0,1,0]
=> [[1,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1}
[1,0,1,1,0,0]
=> [[2,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1}
[1,1,0,0,1,0]
=> [[2,2],[1]]
=> [1]
=> [1,0]
=> 2
[1,1,0,1,0,0]
=> [[3],[]]
=> []
=> []
=> ? ∊ {0,1,1,1}
[1,1,1,0,0,0]
=> [[2,2],[]]
=> []
=> []
=> ? ∊ {0,1,1,1}
[1,0,1,0,1,0,1,0]
=> [[1,1,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,2}
[1,0,1,0,1,1,0,0]
=> [[2,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,2}
[1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> [1]
=> [1,0]
=> 2
[1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,2}
[1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,2}
[1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> [1]
=> [1,0]
=> 2
[1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> [2]
=> [1,0,1,0]
=> 3
[1,1,0,1,0,1,0,0]
=> [[4],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,2}
[1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> [1,0]
=> 2
[1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> [1,0]
=> 2
[1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,2}
[1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,2}
[1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,2}
[1,0,1,0,1,0,1,0,1,0]
=> [[1,1,1,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[1,0,1,0,1,0,1,1,0,0]
=> [[2,1,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1],[1]]
=> [1]
=> [1,0]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [[3,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1],[1]]
=> [1]
=> [1,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1],[2]]
=> [2]
=> [1,0,1,0]
=> 3
[1,0,1,1,0,1,0,1,0,0]
=> [[4,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> [1]
=> [1,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1],[1]]
=> [1]
=> [1,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [[3,2,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 3
[1,1,0,0,1,1,0,1,0,0]
=> [[4,2],[1]]
=> [1]
=> [1,0]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [[4,3],[2]]
=> [2]
=> [1,0,1,0]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> [3]
=> [1,0,1,0,1,0]
=> 4
[1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> [2]
=> [1,0,1,0]
=> 3
[1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [[4,3],[1]]
=> [1]
=> [1,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> [1]
=> [1,0]
=> 2
[1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,1,1,0,0,0,1,1,0,0]
=> [[3,2,2],[1]]
=> [1]
=> [1,0]
=> 2
[1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> [2]
=> [1,0,1,0]
=> 3
[1,1,1,0,0,1,0,1,0,0]
=> [[4,2],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2],[1]]
=> [1]
=> [1,0]
=> 2
[1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> [1]
=> [1,0]
=> 2
[1,1,1,0,1,0,0,1,0,0]
=> [[3,2,2],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[1,1,1,0,1,0,1,0,0,0]
=> [[2,2,2,2],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> [1,0,1,0]
=> 3
[1,1,1,1,0,0,0,1,0,0]
=> [[4,3],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[1,1,1,1,0,0,1,0,0,0]
=> [[3,3,3],[1]]
=> [1]
=> [1,0]
=> 2
[1,1,1,1,0,1,0,0,0,0]
=> [[4,4],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [[1,1,1,1,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [[2,1,1,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1,1],[1]]
=> [1]
=> [1,0]
=> 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [[3,1,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1,1],[1]]
=> [1]
=> [1,0]
=> 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1,1],[2]]
=> [2]
=> [1,0,1,0]
=> 3
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [[4,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1,1],[1]]
=> [1]
=> [1,0]
=> 2
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1,1],[1]]
=> [1]
=> [1,0]
=> 2
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [[3,2,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 3
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 3
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [[4,2,1],[1]]
=> [1]
=> [1,0]
=> 2
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3,1],[2,2]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [[4,3,1],[2]]
=> [2]
=> [1,0,1,0]
=> 3
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [[4,4,1],[3]]
=> [3]
=> [1,0,1,0,1,0]
=> 4
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [[5,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [[4,4,1],[2]]
=> [2]
=> [1,0,1,0]
=> 3
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 3
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [[4,3,1],[1]]
=> [1]
=> [1,0]
=> 2
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [[4,2,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [[3,2,2,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [[2,2,2,2,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [[4,3,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [[4,4,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [[6],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [[5,2],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [[4,2,2],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [[3,2,2,2],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
Description
Number of simple modules with injective dimension equal to the dominant dimension in the Nakayama algebra corresponding to the Dyck path.
Matching statistic: St001180
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00233: Dyck paths —skew partition⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001180: Dyck paths ⟶ ℤResult quality: 52% ●values known / values provided: 52%●distinct values known / distinct values provided: 71%
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001180: Dyck paths ⟶ ℤResult quality: 52% ●values known / values provided: 52%●distinct values known / distinct values provided: 71%
Values
[1,0,1,0]
=> [[1,1],[]]
=> []
=> []
=> ? ∊ {0,1}
[1,1,0,0]
=> [[2],[]]
=> []
=> []
=> ? ∊ {0,1}
[1,0,1,0,1,0]
=> [[1,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1}
[1,0,1,1,0,0]
=> [[2,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1}
[1,1,0,0,1,0]
=> [[2,2],[1]]
=> [1]
=> [1,0]
=> 2
[1,1,0,1,0,0]
=> [[3],[]]
=> []
=> []
=> ? ∊ {0,1,1,1}
[1,1,1,0,0,0]
=> [[2,2],[]]
=> []
=> []
=> ? ∊ {0,1,1,1}
[1,0,1,0,1,0,1,0]
=> [[1,1,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,2}
[1,0,1,0,1,1,0,0]
=> [[2,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,2}
[1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> [1]
=> [1,0]
=> 2
[1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,2}
[1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,2}
[1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 3
[1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> [1]
=> [1,0]
=> 2
[1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> [2]
=> [1,0,1,0]
=> 2
[1,1,0,1,0,1,0,0]
=> [[4],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,2}
[1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> [1,0]
=> 2
[1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> [1,0]
=> 2
[1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,2}
[1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,2}
[1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,2}
[1,0,1,0,1,0,1,0,1,0]
=> [[1,1,1,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[1,0,1,0,1,0,1,1,0,0]
=> [[2,1,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1],[1]]
=> [1]
=> [1,0]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [[3,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1],[1]]
=> [1]
=> [1,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1],[2]]
=> [2]
=> [1,0,1,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [[4,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> [1]
=> [1,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1],[1]]
=> [1]
=> [1,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [[3,2,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 3
[1,1,0,0,1,1,0,1,0,0]
=> [[4,2],[1]]
=> [1]
=> [1,0]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 3
[1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 4
[1,1,0,1,0,0,1,1,0,0]
=> [[4,3],[2]]
=> [2]
=> [1,0,1,0]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> [3]
=> [1,0,1,0,1,0]
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> [2]
=> [1,0,1,0]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [[4,3],[1]]
=> [1]
=> [1,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> [1]
=> [1,0]
=> 2
[1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 3
[1,1,1,0,0,0,1,1,0,0]
=> [[3,2,2],[1]]
=> [1]
=> [1,0]
=> 2
[1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> [2]
=> [1,0,1,0]
=> 2
[1,1,1,0,0,1,0,1,0,0]
=> [[4,2],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2],[1]]
=> [1]
=> [1,0]
=> 2
[1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> [1]
=> [1,0]
=> 2
[1,1,1,0,1,0,0,1,0,0]
=> [[3,2,2],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[1,1,1,0,1,0,1,0,0,0]
=> [[2,2,2,2],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> [1,0,1,0]
=> 2
[1,1,1,1,0,0,0,1,0,0]
=> [[4,3],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[1,1,1,1,0,0,1,0,0,0]
=> [[3,3,3],[1]]
=> [1]
=> [1,0]
=> 2
[1,1,1,1,0,1,0,0,0,0]
=> [[4,4],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [[1,1,1,1,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [[2,1,1,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1,1],[1]]
=> [1]
=> [1,0]
=> 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [[3,1,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 3
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1,1],[1]]
=> [1]
=> [1,0]
=> 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1,1],[2]]
=> [2]
=> [1,0,1,0]
=> 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [[4,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1,1],[1]]
=> [1]
=> [1,0]
=> 2
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1,1],[1]]
=> [1]
=> [1,0]
=> 2
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [[3,2,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 3
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 3
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [[4,2,1],[1]]
=> [1]
=> [1,0]
=> 2
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 3
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3,1],[2,2]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 4
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [[4,3,1],[2]]
=> [2]
=> [1,0,1,0]
=> 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [[4,4,1],[3]]
=> [3]
=> [1,0,1,0,1,0]
=> 3
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [[5,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [[4,4,1],[2]]
=> [2]
=> [1,0,1,0]
=> 2
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 3
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [[4,3,1],[1]]
=> [1]
=> [1,0]
=> 2
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [[4,2,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [[3,2,2,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [[2,2,2,2,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [[4,3,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [[4,4,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [[6],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [[5,2],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [[4,2,2],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [[3,2,2,2],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
Description
Number of indecomposable injective modules with projective dimension at most 1.
Matching statistic: St001226
Mp00233: Dyck paths —skew partition⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001226: Dyck paths ⟶ ℤResult quality: 52% ●values known / values provided: 52%●distinct values known / distinct values provided: 71%
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001226: Dyck paths ⟶ ℤResult quality: 52% ●values known / values provided: 52%●distinct values known / distinct values provided: 71%
Values
[1,0,1,0]
=> [[1,1],[]]
=> []
=> []
=> ? ∊ {0,1}
[1,1,0,0]
=> [[2],[]]
=> []
=> []
=> ? ∊ {0,1}
[1,0,1,0,1,0]
=> [[1,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1}
[1,0,1,1,0,0]
=> [[2,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1}
[1,1,0,0,1,0]
=> [[2,2],[1]]
=> [1]
=> [1,0]
=> 2
[1,1,0,1,0,0]
=> [[3],[]]
=> []
=> []
=> ? ∊ {0,1,1,1}
[1,1,1,0,0,0]
=> [[2,2],[]]
=> []
=> []
=> ? ∊ {0,1,1,1}
[1,0,1,0,1,0,1,0]
=> [[1,1,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,2}
[1,0,1,0,1,1,0,0]
=> [[2,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,2}
[1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> [1]
=> [1,0]
=> 2
[1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,2}
[1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,2}
[1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 3
[1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> [1]
=> [1,0]
=> 2
[1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> [2]
=> [1,0,1,0]
=> 2
[1,1,0,1,0,1,0,0]
=> [[4],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,2}
[1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> [1,0]
=> 2
[1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> [1,0]
=> 2
[1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,2}
[1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,2}
[1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,2}
[1,0,1,0,1,0,1,0,1,0]
=> [[1,1,1,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3}
[1,0,1,0,1,0,1,1,0,0]
=> [[2,1,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3}
[1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1],[1]]
=> [1]
=> [1,0]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [[3,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3}
[1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3}
[1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1],[1]]
=> [1]
=> [1,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1],[2]]
=> [2]
=> [1,0,1,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [[4,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3}
[1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> [1]
=> [1,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1],[1]]
=> [1]
=> [1,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [[3,2,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3}
[1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3}
[1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3}
[1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 3
[1,1,0,0,1,1,0,1,0,0]
=> [[4,2],[1]]
=> [1]
=> [1,0]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 3
[1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 4
[1,1,0,1,0,0,1,1,0,0]
=> [[4,3],[2]]
=> [2]
=> [1,0,1,0]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> [3]
=> [1,0,1,0,1,0]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3}
[1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> [2]
=> [1,0,1,0]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [[4,3],[1]]
=> [1]
=> [1,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> [1]
=> [1,0]
=> 2
[1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 3
[1,1,1,0,0,0,1,1,0,0]
=> [[3,2,2],[1]]
=> [1]
=> [1,0]
=> 2
[1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> [2]
=> [1,0,1,0]
=> 2
[1,1,1,0,0,1,0,1,0,0]
=> [[4,2],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3}
[1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2],[1]]
=> [1]
=> [1,0]
=> 2
[1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> [1]
=> [1,0]
=> 2
[1,1,1,0,1,0,0,1,0,0]
=> [[3,2,2],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3}
[1,1,1,0,1,0,1,0,0,0]
=> [[2,2,2,2],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3}
[1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3}
[1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> [1,0,1,0]
=> 2
[1,1,1,1,0,0,0,1,0,0]
=> [[4,3],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3}
[1,1,1,1,0,0,1,0,0,0]
=> [[3,3,3],[1]]
=> [1]
=> [1,0]
=> 2
[1,1,1,1,0,1,0,0,0,0]
=> [[4,4],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3}
[1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [[1,1,1,1,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [[2,1,1,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1,1],[1]]
=> [1]
=> [1,0]
=> 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [[3,1,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 3
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1,1],[1]]
=> [1]
=> [1,0]
=> 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1,1],[2]]
=> [2]
=> [1,0,1,0]
=> 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [[4,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1,1],[1]]
=> [1]
=> [1,0]
=> 2
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1,1],[1]]
=> [1]
=> [1,0]
=> 2
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [[3,2,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 3
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 3
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [[4,2,1],[1]]
=> [1]
=> [1,0]
=> 2
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 3
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3,1],[2,2]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 4
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [[4,3,1],[2]]
=> [2]
=> [1,0,1,0]
=> 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [[4,4,1],[3]]
=> [3]
=> [1,0,1,0,1,0]
=> 2
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [[5,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [[4,4,1],[2]]
=> [2]
=> [1,0,1,0]
=> 2
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 3
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [[4,3,1],[1]]
=> [1]
=> [1,0]
=> 2
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [[4,2,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [[3,2,2,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [[2,2,2,2,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [[4,3,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [[4,4,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [[6],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [[5,2],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [[4,2,2],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [[3,2,2,2],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4}
Description
The number of integers i such that the radical of the i-th indecomposable projective module has vanishing first extension group with the Jacobson radical J in the corresponding Nakayama algebra.
That is the number of i such that Ext1A(J,eiJ)=0.
Matching statistic: St001290
Mp00233: Dyck paths —skew partition⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001290: Dyck paths ⟶ ℤResult quality: 52% ●values known / values provided: 52%●distinct values known / distinct values provided: 71%
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001290: Dyck paths ⟶ ℤResult quality: 52% ●values known / values provided: 52%●distinct values known / distinct values provided: 71%
Values
[1,0,1,0]
=> [[1,1],[]]
=> []
=> []
=> ? ∊ {0,1}
[1,1,0,0]
=> [[2],[]]
=> []
=> []
=> ? ∊ {0,1}
[1,0,1,0,1,0]
=> [[1,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1}
[1,0,1,1,0,0]
=> [[2,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1}
[1,1,0,0,1,0]
=> [[2,2],[1]]
=> [1]
=> [1,0]
=> 2
[1,1,0,1,0,0]
=> [[3],[]]
=> []
=> []
=> ? ∊ {0,1,1,1}
[1,1,1,0,0,0]
=> [[2,2],[]]
=> []
=> []
=> ? ∊ {0,1,1,1}
[1,0,1,0,1,0,1,0]
=> [[1,1,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,2}
[1,0,1,0,1,1,0,0]
=> [[2,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,2}
[1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> [1]
=> [1,0]
=> 2
[1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,2}
[1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,2}
[1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> [1]
=> [1,0]
=> 2
[1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> [2]
=> [1,0,1,0]
=> 3
[1,1,0,1,0,1,0,0]
=> [[4],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,2}
[1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> [1,0]
=> 2
[1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> [1,0]
=> 2
[1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,2}
[1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,2}
[1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,2}
[1,0,1,0,1,0,1,0,1,0]
=> [[1,1,1,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3}
[1,0,1,0,1,0,1,1,0,0]
=> [[2,1,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3}
[1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1],[1]]
=> [1]
=> [1,0]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [[3,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3}
[1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3}
[1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1],[1]]
=> [1]
=> [1,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1],[2]]
=> [2]
=> [1,0,1,0]
=> 3
[1,0,1,1,0,1,0,1,0,0]
=> [[4,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3}
[1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> [1]
=> [1,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1],[1]]
=> [1]
=> [1,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [[3,2,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3}
[1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3}
[1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3}
[1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 3
[1,1,0,0,1,1,0,1,0,0]
=> [[4,2],[1]]
=> [1]
=> [1,0]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [[4,3],[2]]
=> [2]
=> [1,0,1,0]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> [3]
=> [1,0,1,0,1,0]
=> 4
[1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3}
[1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> [2]
=> [1,0,1,0]
=> 3
[1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [[4,3],[1]]
=> [1]
=> [1,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> [1]
=> [1,0]
=> 2
[1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,1,1,0,0,0,1,1,0,0]
=> [[3,2,2],[1]]
=> [1]
=> [1,0]
=> 2
[1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> [2]
=> [1,0,1,0]
=> 3
[1,1,1,0,0,1,0,1,0,0]
=> [[4,2],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3}
[1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2],[1]]
=> [1]
=> [1,0]
=> 2
[1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> [1]
=> [1,0]
=> 2
[1,1,1,0,1,0,0,1,0,0]
=> [[3,2,2],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3}
[1,1,1,0,1,0,1,0,0,0]
=> [[2,2,2,2],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3}
[1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3}
[1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> [1,0,1,0]
=> 3
[1,1,1,1,0,0,0,1,0,0]
=> [[4,3],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3}
[1,1,1,1,0,0,1,0,0,0]
=> [[3,3,3],[1]]
=> [1]
=> [1,0]
=> 2
[1,1,1,1,0,1,0,0,0,0]
=> [[4,4],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3}
[1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [[1,1,1,1,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4}
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [[2,1,1,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4}
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1,1],[1]]
=> [1]
=> [1,0]
=> 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [[3,1,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4}
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4}
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1,1],[1]]
=> [1]
=> [1,0]
=> 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1,1],[2]]
=> [2]
=> [1,0,1,0]
=> 3
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [[4,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4}
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1,1],[1]]
=> [1]
=> [1,0]
=> 2
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1,1],[1]]
=> [1]
=> [1,0]
=> 2
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [[3,2,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4}
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4}
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4}
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 3
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [[4,2,1],[1]]
=> [1]
=> [1,0]
=> 2
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3,1],[2,2]]
=> [2,2]
=> [1,1,1,0,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [[4,3,1],[2]]
=> [2]
=> [1,0,1,0]
=> 3
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [[4,4,1],[3]]
=> [3]
=> [1,0,1,0,1,0]
=> 4
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [[5,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4}
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [[4,4,1],[2]]
=> [2]
=> [1,0,1,0]
=> 3
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 3
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [[4,3,1],[1]]
=> [1]
=> [1,0]
=> 2
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [[4,2,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4}
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [[3,2,2,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4}
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [[2,2,2,2,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4}
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4}
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [[4,3,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4}
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [[4,4,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4}
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3,1],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4}
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [[6],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4}
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [[5,2],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4}
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [[4,2,2],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4}
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [[3,2,2,2],[]]
=> []
=> []
=> ? ∊ {0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4}
Description
The first natural number n such that the tensor product of n copies of D(A) is zero for the corresponding Nakayama algebra A.
The following 244 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001291The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001142The projective dimension of the socle of the regular module as a bimodule in the Nakayama algebra corresponding to the Dyck path. St000264The girth of a graph, which is not a tree. St001199The dominant dimension of eAe for the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001432The order dimension of the partition. St000717The number of ordinal summands of a poset. St000906The length of the shortest maximal chain in a poset. St000454The largest eigenvalue of a graph if it is integral. St001330The hat guessing number of a graph. St000159The number of distinct parts of the integer partition. St000742The number of big ascents of a permutation after prepending zero. St000460The hook length of the last cell along the main diagonal of an integer partition. St000474Dyson's crank of a partition. St000667The greatest common divisor of the parts of the partition. St000668The least common multiple of the parts of the partition. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000870The product of the hook lengths of the diagonal cells in an integer partition. St001279The sum of the parts of an integer partition that are at least two. St001360The number of covering relations in Young's lattice below a partition. St001389The number of partitions of the same length below the given integer partition. St001527The cyclic permutation representation number of an integer partition. St001571The Cartan determinant of the integer partition. St001914The size of the orbit of an integer partition in Bulgarian solitaire. St000260The radius of a connected graph. St000374The number of exclusive right-to-left minima of a permutation. St000098The chromatic number of a graph. St000996The number of exclusive left-to-right maxima of a permutation. St001494The Alon-Tarsi number of a graph. St000272The treewidth of a graph. St000362The size of a minimal vertex cover of a graph. St000536The pathwidth of a graph. St000703The number of deficiencies of a permutation. St000172The Grundy number of a graph. St001029The size of the core of a graph. St001116The game chromatic number of a graph. St001580The acyclic chromatic number of a graph. St001670The connected partition number of a graph. St001198The number of simple modules in the algebra eAe with projective dimension at most 1 in the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001200The number of simple modules in eAe with projective dimension at most 2 in the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001206The maximal dimension of an indecomposable projective eAe-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module eA. St001812The biclique partition number of a graph. St000340The number of non-final maximal constant sub-paths of length greater than one. St001277The degeneracy of a graph. St001358The largest degree of a regular subgraph of a graph. St001302The number of minimally dominating sets of vertices of a graph. St001304The number of maximally independent sets of vertices of a graph. St001963The tree-depth of a graph. St001907The number of Bastidas - Hohlweg - Saliola excedances of a signed permutation. St000619The number of cyclic descents of a permutation. St000955Number of times one has Exti(D(A),A)>0 for i>0 for the corresponding LNakayama algebra. St001517The length of a longest pair of twins in a permutation. St001427The number of descents of a signed permutation. St000292The number of ascents of a binary word. St000288The number of ones in a binary word. St000354The number of recoils of a permutation. St000470The number of runs in a permutation. St000291The number of descents of a binary word. St000662The staircase size of the code of a permutation. St000337The lec statistic, the sum of the inversion numbers of the hook factors of a permutation. St000373The number of weak exceedences of a permutation that are also mid-points of a decreasing subsequence of length 3. St000888The maximal sum of entries on a diagonal of an alternating sign matrix. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001489The maximum of the number of descents and the number of inverse descents. St000157The number of descents of a standard tableau. St001875The number of simple modules with projective dimension at most 1. St000245The number of ascents of a permutation. St000646The number of big ascents of a permutation. St000994The number of cycle peaks and the number of cycle valleys of a permutation. St000831The number of indices that are either descents or recoils. St001667The maximal size of a pair of weak twins for a permutation. St000028The number of stack-sorts needed to sort a permutation. St000647The number of big descents of a permutation. St000390The number of runs of ones in a binary word. St001683The number of distinct positions of the pattern letter 3 in occurrences of 132 in a permutation. St000054The first entry of the permutation. St000822The Hadwiger number of the graph. St000711The number of big exceedences of a permutation. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000308The height of the tree associated to a permutation. St001487The number of inner corners of a skew partition. St001235The global dimension of the corresponding Comp-Nakayama algebra. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001761The maximal multiplicity of a letter in a reduced word of a permutation. St000021The number of descents of a permutation. St000325The width of the tree associated to a permutation. St001183The maximum of projdim(S)+injdim(S) over all simple modules in the Nakayama algebra corresponding to the Dyck path. St001258Gives the maximum of injective plus projective dimension of an indecomposable module over the corresponding Nakayama algebra. St000155The number of exceedances (also excedences) of a permutation. St000333The dez statistic, the number of descents of a permutation after replacing fixed points by zeros. St000672The number of minimal elements in Bruhat order not less than the permutation. St000710The number of big deficiencies of a permutation. St000834The number of right outer peaks of a permutation. St000871The number of very big ascents of a permutation. St001086The number of occurrences of the consecutive pattern 132 in a permutation. St001194The injective dimension of A/AfA in the corresponding Nakayama algebra A when Af is the minimal faithful projective-injective left A-module St001215Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001298The number of repeated entries in the Lehmer code of a permutation. St001744The number of occurrences of the arrow pattern 1-2 with an arrow from 1 to 2 in a permutation. St000035The number of left outer peaks of a permutation. St000153The number of adjacent cycles of a permutation. St000213The number of weak exceedances (also weak excedences) of a permutation. St000702The number of weak deficiencies of a permutation. St001461The number of topologically connected components of the chord diagram of a permutation. St001120The length of a longest path in a graph. St001505The number of elements generated by the Dyck path as a map in the full transformation monoid. St001093The detour number of a graph. St001569The maximal modular displacement of a permutation. St000052The number of valleys of a Dyck path not on the x-axis. St000080The rank of the poset. St000845The maximal number of elements covered by an element in a poset. St000846The maximal number of elements covering an element of a poset. St000528The height of a poset. St001636The number of indecomposable injective modules with projective dimension at most one in the incidence algebra of the poset. St001782The order of rowmotion on the set of order ideals of a poset. St001712The number of natural descents of a standard Young tableau. St000524The number of posets with the same order polynomial. St000526The number of posets with combinatorially isomorphic order polytopes. St000640The rank of the largest boolean interval in a poset. St000910The number of maximal chains of minimal length in a poset. St001105The number of greedy linear extensions of a poset. St001106The number of supergreedy linear extensions of a poset. St001632The number of indecomposable injective modules I with dimExt1(I,A)=1 for the incidence algebra A of a poset. St001820The size of the image of the pop stack sorting operator. St001720The minimal length of a chain of small intervals in a lattice. St001769The reflection length of a signed permutation. St001861The number of Bruhat lower covers of a permutation. St001894The depth of a signed permutation. St001896The number of right descents of a signed permutations. St001863The number of weak excedances of a signed permutation. St001889The size of the connectivity set of a signed permutation. St000389The number of runs of ones of odd length in a binary word. St001637The number of (upper) dissectors of a poset. St001668The number of points of the poset minus the width of the poset. St000455The second largest eigenvalue of a graph if it is integral. St000358The number of occurrences of the pattern 31-2. St000836The number of descents of distance 2 of a permutation. St000837The number of ascents of distance 2 of a permutation. St001864The number of excedances of a signed permutation. St001866The nesting alignments of a signed permutation. St000507The number of ascents of a standard tableau. St000746The number of pairs with odd minimum in a perfect matching. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001083The number of boxed occurrences of 132 in a permutation. St001090The number of pop-stack-sorts needed to sort a permutation. St000007The number of saliances of the permutation. St000013The height of a Dyck path. St000371The number of mid points of decreasing subsequences of length 3 in a permutation. St000031The number of cycles in the cycle decomposition of a permutation. St000451The length of the longest pattern of the form k 1 2. St001004The number of indices that are either left-to-right maxima or right-to-left minima. St000884The number of isolated descents of a permutation. St000829The Ulam distance of a permutation to the identity permutation. St001061The number of indices that are both descents and recoils of a permutation. St001269The sum of the minimum of the number of exceedances and deficiencies in each cycle of a permutation. St000445The number of rises of length 1 of a Dyck path. St000648The number of 2-excedences of a permutation. St001115The number of even descents of a permutation. St001153The number of blocks with even minimum in a set partition. St000201The number of leaf nodes in a binary tree. St000214The number of adjacencies of a permutation. St000898The number of maximal entries in the last diagonal of the monotone triangle. St000541The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. St000864The number of circled entries of the shifted recording tableau of a permutation. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St000093The cardinality of a maximal independent set of vertices of a graph. St000372The number of mid points of increasing subsequences of length 3 in a permutation. St000542The number of left-to-right-minima of a permutation. St000120The number of left tunnels of a Dyck path. St001169Number of simple modules with projective dimension at least two in the corresponding Nakayama algebra. St001188The number of simple modules S with grade inf at least two in the Nakayama algebra A corresponding to the Dyck path. St001244The number of simple modules of projective dimension one that are not 1-regular for the Nakayama algebra associated to a Dyck path. St001905The number of preferred parking spots in a parking function less than the index of the car. St001935The number of ascents in a parking function. St001946The number of descents in a parking function. St001960The number of descents of a permutation minus one if its first entry is not one. St000015The number of peaks of a Dyck path. St000329The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1. St000942The number of critical left to right maxima of the parking functions. St000991The number of right-to-left minima of a permutation. St001152The number of pairs with even minimum in a perfect matching. St001773The number of minimal elements in Bruhat order not less than the signed permutation. St000808The number of up steps of the associated bargraph. St000443The number of long tunnels of a Dyck path. St001014Number of indecomposable injective modules with codominant dimension equal to the dominant dimension of the Nakayama algebra corresponding to the Dyck path. St001015Number of indecomposable injective modules with codominant dimension equal to one in the Nakayama algebra corresponding to the Dyck path. St001016Number of indecomposable injective modules with codominant dimension at most 1 in the Nakayama algebra corresponding to the Dyck path. St001187The number of simple modules with grade at least one in the corresponding Nakayama algebra. St001224Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St000053The number of valleys of the Dyck path. St000083The number of left oriented leafs of a binary tree except the first one. St000162The number of nontrivial cycles in the cycle decomposition of a permutation. St000316The number of non-left-to-right-maxima of a permutation. St000375The number of non weak exceedences of a permutation that are mid-points of a decreasing subsequence of length 3. St000386The number of factors DDU in a Dyck path. St000872The number of very big descents of a permutation. St000970Number of peaks minus the dominant dimension of the corresponding LNakayama algebra. St001207The Lowey length of the algebra A/T when T is the 1-tilting module corresponding to the permutation in the Auslander algebra of K[x]/(x^n). St001297The number of indecomposable non-injective projective modules minus the number of indecomposable non-injective projective modules that have reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St001372The length of a longest cyclic run of ones of a binary word. St001421Half the length of a longest factor which is its own reverse-complement and begins with a one of a binary word. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001583The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order. St001687The number of distinct positions of the pattern letter 2 in occurrences of 213 in a permutation. St001811The Castelnuovo-Mumford regularity of a permutation. St001874Lusztig's a-function for the symmetric group. St001964The interval resolution global dimension of a poset. St000062The length of the longest increasing subsequence of the permutation. St000164The number of short pairs. St000216The absolute length of a permutation. St000239The number of small weak excedances. St000242The number of indices that are not cyclical small weak excedances. St000314The number of left-to-right-maxima of a permutation. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000331The number of upper interactions of a Dyck path. St000809The reduced reflection length of the permutation. St000912The number of maximal antichains in a poset. St001068Number of torsionless simple modules in the corresponding Nakayama algebra. St001343The dimension of the reduced incidence algebra of a poset. St001355Number of non-empty prefixes of a binary word that contain equally many 0's and 1's. St001390The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. St001418Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001462The number of factors of a standard tableaux under concatenation. St001499The number of indecomposable projective-injective modules of a magnitude 1 Nakayama algebra. St001509The degree of the standard monomial associated to a Dyck path relative to the trivial lower boundary. St001589The nesting number of a perfect matching. St000097The order of the largest clique of the graph. St000168The number of internal nodes of an ordered tree. St000236The number of cyclical small weak excedances. St000238The number of indices that are not small weak excedances. St000332The positive inversions of an alternating sign matrix. St000676The number of odd rises of a Dyck path. St001005The number of indices for a permutation that are either left-to-right maxima or right-to-left minima but not both. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St001267The length of the Lyndon factorization of the binary word. St001649The length of a longest trail in a graph. St000024The number of double up and double down steps of a Dyck path. St000144The pyramid weight of the Dyck path. St001007Number of simple modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001492The number of simple modules that do not appear in the socle of the regular module or have no nontrivial selfextensions with the regular module in the corresponding Nakayama algebra. St000381The largest part of an integer composition. St001581The achromatic number of a graph.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!