Your data matches 448 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00242: Dyck paths Hessenberg posetPosets
St000298: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> ([],1)
=> 1
[1,0,1,0]
=> ([(0,1)],2)
=> 1
[1,1,0,0]
=> ([],2)
=> 2
[1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> 1
[1,0,1,1,0,0]
=> ([(0,2),(1,2)],3)
=> 2
[1,1,0,0,1,0]
=> ([(0,1),(0,2)],3)
=> 2
[1,1,0,1,0,0]
=> ([(1,2)],3)
=> 2
[1,1,1,0,0,0]
=> ([],3)
=> 2
[1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[1,0,1,0,1,1,0,0]
=> ([(0,3),(1,3),(3,2)],4)
=> 2
[1,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,0,1,1,0,1,0,0]
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[1,0,1,1,1,0,0,0]
=> ([(0,3),(1,3),(2,3)],4)
=> 2
[1,1,0,0,1,0,1,0]
=> ([(0,3),(3,1),(3,2)],4)
=> 2
[1,1,0,0,1,1,0,0]
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(3,1)],4)
=> 2
[1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3)],4)
=> 2
[1,1,0,1,1,0,0,0]
=> ([(1,3),(2,3)],4)
=> 2
[1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3)],4)
=> 2
[1,1,1,0,0,1,0,0]
=> ([(1,2),(1,3)],4)
=> 2
[1,1,1,0,1,0,0,0]
=> ([(2,3)],4)
=> 2
[1,1,1,1,0,0,0,0]
=> ([],4)
=> 2
[1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 2
[1,0,1,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(4,2),(4,3)],5)
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,4),(2,3),(2,4)],5)
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> ([(1,4),(2,4),(3,4)],5)
=> 2
Description
The order dimension or Dushnik-Miller dimension of a poset. This is the minimal number of linear orderings whose intersection is the given poset.
Mp00031: Dyck paths to 312-avoiding permutationPermutations
St000451: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => 1
[1,0,1,0]
=> [1,2] => 1
[1,1,0,0]
=> [2,1] => 2
[1,0,1,0,1,0]
=> [1,2,3] => 1
[1,0,1,1,0,0]
=> [1,3,2] => 2
[1,1,0,0,1,0]
=> [2,1,3] => 2
[1,1,0,1,0,0]
=> [2,3,1] => 2
[1,1,1,0,0,0]
=> [3,2,1] => 2
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 2
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 2
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 2
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 2
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 2
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 2
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 2
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 2
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 2
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => 2
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 2
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => 2
Description
The length of the longest pattern of the form k 1 2...(k-1).
Mp00099: Dyck paths bounce pathDyck paths
St001239: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> 1
[1,0,1,0]
=> [1,0,1,0]
=> 2
[1,1,0,0]
=> [1,1,0,0]
=> 1
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 2
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 2
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 2
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 2
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 2
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 2
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 2
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 2
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2
Description
The largest vector space dimension of the double dual of a simple module in the corresponding Nakayama algebra.
Mp00099: Dyck paths bounce pathDyck paths
St001192: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> 0 = 1 - 1
[1,0,1,0]
=> [1,0,1,0]
=> 1 = 2 - 1
[1,1,0,0]
=> [1,1,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 1 = 2 - 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1 = 2 - 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 1 = 2 - 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 1 = 2 - 1
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1 = 2 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1 = 2 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1 = 2 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1 = 2 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1 = 2 - 1
Description
The maximal dimension of $Ext_A^2(S,A)$ for a simple module $S$ over the corresponding Nakayama algebra $A$.
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
Mp00060: Permutations Robinson-Schensted tableau shapeInteger partitions
St000010: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1]
=> 1
[1,0,1,0]
=> [1,2] => [2]
=> 1
[1,1,0,0]
=> [2,1] => [1,1]
=> 2
[1,0,1,0,1,0]
=> [1,2,3] => [3]
=> 1
[1,0,1,1,0,0]
=> [1,3,2] => [2,1]
=> 2
[1,1,0,0,1,0]
=> [2,1,3] => [2,1]
=> 2
[1,1,0,1,0,0]
=> [2,3,1] => [2,1]
=> 2
[1,1,1,0,0,0]
=> [3,1,2] => [2,1]
=> 2
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [4]
=> 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [3,1]
=> 2
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [3,1]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [3,1]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [3,1]
=> 2
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [3,1]
=> 2
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,2]
=> 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,1]
=> 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [3,1]
=> 2
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [2,2]
=> 2
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [3,1]
=> 2
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [2,2]
=> 2
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [2,2]
=> 2
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [3,1]
=> 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [5]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [4,1]
=> 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [4,1]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [4,1]
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [4,1]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [4,1]
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [3,2]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [4,1]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [4,1]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [3,2]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [4,1]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [3,2]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [3,2]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [4,1]
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [4,1]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [3,2]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [3,2]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [3,2]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [3,2]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [4,1]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,2]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,1]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [4,1]
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [3,2]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [3,2]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [3,2]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [3,2]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [3,2]
=> 2
Description
The length of the partition.
Mp00099: Dyck paths bounce pathDyck paths
Mp00229: Dyck paths Delest-ViennotDyck paths
St000013: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1,0]
=> 1
[1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 2
[1,1,0,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> 2
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 2
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 2
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 2
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 2
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 2
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 2
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 2
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 2
Description
The height of a Dyck path. The height of a Dyck path $D$ of semilength $n$ is defined as the maximal height of a peak of $D$. The height of $D$ at position $i$ is the number of up-steps minus the number of down-steps before position $i$.
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
Mp00159: Permutations Demazure product with inversePermutations
St000058: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => 1
[1,0,1,0]
=> [1,2] => [1,2] => 1
[1,1,0,0]
=> [2,1] => [2,1] => 2
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => 1
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => 2
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => 2
[1,1,0,1,0,0]
=> [2,3,1] => [3,2,1] => 2
[1,1,1,0,0,0]
=> [3,1,2] => [3,2,1] => 2
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => 2
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => 2
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,3,2] => 2
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [1,4,3,2] => 2
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => 2
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,2,1,4] => 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,2,3,1] => 2
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [3,4,1,2] => 2
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [3,2,1,4] => 2
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [4,2,3,1] => 2
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [4,3,2,1] => 2
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [4,2,3,1] => 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,4,3] => 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [1,2,5,4,3] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,3,4,2] => 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [1,4,5,2,3] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [1,4,3,2,5] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [1,5,3,4,2] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [1,5,4,3,2] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [1,5,3,4,2] => 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [2,1,5,4,3] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,2,3,1,5] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => 2
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [4,2,5,1,3] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [3,4,1,2,5] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [3,5,1,4,2] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [4,5,3,1,2] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [3,5,1,4,2] => 2
Description
The order of a permutation. $\operatorname{ord}(\pi)$ is given by the minimial $k$ for which $\pi^k$ is the identity permutation.
Mp00024: Dyck paths to 321-avoiding permutationPermutations
Mp00064: Permutations reversePermutations
St000062: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => 1
[1,0,1,0]
=> [2,1] => [1,2] => 2
[1,1,0,0]
=> [1,2] => [2,1] => 1
[1,0,1,0,1,0]
=> [2,1,3] => [3,1,2] => 2
[1,0,1,1,0,0]
=> [2,3,1] => [1,3,2] => 2
[1,1,0,0,1,0]
=> [3,1,2] => [2,1,3] => 2
[1,1,0,1,0,0]
=> [1,3,2] => [2,3,1] => 2
[1,1,1,0,0,0]
=> [1,2,3] => [3,2,1] => 1
[1,0,1,0,1,0,1,0]
=> [2,1,4,3] => [3,4,1,2] => 2
[1,0,1,0,1,1,0,0]
=> [2,4,1,3] => [3,1,4,2] => 2
[1,0,1,1,0,0,1,0]
=> [2,1,3,4] => [4,3,1,2] => 2
[1,0,1,1,0,1,0,0]
=> [2,3,1,4] => [4,1,3,2] => 2
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [1,4,3,2] => 2
[1,1,0,0,1,0,1,0]
=> [3,1,4,2] => [2,4,1,3] => 2
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [2,1,4,3] => 2
[1,1,0,1,0,0,1,0]
=> [3,1,2,4] => [4,2,1,3] => 2
[1,1,0,1,0,1,0,0]
=> [1,3,2,4] => [4,2,3,1] => 2
[1,1,0,1,1,0,0,0]
=> [1,3,4,2] => [2,4,3,1] => 2
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [3,2,1,4] => 2
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [3,2,4,1] => 2
[1,1,1,0,1,0,0,0]
=> [1,2,4,3] => [3,4,2,1] => 2
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [4,3,2,1] => 1
[1,0,1,0,1,0,1,0,1,0]
=> [2,1,4,3,5] => [5,3,4,1,2] => 2
[1,0,1,0,1,0,1,1,0,0]
=> [2,4,1,3,5] => [5,3,1,4,2] => 2
[1,0,1,0,1,1,0,0,1,0]
=> [2,1,4,5,3] => [3,5,4,1,2] => 2
[1,0,1,0,1,1,0,1,0,0]
=> [2,4,1,5,3] => [3,5,1,4,2] => 2
[1,0,1,0,1,1,1,0,0,0]
=> [2,4,5,1,3] => [3,1,5,4,2] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,5,3,4] => [4,3,5,1,2] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [2,5,1,3,4] => [4,3,1,5,2] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [2,1,3,5,4] => [4,5,3,1,2] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [2,3,1,5,4] => [4,5,1,3,2] => 2
[1,0,1,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [4,1,5,3,2] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,4,5] => [5,4,3,1,2] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [2,3,1,4,5] => [5,4,1,3,2] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [2,3,4,1,5] => [5,1,4,3,2] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,5,4,3,2] => 2
[1,1,0,0,1,0,1,0,1,0]
=> [3,1,4,2,5] => [5,2,4,1,3] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [3,4,1,2,5] => [5,2,1,4,3] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [3,1,4,5,2] => [2,5,4,1,3] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [3,4,1,5,2] => [2,5,1,4,3] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [2,1,5,4,3] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,5,2,4] => [4,2,5,1,3] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [3,5,1,2,4] => [4,2,1,5,3] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [3,1,2,5,4] => [4,5,2,1,3] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,3,2,5,4] => [4,5,2,3,1] => 2
[1,1,0,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [4,2,5,3,1] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,4,5] => [5,4,2,1,3] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,3,2,4,5] => [5,4,2,3,1] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,3,4,2,5] => [5,2,4,3,1] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,3,4,5,2] => [2,5,4,3,1] => 2
Description
The length of the longest increasing subsequence of the permutation.
Mp00242: Dyck paths Hessenberg posetPosets
Mp00074: Posets to graphGraphs
St000097: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> ([],1)
=> ([],1)
=> 1
[1,0,1,0]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[1,1,0,0]
=> ([],2)
=> ([],2)
=> 1
[1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[1,0,1,1,0,0]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2
[1,1,0,0,1,0]
=> ([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> 2
[1,1,0,1,0,0]
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2
[1,1,1,0,0,0]
=> ([],3)
=> ([],3)
=> 1
[1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[1,0,1,0,1,1,0,0]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
[1,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[1,0,1,1,0,1,0,0]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[1,0,1,1,1,0,0,0]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
[1,1,0,0,1,0,1,0]
=> ([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
[1,1,0,0,1,1,0,0]
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[1,1,0,1,1,0,0,0]
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
[1,1,1,0,0,1,0,0]
=> ([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[1,1,1,0,1,0,0,0]
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 2
[1,1,1,1,0,0,0,0]
=> ([],4)
=> ([],4)
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
[1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[1,0,1,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 2
Description
The order of the largest clique of the graph. A clique in a graph $G$ is a subset $U \subseteq V(G)$ such that any pair of vertices in $U$ are adjacent. I.e. the subgraph induced by $U$ is a complete graph.
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00160: Permutations graph of inversionsGraphs
St000098: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => ([],1)
=> 1
[1,0,1,0]
=> [2,1] => ([(0,1)],2)
=> 2
[1,1,0,0]
=> [1,2] => ([],2)
=> 1
[1,0,1,0,1,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 2
[1,0,1,1,0,0]
=> [2,1,3] => ([(1,2)],3)
=> 2
[1,1,0,0,1,0]
=> [1,3,2] => ([(1,2)],3)
=> 2
[1,1,0,1,0,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 2
[1,1,1,0,0,0]
=> [1,2,3] => ([],3)
=> 1
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> 2
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> 2
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 2
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => ([(2,3)],4)
=> 2
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> 2
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => ([(2,3)],4)
=> 2
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 2
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> 2
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => ([(2,3)],4)
=> 2
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => ([(1,3),(2,3)],4)
=> 2
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> 2
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => ([(3,4)],5)
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => ([(3,4)],5)
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => ([(1,4),(2,3),(3,4)],5)
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => ([(0,1),(2,4),(3,4)],5)
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> 2
Description
The chromatic number of a graph. The minimal number of colors needed to color the vertices of the graph such that no two vertices which share an edge have the same color.
The following 438 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000147The largest part of an integer partition. St000308The height of the tree associated to a permutation. St000314The number of left-to-right-maxima of a permutation. St000346The number of coarsenings of a partition. St000397The Strahler number of a rooted tree. St000527The width of the poset. St000542The number of left-to-right-minima of a permutation. St000684The global dimension of the LNakayama algebra associated to a Dyck path. St000686The finitistic dominant dimension of a Dyck path. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St000991The number of right-to-left minima of a permutation. St001029The size of the core of a graph. St001235The global dimension of the corresponding Comp-Nakayama algebra. St001261The Castelnuovo-Mumford regularity of a graph. St001390The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. St001530The depth of a Dyck path. St000028The number of stack-sorts needed to sort a permutation. St000141The maximum drop size of a permutation. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000374The number of exclusive right-to-left minima of a permutation. St000480The number of lower covers of a partition in dominance order. St000481The number of upper covers of a partition in dominance order. St000535The rank-width of a graph. St000651The maximal size of a rise in a permutation. St000662The staircase size of the code of a permutation. St000688The global dimension minus the dominant dimension of the LNakayama algebra associated to a Dyck path. St000742The number of big ascents of a permutation after prepending zero. St000845The maximal number of elements covered by an element in a poset. St000864The number of circled entries of the shifted recording tableau of a permutation. St000996The number of exclusive left-to-right maxima of a permutation. St001011Number of simple modules of projective dimension 2 in the Nakayama algebra corresponding to the Dyck path. St001026The maximum of the projective dimensions of the indecomposable non-projective injective modules minus the minimum in the Nakayama algebra corresponding to the Dyck path. St001085The number of occurrences of the vincular pattern |21-3 in a permutation. St001090The number of pop-stack-sorts needed to sort a permutation. St001092The number of distinct even parts of a partition. St001194The injective dimension of $A/AfA$ in the corresponding Nakayama algebra $A$ when $Af$ is the minimal faithful projective-injective left $A$-module St001212The number of simple modules in the corresponding Nakayama algebra that have non-zero second Ext-group with the regular module. St001280The number of parts of an integer partition that are at least two. St001294The maximal torsionfree index of a simple non-projective module in the corresponding Nakayama algebra. St001296The maximal torsionfree index of an indecomposable non-projective module in the corresponding Nakayama algebra. St001333The cardinality of a minimal edge-isolating set of a graph. St001393The induced matching number of a graph. St001587Half of the largest even part of an integer partition. St001613The binary logarithm of the size of the center of a lattice. St001621The number of atoms of a lattice. St001665The number of pure excedances of a permutation. St001737The number of descents of type 2 in a permutation. St001761The maximal multiplicity of a letter in a reduced word of a permutation. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St001942The number of loops of the quiver corresponding to the reduced incidence algebra of a poset. St000007The number of saliances of the permutation. St000015The number of peaks of a Dyck path. St000031The number of cycles in the cycle decomposition of a permutation. St000056The decomposition (or block) number of a permutation. St000068The number of minimal elements in a poset. St000086The number of subgraphs. St000087The number of induced subgraphs. St000093The cardinality of a maximal independent set of vertices of a graph. St000105The number of blocks in the set partition. St000153The number of adjacent cycles of a permutation. St000159The number of distinct parts of the integer partition. St000166The depth minus 1 of an ordered tree. St000172The Grundy number of a graph. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000239The number of small weak excedances. St000244The cardinality of the automorphism group of a graph. St000258The burning number of a graph. St000259The diameter of a connected graph. St000269The number of acyclic orientations of a graph. St000270The number of forests contained in a graph. St000278The size of the preimage of the map 'to partition' from Integer compositions to Integer partitions. St000283The size of the preimage of the map 'to graph' from Binary trees to Graphs. St000286The number of connected components of the complement of a graph. St000288The number of ones in a binary word. St000299The number of nonisomorphic vertex-induced subtrees. St000318The number of addable cells of the Ferrers diagram of an integer partition. St000325The width of the tree associated to a permutation. St000328The maximum number of child nodes in a tree. St000343The number of spanning subgraphs of a graph. St000363The number of minimal vertex covers of a graph. St000364The exponent of the automorphism group of a graph. St000378The diagonal inversion number of an integer partition. St000381The largest part of an integer composition. St000392The length of the longest run of ones in a binary word. St000396The register function (or Horton-Strahler number) of a binary tree. St000442The maximal area to the right of an up step of a Dyck path. St000443The number of long tunnels of a Dyck path. St000444The length of the maximal rise of a Dyck path. St000452The number of distinct eigenvalues of a graph. St000453The number of distinct Laplacian eigenvalues of a graph. St000468The Hosoya index of a graph. St000469The distinguishing number of a graph. St000470The number of runs in a permutation. St000476The sum of the semi-lengths of tunnels before a valley of a Dyck path. St000479The Ramsey number of a graph. St000507The number of ascents of a standard tableau. St000511The number of invariant subsets when acting with a permutation of given cycle type. St000528The height of a poset. St000533The minimum of the number of parts and the size of the first part of an integer partition. St000628The balance of a binary word. St000630The length of the shortest palindromic decomposition of a binary word. St000636The hull number of a graph. St000638The number of up-down runs of a permutation. St000668The least common multiple of the parts of the partition. St000676The number of odd rises of a Dyck path. St000679The pruning number of an ordered tree. St000701The protection number of a binary tree. St000720The size of the largest partition in the oscillating tableau corresponding to the perfect matching. St000722The number of different neighbourhoods in a graph. St000733The row containing the largest entry of a standard tableau. St000734The last entry in the first row of a standard tableau. St000758The length of the longest staircase fitting into an integer composition. St000759The smallest missing part in an integer partition. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St000783The side length of the largest staircase partition fitting into a partition. St000786The maximal number of occurrences of a colour in a proper colouring of a graph. St000793The length of the longest partition in the vacillating tableau corresponding to a set partition. St000810The sum of the entries in the column specified by the partition of the change of basis matrix from powersum symmetric functions to monomial symmetric functions. St000822The Hadwiger number of the graph. St000846The maximal number of elements covering an element of a poset. St000862The number of parts of the shifted shape of a permutation. St000917The open packing number of a graph. St000918The 2-limited packing number of a graph. St000920The logarithmic height of a Dyck path. St000926The clique-coclique number of a graph. St000930The k-Gorenstein degree of the corresponding Nakayama algebra with linear quiver. St000972The composition number of a graph. St000982The length of the longest constant subword. St000983The length of the longest alternating subword. St001007Number of simple modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001068Number of torsionless simple modules in the corresponding Nakayama algebra. St001093The detour number of a graph. St001108The 2-dynamic chromatic number of a graph. St001109The number of proper colourings of a graph with as few colours as possible. St001110The 3-dynamic chromatic number of a graph. St001111The weak 2-dynamic chromatic number of a graph. St001116The game chromatic number of a graph. St001128The exponens consonantiae of a partition. St001165Number of simple modules with even projective dimension in the corresponding Nakayama algebra. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001187The number of simple modules with grade at least one in the corresponding Nakayama algebra. St001203We associate to a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n-1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a Dyck path as follows: St001224Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001299The product of all non-zero projective dimensions of simple modules of the corresponding Nakayama algebra. St001302The number of minimally dominating sets of vertices of a graph. St001304The number of maximally independent sets of vertices of a graph. St001315The dissociation number of a graph. St001316The domatic number of a graph. St001318The number of vertices of the largest induced subforest with the same number of connected components of a graph. St001321The number of vertices of the largest induced subforest of a graph. St001330The hat guessing number of a graph. St001337The upper domination number of a graph. St001338The upper irredundance number of a graph. St001342The number of vertices in the center of a graph. St001343The dimension of the reduced incidence algebra of a poset. St001366The maximal multiplicity of a degree of a vertex of a graph. St001368The number of vertices of maximal degree in a graph. St001372The length of a longest cyclic run of ones of a binary word. St001418Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001432The order dimension of the partition. St001461The number of topologically connected components of the chord diagram of a permutation. St001471The magnitude of a Dyck path. St001474The evaluation of the Tutte polynomial of the graph at (x,y) equal to (2,-1). St001484The number of singletons of an integer partition. St001494The Alon-Tarsi number of a graph. St001498The normalised height of a Nakayama algebra with magnitude 1. St001580The acyclic chromatic number of a graph. St001581The achromatic number of a graph. St001642The Prague dimension of a graph. St001645The pebbling number of a connected graph. St001654The monophonic hull number of a graph. St001655The general position number of a graph. St001656The monophonic position number of a graph. St001661Half the permanent of the Identity matrix plus the permutation matrix associated to the permutation. St001670The connected partition number of a graph. St001672The restrained domination number of a graph. St001674The number of vertices of the largest induced star graph in the graph. St001707The length of a longest path in a graph such that the remaining vertices can be partitioned into two sets of the same size without edges between them. St001716The 1-improper chromatic number of a graph. St001717The largest size of an interval in a poset. St001725The harmonious chromatic number of a graph. St001732The number of peaks visible from the left. St001746The coalition number of a graph. St001757The number of orbits of toric promotion on a graph. St001758The number of orbits of promotion on a graph. St001802The number of endomorphisms of a graph. St001814The number of partitions interlacing the given partition. St001844The maximal degree of a generator of the invariant ring of the automorphism group of a graph. St001883The mutual visibility number of a graph. St001913The number of preimages of an integer partition in Bulgarian solitaire. St001924The number of cells in an integer partition whose arm and leg length coincide. St001963The tree-depth of a graph. St000021The number of descents of a permutation. St000024The number of double up and double down steps of a Dyck path. St000035The number of left outer peaks of a permutation. St000053The number of valleys of the Dyck path. St000080The rank of the poset. St000081The number of edges of a graph. St000094The depth of an ordered tree. St000143The largest repeated part of a partition. St000154The sum of the descent bottoms of a permutation. St000157The number of descents of a standard tableau. St000160The multiplicity of the smallest part of a partition. St000162The number of nontrivial cycles in the cycle decomposition of a permutation. St000171The degree of the graph. St000175Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. St000183The side length of the Durfee square of an integer partition. St000225Difference between largest and smallest parts in a partition. St000234The number of global ascents of a permutation. St000245The number of ascents of a permutation. St000253The crossing number of a set partition. St000254The nesting number of a set partition. St000256The number of parts from which one can substract 2 and still get an integer partition. St000257The number of distinct parts of a partition that occur at least twice. St000260The radius of a connected graph. St000261The edge connectivity of a graph. St000262The vertex connectivity of a graph. St000263The Szeged index of a graph. St000265The Wiener index of a graph. St000271The chromatic index of a graph. St000272The treewidth of a graph. St000274The number of perfect matchings of a graph. St000291The number of descents of a binary word. St000292The number of ascents of a binary word. St000300The number of independent sets of vertices of a graph. St000301The number of facets of the stable set polytope of a graph. St000306The bounce count of a Dyck path. St000310The minimal degree of a vertex of a graph. St000329The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1. St000333The dez statistic, the number of descents of a permutation after replacing fixed points by zeros. St000340The number of non-final maximal constant sub-paths of length greater than one. St000352The Elizalde-Pak rank of a permutation. St000361The second Zagreb index of a graph. St000362The size of a minimal vertex cover of a graph. St000386The number of factors DDU in a Dyck path. St000387The matching number of a graph. St000454The largest eigenvalue of a graph if it is integral. St000466The Gutman (or modified Schultz) index of a connected graph. St000519The largest length of a factor maximising the subword complexity. St000536The pathwidth of a graph. St000537The cutwidth of a graph. St000548The number of different non-empty partial sums of an integer partition. St000659The number of rises of length at least 2 of a Dyck path. St000660The number of rises of length at least 3 of a Dyck path. St000672The number of minimal elements in Bruhat order not less than the permutation. St000691The number of changes of a binary word. St000703The number of deficiencies of a permutation. St000741The Colin de Verdière graph invariant. St000778The metric dimension of a graph. St000834The number of right outer peaks of a permutation. St000876The number of factors in the Catalan decomposition of a binary word. St000884The number of isolated descents of a permutation. St000897The number of different multiplicities of parts of an integer partition. St000919The number of maximal left branches of a binary tree. St000985The number of positive eigenvalues of the adjacency matrix of the graph. St000987The number of positive eigenvalues of the Laplacian matrix of the graph. St000994The number of cycle peaks and the number of cycle valleys of a permutation. St001022Number of simple modules with projective dimension 3 in the Nakayama algebra corresponding to the Dyck path. St001028Number of simple modules with injective dimension equal to the dominant dimension in the Nakayama algebra corresponding to the Dyck path. St001031The height of the bicoloured Motzkin path associated with the Dyck path. St001046The maximal number of arcs nesting a given arc of a perfect matching. St001056The Grundy value for the game of deleting vertices of a graph until it has no edges. St001071The beta invariant of the graph. St001117The game chromatic index of a graph. St001119The length of a shortest maximal path in a graph. St001120The length of a longest path in a graph. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St001142The projective dimension of the socle of the regular module as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001169Number of simple modules with projective dimension at least two in the corresponding Nakayama algebra. St001188The number of simple modules $S$ with grade $\inf \{ i \geq 0 | Ext^i(S,A) \neq 0 \}$ at least two in the Nakayama algebra $A$ corresponding to the Dyck path. St001197The global dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001205The number of non-simple indecomposable projective-injective modules of the algebra $eAe$ in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001244The number of simple modules of projective dimension one that are not 1-regular for the Nakayama algebra associated to a Dyck path. St001269The sum of the minimum of the number of exceedances and deficiencies in each cycle of a permutation. St001270The bandwidth of a graph. St001271The competition number of a graph. St001276The number of 2-regular indecomposable modules in the corresponding Nakayama algebra. St001277The degeneracy of a graph. St001335The cardinality of a minimal cycle-isolating set of a graph. St001336The minimal number of vertices in a graph whose complement is triangle-free. St001340The cardinality of a minimal non-edge isolating set of a graph. St001341The number of edges in the center of a graph. St001345The Hamming dimension of a graph. St001349The number of different graphs obtained from the given graph by removing an edge. St001352The number of internal nodes in the modular decomposition of a graph. St001354The number of series nodes in the modular decomposition of a graph. St001357The maximal degree of a regular spanning subgraph of a graph. St001358The largest degree of a regular subgraph of a graph. St001362The normalized Knill dimension of a graph. St001391The disjunction number of a graph. St001395The number of strictly unfriendly partitions of a graph. St001479The number of bridges of a graph. St001505The number of elements generated by the Dyck path as a map in the full transformation monoid. St001506Half the projective dimension of the unique simple module with even projective dimension in a magnitude 1 Nakayama algebra. St001507The sum of projective dimension of simple modules with even projective dimension divided by 2 in the LNakayama algebra corresponding to Dyck paths. St001512The minimum rank of a graph. St001588The number of distinct odd parts smaller than the largest even part in an integer partition. St001644The dimension of a graph. St001649The length of a longest trail in a graph. St001702The absolute value of the determinant of the adjacency matrix of a graph. St001729The number of visible descents of a permutation. St001743The discrepancy of a graph. St001777The number of weak descents in an integer composition. St001783The number of odd automorphisms of a graph. St001792The arboricity of a graph. St001794Half the number of sets of vertices in a graph which are dominating and non-blocking. St001803The maximal overlap of the cylindrical tableau associated with a tableau. St001812The biclique partition number of a graph. St001826The maximal number of leaves on a vertex of a graph. St001827The number of two-component spanning forests of a graph. St001839The number of excedances of a set partition. St001840The number of descents of a set partition. St001842The major index of a set partition. St001869The maximum cut size of a graph. St001873For a Nakayama algebra corresponding to a Dyck path, we define the matrix C with entries the Hom-spaces between $e_i J$ and $e_j J$ (the radical of the indecomposable projective modules). St001928The number of non-overlapping descents in a permutation. St001931The weak major index of an integer composition regarded as a word. St001949The rigidity index of a graph. St001962The proper pathwidth of a graph. St001971The number of negative eigenvalues of the adjacency matrix of the graph. St001973The Gromov width of a graph. St001859The number of factors of the Stanley symmetric function associated with a permutation. St000485The length of the longest cycle of a permutation. St000541The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. St000640The rank of the largest boolean interval in a poset. St000730The maximal arc length of a set partition. St000061The number of nodes on the left branch of a binary tree. St000504The cardinality of the first block of a set partition. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St001062The maximal size of a block of a set partition. St001227The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra. St001568The smallest positive integer that does not appear twice in the partition. St000083The number of left oriented leafs of a binary tree except the first one. St000251The number of nonsingleton blocks of a set partition. St000354The number of recoils of a permutation. St000389The number of runs of ones of odd length in a binary word. St000390The number of runs of ones in a binary word. St000472The sum of the ascent bottoms of a permutation. St000658The number of rises of length 2 of a Dyck path. St000753The Grundy value for the game of Kayles on a binary word. St000946The sum of the skew hook positions in a Dyck path. St001204Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001291The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001419The length of the longest palindromic factor beginning with a one of a binary word. St001592The maximal number of simple paths between any two different vertices of a graph. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St000326The position of the first one in a binary word after appending a 1 at the end. St000402Half the size of the symmetry class of a permutation. St000464The Schultz index of a connected graph. St000842The breadth of a permutation. St001545The second Elser number of a connected graph. St001704The size of the largest multi-subset-intersection of the deck of a graph with the deck of another graph. St001741The largest integer such that all patterns of this size are contained in the permutation. St001625The Möbius invariant of a lattice. St001981The size of the largest square of zeros in the top left corner of an alternating sign matrix. St001810The number of fixed points of a permutation smaller than its largest moved point. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St001060The distinguishing index of a graph. St000745The index of the last row whose first entry is the row number in a standard Young tableau. St000844The size of the largest block in the direct sum decomposition of a permutation. St000209Maximum difference of elements in cycles. St000647The number of big descents of a permutation. St000956The maximal displacement of a permutation. St000514The number of invariant simple graphs when acting with a permutation of given cycle type. St000515The number of invariant set partitions when acting with a permutation of given cycle type. St000526The number of posets with combinatorially isomorphic order polytopes. St000483The number of times a permutation switches from increasing to decreasing or decreasing to increasing. St001359The number of permutations in the equivalence class of a permutation obtained by taking inverses of cycles. St000455The second largest eigenvalue of a graph if it is integral. St001133The smallest label in the subtree rooted at the sister of 1 in the decreasing labelled binary unordered tree associated with the perfect matching. St000486The number of cycles of length at least 3 of a permutation. St000646The number of big ascents of a permutation. St001004The number of indices that are either left-to-right maxima or right-to-left minima. St000955Number of times one has $Ext^i(D(A),A)>0$ for $i>0$ for the corresponding LNakayama algebra. St001174The Gorenstein dimension of the algebra $A/I$ when $I$ is the tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St000092The number of outer peaks of a permutation. St000099The number of valleys of a permutation, including the boundary. St000193The row of the unique '1' in the first column of the alternating sign matrix. St000700The protection number of an ordered tree. St001201The grade of the simple module $S_0$ in the special CNakayama algebra corresponding to the Dyck path. St001273The projective dimension of the first term in an injective coresolution of the regular module. St001589The nesting number of a perfect matching. St001734The lettericity of a graph. St000023The number of inner peaks of a permutation. St000353The number of inner valleys of a permutation. St000671The maximin edge-connectivity for choosing a subgraph. St000779The tier of a permutation. St001005The number of indices for a permutation that are either left-to-right maxima or right-to-left minima but not both. St001017Number of indecomposable injective modules with projective dimension equal to the codominant dimension in the Nakayama algebra corresponding to the Dyck path. St001112The 3-weak dynamic number of a graph. St001181Number of indecomposable injective modules with grade at least 3 in the corresponding Nakayama algebra. St001353The number of prime nodes in the modular decomposition of a graph. St001469The holeyness of a permutation. St001638The book thickness of a graph. St001555The order of a signed permutation. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001914The size of the orbit of an integer partition in Bulgarian solitaire. St000760The length of the longest strictly decreasing subsequence of parts of an integer composition. St001804The minimal height of the rectangular inner shape in a cylindrical tableau associated to a tableau. St000764The number of strong records in an integer composition. St001597The Frobenius rank of a skew partition. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001870The number of positive entries followed by a negative entry in a signed permutation. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000891The number of distinct diagonal sums of a permutation matrix. St001624The breadth of a lattice. St000893The number of distinct diagonal sums of an alternating sign matrix. St000243The number of cyclic valleys and cyclic peaks of a permutation. St000903The number of different parts of an integer composition. St000905The number of different multiplicities of parts of an integer composition. St000942The number of critical left to right maxima of the parking functions. St001202Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001503The largest distance of a vertex to a vertex in a cycle in the resolution quiver of the corresponding Nakayama algebra. St000632The jump number of the poset. St001183The maximum of $projdim(S)+injdim(S)$ over all simple modules in the Nakayama algebra corresponding to the Dyck path. St001215Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001216The number of indecomposable injective modules in the corresponding Nakayama algebra that have non-vanishing second Ext-group with the regular module. St001221The number of simple modules in the corresponding LNakayama algebra that have 2 dimensional second Extension group with the regular module. St001222Number of simple modules in the corresponding LNakayama algebra that have a unique 2-extension with the regular module. St001225The vector space dimension of the first extension group between J and itself when J is the Jacobson radical of the corresponding Nakayama algebra. St001230The number of simple modules with injective dimension equal to the dominant dimension equal to one and the dual property. St001258Gives the maximum of injective plus projective dimension of an indecomposable module over the corresponding Nakayama algebra. St001274The number of indecomposable injective modules with projective dimension equal to two. St001278The number of indecomposable modules that are fixed by $\tau \Omega^1$ composed with its inverse in the corresponding Nakayama algebra. St001290The first natural number n such that the tensor product of n copies of D(A) is zero for the corresponding Nakayama algebra A. St001569The maximal modular displacement of a permutation. St001730The number of times the path corresponding to a binary word crosses the base line. St001738The minimal order of a graph which is not an induced subgraph of the given graph. St001960The number of descents of a permutation minus one if its first entry is not one. St000695The number of blocks in the first part of the atomic decomposition of a set partition. St000585The number of occurrences of the pattern {{1,3},{2}} such that 2 is maximal, (1,3) are consecutive in a block. St001582The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order. St001860The number of factors of the Stanley symmetric function associated with a signed permutation.