searching the database
Your data matches 46 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001841
St001841: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
{{1}}
=> 0
{{1,2}}
=> 0
{{1},{2}}
=> 0
{{1,2,3}}
=> 0
{{1,2},{3}}
=> 0
{{1,3},{2}}
=> 1
{{1},{2,3}}
=> 0
{{1},{2},{3}}
=> 0
{{1,2,3,4}}
=> 0
{{1,2,3},{4}}
=> 0
{{1,2,4},{3}}
=> 2
{{1,2},{3,4}}
=> 0
{{1,2},{3},{4}}
=> 0
{{1,3,4},{2}}
=> 1
{{1,3},{2,4}}
=> 1
{{1,3},{2},{4}}
=> 1
{{1,4},{2,3}}
=> 2
{{1},{2,3,4}}
=> 0
{{1},{2,3},{4}}
=> 0
{{1,4},{2},{3}}
=> 2
{{1},{2,4},{3}}
=> 1
{{1},{2},{3,4}}
=> 0
{{1},{2},{3},{4}}
=> 0
{{1,2,3,4,5}}
=> 0
{{1,2,3,4},{5}}
=> 0
{{1,2,3,5},{4}}
=> 3
{{1,2,3},{4,5}}
=> 0
{{1,2,3},{4},{5}}
=> 0
{{1,2,4,5},{3}}
=> 2
{{1,2,4},{3,5}}
=> 1
{{1,2,4},{3},{5}}
=> 2
{{1,2,5},{3,4}}
=> 4
{{1,2},{3,4,5}}
=> 0
{{1,2},{3,4},{5}}
=> 0
{{1,2,5},{3},{4}}
=> 4
{{1,2},{3,5},{4}}
=> 1
{{1,2},{3},{4,5}}
=> 0
{{1,2},{3},{4},{5}}
=> 0
{{1,3,4,5},{2}}
=> 1
{{1,3,4},{2,5}}
=> 2
{{1,3,4},{2},{5}}
=> 1
{{1,3,5},{2,4}}
=> 3
{{1,3},{2,4,5}}
=> 1
{{1,3},{2,4},{5}}
=> 1
{{1,3,5},{2},{4}}
=> 3
{{1,3},{2,5},{4}}
=> 2
{{1,3},{2},{4,5}}
=> 1
{{1,3},{2},{4},{5}}
=> 1
{{1,4,5},{2,3}}
=> 2
{{1,4},{2,3,5}}
=> 2
Description
The number of inversions of a set partition.
The Mahonian representation of a set partition $\{B_1,\dots,B_k\}$ of $\{1,\dots,n\}$ is the restricted growth word $w_1\dots w_n\}$ obtained by sorting the blocks of the set partition according to their maximal element, and setting $w_i$ to the index of the block containing $i$.
A pair $(i,j)$ is an inversion of the word $w$ if $w_i > w_j$.
Matching statistic: St001842
St001842: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
{{1}}
=> 0
{{1,2}}
=> 0
{{1},{2}}
=> 0
{{1,2,3}}
=> 0
{{1,2},{3}}
=> 0
{{1,3},{2}}
=> 1
{{1},{2,3}}
=> 0
{{1},{2},{3}}
=> 0
{{1,2,3,4}}
=> 0
{{1,2,3},{4}}
=> 0
{{1,2,4},{3}}
=> 2
{{1,2},{3,4}}
=> 0
{{1,2},{3},{4}}
=> 0
{{1,3,4},{2}}
=> 1
{{1,3},{2,4}}
=> 2
{{1,3},{2},{4}}
=> 1
{{1,4},{2,3}}
=> 1
{{1},{2,3,4}}
=> 0
{{1},{2,3},{4}}
=> 0
{{1,4},{2},{3}}
=> 1
{{1},{2,4},{3}}
=> 2
{{1},{2},{3,4}}
=> 0
{{1},{2},{3},{4}}
=> 0
{{1,2,3,4,5}}
=> 0
{{1,2,3,4},{5}}
=> 0
{{1,2,3,5},{4}}
=> 3
{{1,2,3},{4,5}}
=> 0
{{1,2,3},{4},{5}}
=> 0
{{1,2,4,5},{3}}
=> 2
{{1,2,4},{3,5}}
=> 3
{{1,2,4},{3},{5}}
=> 2
{{1,2,5},{3,4}}
=> 2
{{1,2},{3,4,5}}
=> 0
{{1,2},{3,4},{5}}
=> 0
{{1,2,5},{3},{4}}
=> 2
{{1,2},{3,5},{4}}
=> 3
{{1,2},{3},{4,5}}
=> 0
{{1,2},{3},{4},{5}}
=> 0
{{1,3,4,5},{2}}
=> 1
{{1,3,4},{2,5}}
=> 2
{{1,3,4},{2},{5}}
=> 1
{{1,3,5},{2,4}}
=> 4
{{1,3},{2,4,5}}
=> 2
{{1,3},{2,4},{5}}
=> 2
{{1,3,5},{2},{4}}
=> 4
{{1,3},{2,5},{4}}
=> 2
{{1,3},{2},{4,5}}
=> 1
{{1,3},{2},{4},{5}}
=> 1
{{1,4,5},{2,3}}
=> 1
{{1,4},{2,3,5}}
=> 3
Description
The major index of a set partition.
The Mahonian representation of a set partition $\{B_1,\dots,B_k\}$ of $\{1,\dots,n\}$ is the restricted growth word $w_1\dots w_n\}$ obtained by sorting the blocks of the set partition according to their maximal element, and setting $w_i$ to the index of the block containing $i$.
The major index of $w$ is the sum of the positions $i$ such that $w_i > w_{i+1}$.
Matching statistic: St001843
St001843: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
{{1}}
=> 0
{{1,2}}
=> 0
{{1},{2}}
=> 0
{{1,2,3}}
=> 0
{{1,2},{3}}
=> 0
{{1,3},{2}}
=> 1
{{1},{2,3}}
=> 0
{{1},{2},{3}}
=> 0
{{1,2,3,4}}
=> 0
{{1,2,3},{4}}
=> 0
{{1,2,4},{3}}
=> 2
{{1,2},{3,4}}
=> 0
{{1,2},{3},{4}}
=> 0
{{1,3,4},{2}}
=> 1
{{1,3},{2,4}}
=> 2
{{1,3},{2},{4}}
=> 1
{{1,4},{2,3}}
=> 1
{{1},{2,3,4}}
=> 0
{{1},{2,3},{4}}
=> 0
{{1,4},{2},{3}}
=> 2
{{1},{2,4},{3}}
=> 1
{{1},{2},{3,4}}
=> 0
{{1},{2},{3},{4}}
=> 0
{{1,2,3,4,5}}
=> 0
{{1,2,3,4},{5}}
=> 0
{{1,2,3,5},{4}}
=> 3
{{1,2,3},{4,5}}
=> 0
{{1,2,3},{4},{5}}
=> 0
{{1,2,4,5},{3}}
=> 2
{{1,2,4},{3,5}}
=> 3
{{1,2,4},{3},{5}}
=> 2
{{1,2,5},{3,4}}
=> 2
{{1,2},{3,4,5}}
=> 0
{{1,2},{3,4},{5}}
=> 0
{{1,2,5},{3},{4}}
=> 4
{{1,2},{3,5},{4}}
=> 1
{{1,2},{3},{4,5}}
=> 0
{{1,2},{3},{4},{5}}
=> 0
{{1,3,4,5},{2}}
=> 1
{{1,3,4},{2,5}}
=> 2
{{1,3,4},{2},{5}}
=> 1
{{1,3,5},{2,4}}
=> 4
{{1,3},{2,4,5}}
=> 2
{{1,3},{2,4},{5}}
=> 2
{{1,3,5},{2},{4}}
=> 3
{{1,3},{2,5},{4}}
=> 3
{{1,3},{2},{4,5}}
=> 1
{{1,3},{2},{4},{5}}
=> 1
{{1,4,5},{2,3}}
=> 1
{{1,4},{2,3,5}}
=> 3
Description
The Z-index of a set partition.
The Mahonian representation of a set partition $\{B_1,\dots,B_k\}$ of $\{1,\dots,n\}$ is the restricted growth word $w_1\dots w_n$ obtained by sorting the blocks of the set partition according to their maximal element, and setting $w_i$ to the index of the block containing $i$.
The Z-index of $w$ equals
$$
\sum_{i < j} w_{i,j},
$$
where $w_{i,j}$ is the word obtained from $w$ by removing all letters different from $i$ and $j$.
Matching statistic: St000018
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
St000018: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
St000018: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1] => 0
{{1,2}}
=> [2,1] => [1,2] => 0
{{1},{2}}
=> [1,2] => [1,2] => 0
{{1,2,3}}
=> [2,3,1] => [1,2,3] => 0
{{1,2},{3}}
=> [2,1,3] => [1,2,3] => 0
{{1,3},{2}}
=> [3,2,1] => [1,3,2] => 1
{{1},{2,3}}
=> [1,3,2] => [1,2,3] => 0
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => 0
{{1,2,3,4}}
=> [2,3,4,1] => [1,2,3,4] => 0
{{1,2,3},{4}}
=> [2,3,1,4] => [1,2,3,4] => 0
{{1,2,4},{3}}
=> [2,4,3,1] => [1,2,4,3] => 1
{{1,2},{3,4}}
=> [2,1,4,3] => [1,2,3,4] => 0
{{1,2},{3},{4}}
=> [2,1,3,4] => [1,2,3,4] => 0
{{1,3,4},{2}}
=> [3,2,4,1] => [1,3,4,2] => 2
{{1,3},{2,4}}
=> [3,4,1,2] => [1,3,2,4] => 1
{{1,3},{2},{4}}
=> [3,2,1,4] => [1,3,2,4] => 1
{{1,4},{2,3}}
=> [4,3,2,1] => [1,4,2,3] => 2
{{1},{2,3,4}}
=> [1,3,4,2] => [1,2,3,4] => 0
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,2,3,4] => 0
{{1,4},{2},{3}}
=> [4,2,3,1] => [1,4,2,3] => 2
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,2,4,3] => 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,3,4] => 0
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,2,3,4,5] => 0
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,2,3,4,5] => 0
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,2,3,5,4] => 1
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,2,3,4,5] => 0
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,2,3,4,5] => 0
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,2,4,5,3] => 2
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [1,2,4,3,5] => 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [1,2,4,3,5] => 1
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,2,5,3,4] => 2
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,2,3,4,5] => 0
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,2,3,4,5] => 0
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,2,5,3,4] => 2
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [1,2,3,5,4] => 1
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,2,3,4,5] => 0
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [1,2,3,4,5] => 0
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [1,3,4,5,2] => 3
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [1,3,4,2,5] => 2
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [1,3,4,2,5] => 2
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [1,3,5,2,4] => 3
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [1,3,2,4,5] => 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [1,3,2,4,5] => 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [1,3,5,2,4] => 3
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [1,3,2,5,4] => 2
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [1,3,2,4,5] => 1
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [1,3,2,4,5] => 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [1,4,5,2,3] => 4
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [1,4,2,3,5] => 2
Description
The number of inversions of a permutation.
This equals the minimal number of simple transpositions $(i,i+1)$ needed to write $\pi$. Thus, it is also the Coxeter length of $\pi$.
Matching statistic: St000446
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
St000446: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
St000446: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1] => 0
{{1,2}}
=> [2,1] => [1,2] => 0
{{1},{2}}
=> [1,2] => [1,2] => 0
{{1,2,3}}
=> [2,3,1] => [1,2,3] => 0
{{1,2},{3}}
=> [2,1,3] => [1,2,3] => 0
{{1,3},{2}}
=> [3,2,1] => [1,3,2] => 1
{{1},{2,3}}
=> [1,3,2] => [1,2,3] => 0
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => 0
{{1,2,3,4}}
=> [2,3,4,1] => [1,2,3,4] => 0
{{1,2,3},{4}}
=> [2,3,1,4] => [1,2,3,4] => 0
{{1,2,4},{3}}
=> [2,4,3,1] => [1,2,4,3] => 1
{{1,2},{3,4}}
=> [2,1,4,3] => [1,2,3,4] => 0
{{1,2},{3},{4}}
=> [2,1,3,4] => [1,2,3,4] => 0
{{1,3,4},{2}}
=> [3,2,4,1] => [1,3,4,2] => 2
{{1,3},{2,4}}
=> [3,4,1,2] => [1,3,2,4] => 2
{{1,3},{2},{4}}
=> [3,2,1,4] => [1,3,2,4] => 2
{{1,4},{2,3}}
=> [4,3,2,1] => [1,4,2,3] => 1
{{1},{2,3,4}}
=> [1,3,4,2] => [1,2,3,4] => 0
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,2,3,4] => 0
{{1,4},{2},{3}}
=> [4,2,3,1] => [1,4,2,3] => 1
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,2,4,3] => 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,3,4] => 0
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,2,3,4,5] => 0
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,2,3,4,5] => 0
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,2,3,5,4] => 1
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,2,3,4,5] => 0
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,2,3,4,5] => 0
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,2,4,5,3] => 2
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [1,2,4,3,5] => 2
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [1,2,4,3,5] => 2
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,2,5,3,4] => 1
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,2,3,4,5] => 0
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,2,3,4,5] => 0
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,2,5,3,4] => 1
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [1,2,3,5,4] => 1
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,2,3,4,5] => 0
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [1,2,3,4,5] => 0
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [1,3,4,5,2] => 3
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [1,3,4,2,5] => 3
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [1,3,4,2,5] => 3
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [1,3,5,2,4] => 4
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [1,3,2,4,5] => 3
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [1,3,2,4,5] => 3
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [1,3,5,2,4] => 4
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [1,3,2,5,4] => 4
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [1,3,2,4,5] => 3
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [1,3,2,4,5] => 3
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [1,4,5,2,3] => 2
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [1,4,2,3,5] => 2
Description
The disorder of a permutation.
Consider a permutation $\pi = [\pi_1,\ldots,\pi_n]$ and cyclically scanning $\pi$ from left to right and remove the elements $1$ through $n$ on this order one after the other. The '''disorder''' of $\pi$ is defined to be the number of times a position was not removed in this process.
For example, the disorder of $[3,5,2,1,4]$ is $8$ since on the first scan, 3,5,2 and 4 are not removed, on the second, 3,5 and 4, and on the third and last scan, 5 is once again not removed.
Matching statistic: St000463
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
St000463: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
St000463: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1] => 0
{{1,2}}
=> [2,1] => [1,2] => 0
{{1},{2}}
=> [1,2] => [1,2] => 0
{{1,2,3}}
=> [2,3,1] => [1,2,3] => 0
{{1,2},{3}}
=> [2,1,3] => [1,2,3] => 0
{{1,3},{2}}
=> [3,2,1] => [1,3,2] => 1
{{1},{2,3}}
=> [1,3,2] => [1,2,3] => 0
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => 0
{{1,2,3,4}}
=> [2,3,4,1] => [1,2,3,4] => 0
{{1,2,3},{4}}
=> [2,3,1,4] => [1,2,3,4] => 0
{{1,2,4},{3}}
=> [2,4,3,1] => [1,2,4,3] => 1
{{1,2},{3,4}}
=> [2,1,4,3] => [1,2,3,4] => 0
{{1,2},{3},{4}}
=> [2,1,3,4] => [1,2,3,4] => 0
{{1,3,4},{2}}
=> [3,2,4,1] => [1,3,4,2] => 2
{{1,3},{2,4}}
=> [3,4,1,2] => [1,3,2,4] => 1
{{1,3},{2},{4}}
=> [3,2,1,4] => [1,3,2,4] => 1
{{1,4},{2,3}}
=> [4,3,2,1] => [1,4,2,3] => 2
{{1},{2,3,4}}
=> [1,3,4,2] => [1,2,3,4] => 0
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,2,3,4] => 0
{{1,4},{2},{3}}
=> [4,2,3,1] => [1,4,2,3] => 2
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,2,4,3] => 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,3,4] => 0
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,2,3,4,5] => 0
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,2,3,4,5] => 0
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,2,3,5,4] => 1
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,2,3,4,5] => 0
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,2,3,4,5] => 0
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,2,4,5,3] => 2
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [1,2,4,3,5] => 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [1,2,4,3,5] => 1
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,2,5,3,4] => 2
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,2,3,4,5] => 0
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,2,3,4,5] => 0
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,2,5,3,4] => 2
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [1,2,3,5,4] => 1
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,2,3,4,5] => 0
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [1,2,3,4,5] => 0
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [1,3,4,5,2] => 3
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [1,3,4,2,5] => 2
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [1,3,4,2,5] => 2
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [1,3,5,2,4] => 3
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [1,3,2,4,5] => 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [1,3,2,4,5] => 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [1,3,5,2,4] => 3
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [1,3,2,5,4] => 2
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [1,3,2,4,5] => 1
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [1,3,2,4,5] => 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [1,4,5,2,3] => 4
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [1,4,2,3,5] => 2
Description
The number of admissible inversions of a permutation.
Let $w = w_1,w_2,\dots,w_k$ be a word of length $k$ with distinct letters from $[n]$.
An admissible inversion of $w$ is a pair $(w_i,w_j)$ such that $1\leq i < j\leq k$ and $w_i > w_j$ that satisfies either of the following conditions:
$1 < i$ and $w_{i−1} < w_i$ or there is some $l$ such that $i < l < j$ and $w_i < w_l$.
Matching statistic: St001511
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
St001511: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
St001511: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1] => 0
{{1,2}}
=> [2,1] => [1,2] => 0
{{1},{2}}
=> [1,2] => [1,2] => 0
{{1,2,3}}
=> [2,3,1] => [1,2,3] => 0
{{1,2},{3}}
=> [2,1,3] => [1,2,3] => 0
{{1,3},{2}}
=> [3,2,1] => [1,3,2] => 1
{{1},{2,3}}
=> [1,3,2] => [1,2,3] => 0
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => 0
{{1,2,3,4}}
=> [2,3,4,1] => [1,2,3,4] => 0
{{1,2,3},{4}}
=> [2,3,1,4] => [1,2,3,4] => 0
{{1,2,4},{3}}
=> [2,4,3,1] => [1,2,4,3] => 1
{{1,2},{3,4}}
=> [2,1,4,3] => [1,2,3,4] => 0
{{1,2},{3},{4}}
=> [2,1,3,4] => [1,2,3,4] => 0
{{1,3,4},{2}}
=> [3,2,4,1] => [1,3,4,2] => 2
{{1,3},{2,4}}
=> [3,4,1,2] => [1,3,2,4] => 1
{{1,3},{2},{4}}
=> [3,2,1,4] => [1,3,2,4] => 1
{{1,4},{2,3}}
=> [4,3,2,1] => [1,4,2,3] => 2
{{1},{2,3,4}}
=> [1,3,4,2] => [1,2,3,4] => 0
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,2,3,4] => 0
{{1,4},{2},{3}}
=> [4,2,3,1] => [1,4,2,3] => 2
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,2,4,3] => 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,3,4] => 0
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,2,3,4,5] => 0
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,2,3,4,5] => 0
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,2,3,5,4] => 1
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,2,3,4,5] => 0
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,2,3,4,5] => 0
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,2,4,5,3] => 2
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [1,2,4,3,5] => 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [1,2,4,3,5] => 1
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,2,5,3,4] => 2
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,2,3,4,5] => 0
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,2,3,4,5] => 0
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,2,5,3,4] => 2
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [1,2,3,5,4] => 1
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,2,3,4,5] => 0
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [1,2,3,4,5] => 0
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [1,3,4,5,2] => 3
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [1,3,4,2,5] => 2
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [1,3,4,2,5] => 2
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [1,3,5,2,4] => 3
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [1,3,2,4,5] => 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [1,3,2,4,5] => 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [1,3,5,2,4] => 3
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [1,3,2,5,4] => 2
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [1,3,2,4,5] => 1
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [1,3,2,4,5] => 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [1,4,5,2,3] => 4
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [1,4,2,3,5] => 2
Description
The minimal number of transpositions needed to sort a permutation in either direction.
For a permutation $\sigma$, this is $\min\{ \operatorname{inv}(\sigma),\operatorname{inv}(\tau)\}$ where $\tau$ is the reverse permutation sending $i$ to $\sigma(n+1-i)$.
Matching statistic: St001579
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
St001579: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
St001579: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1] => 0
{{1,2}}
=> [2,1] => [1,2] => 0
{{1},{2}}
=> [1,2] => [1,2] => 0
{{1,2,3}}
=> [2,3,1] => [1,2,3] => 0
{{1,2},{3}}
=> [2,1,3] => [1,2,3] => 0
{{1,3},{2}}
=> [3,2,1] => [1,3,2] => 1
{{1},{2,3}}
=> [1,3,2] => [1,2,3] => 0
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => 0
{{1,2,3,4}}
=> [2,3,4,1] => [1,2,3,4] => 0
{{1,2,3},{4}}
=> [2,3,1,4] => [1,2,3,4] => 0
{{1,2,4},{3}}
=> [2,4,3,1] => [1,2,4,3] => 1
{{1,2},{3,4}}
=> [2,1,4,3] => [1,2,3,4] => 0
{{1,2},{3},{4}}
=> [2,1,3,4] => [1,2,3,4] => 0
{{1,3,4},{2}}
=> [3,2,4,1] => [1,3,4,2] => 2
{{1,3},{2,4}}
=> [3,4,1,2] => [1,3,2,4] => 1
{{1,3},{2},{4}}
=> [3,2,1,4] => [1,3,2,4] => 1
{{1,4},{2,3}}
=> [4,3,2,1] => [1,4,2,3] => 2
{{1},{2,3,4}}
=> [1,3,4,2] => [1,2,3,4] => 0
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,2,3,4] => 0
{{1,4},{2},{3}}
=> [4,2,3,1] => [1,4,2,3] => 2
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,2,4,3] => 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,3,4] => 0
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,2,3,4,5] => 0
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,2,3,4,5] => 0
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,2,3,5,4] => 1
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,2,3,4,5] => 0
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,2,3,4,5] => 0
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,2,4,5,3] => 2
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [1,2,4,3,5] => 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [1,2,4,3,5] => 1
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,2,5,3,4] => 2
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,2,3,4,5] => 0
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,2,3,4,5] => 0
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,2,5,3,4] => 2
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [1,2,3,5,4] => 1
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,2,3,4,5] => 0
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [1,2,3,4,5] => 0
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [1,3,4,5,2] => 3
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [1,3,4,2,5] => 2
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [1,3,4,2,5] => 2
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [1,3,5,2,4] => 3
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [1,3,2,4,5] => 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [1,3,2,4,5] => 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [1,3,5,2,4] => 3
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [1,3,2,5,4] => 2
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [1,3,2,4,5] => 1
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [1,3,2,4,5] => 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [1,4,5,2,3] => 4
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [1,4,2,3,5] => 2
Description
The number of cyclically simple transpositions decreasing the number of cyclic descents needed to sort a permutation.
This is for a permutation $\sigma$ of length $n$ and the set $T = \{ (1,2), \dots, (n-1,n), (1,n) \}$ given by
$$\min\{ k \mid \sigma = t_1\dots t_k \text{ for } t_i \in T \text{ such that } t_1\dots t_j \text{ has more cyclic descents than } t_1\dots t_{j-1} \text{ for all } j\}.$$
Matching statistic: St000004
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00062: Permutations —Lehmer-code to major-code bijection⟶ Permutations
St000004: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00062: Permutations —Lehmer-code to major-code bijection⟶ Permutations
St000004: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1] => [1] => 0
{{1,2}}
=> [2,1] => [1,2] => [1,2] => 0
{{1},{2}}
=> [1,2] => [1,2] => [1,2] => 0
{{1,2,3}}
=> [2,3,1] => [1,2,3] => [1,2,3] => 0
{{1,2},{3}}
=> [2,1,3] => [1,2,3] => [1,2,3] => 0
{{1,3},{2}}
=> [3,2,1] => [1,3,2] => [3,1,2] => 1
{{1},{2,3}}
=> [1,3,2] => [1,2,3] => [1,2,3] => 0
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => [1,2,3] => 0
{{1,2,3,4}}
=> [2,3,4,1] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2,3},{4}}
=> [2,3,1,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2,4},{3}}
=> [2,4,3,1] => [1,2,4,3] => [4,1,2,3] => 1
{{1,2},{3,4}}
=> [2,1,4,3] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2},{3},{4}}
=> [2,1,3,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,3,4},{2}}
=> [3,2,4,1] => [1,3,4,2] => [2,4,1,3] => 2
{{1,3},{2,4}}
=> [3,4,1,2] => [1,3,2,4] => [3,1,2,4] => 1
{{1,3},{2},{4}}
=> [3,2,1,4] => [1,3,2,4] => [3,1,2,4] => 1
{{1,4},{2,3}}
=> [4,3,2,1] => [1,4,2,3] => [3,4,1,2] => 2
{{1},{2,3,4}}
=> [1,3,4,2] => [1,2,3,4] => [1,2,3,4] => 0
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,4},{2},{3}}
=> [4,2,3,1] => [1,4,2,3] => [3,4,1,2] => 2
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,2,4,3] => [4,1,2,3] => 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,3,4] => [1,2,3,4] => 0
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,2,3,5,4] => [5,1,2,3,4] => 1
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,2,4,5,3] => [3,5,1,2,4] => 2
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [1,2,4,3,5] => [4,1,2,3,5] => 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [1,2,4,3,5] => [4,1,2,3,5] => 1
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,2,5,3,4] => [4,5,1,2,3] => 2
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,2,5,3,4] => [4,5,1,2,3] => 2
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [1,2,3,5,4] => [5,1,2,3,4] => 1
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [1,3,4,5,2] => [2,3,5,1,4] => 3
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [1,3,4,2,5] => [2,4,1,3,5] => 2
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [1,3,4,2,5] => [2,4,1,3,5] => 2
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [1,3,5,2,4] => [2,4,5,1,3] => 3
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [1,3,2,4,5] => [3,1,2,4,5] => 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [1,3,2,4,5] => [3,1,2,4,5] => 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [1,3,5,2,4] => [2,4,5,1,3] => 3
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [1,3,2,5,4] => [2,5,1,3,4] => 2
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [1,3,2,4,5] => [3,1,2,4,5] => 1
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [1,3,2,4,5] => [3,1,2,4,5] => 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [1,4,5,2,3] => [4,2,5,1,3] => 4
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [1,4,2,3,5] => [3,4,1,2,5] => 2
Description
The major index of a permutation.
This is the sum of the positions of its descents,
$$\operatorname{maj}(\sigma) = \sum_{\sigma(i) > \sigma(i+1)} i.$$
Its generating function is $[n]_q! = [1]_q \cdot [2]_q \dots [n]_q$ for $[k]_q = 1 + q + q^2 + \dots q^{k-1}$.
A statistic equidistributed with the major index is called '''Mahonian statistic'''.
Matching statistic: St000081
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000081: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000081: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1] => ([],1)
=> 0
{{1,2}}
=> [2,1] => [1,2] => ([],2)
=> 0
{{1},{2}}
=> [1,2] => [1,2] => ([],2)
=> 0
{{1,2,3}}
=> [2,3,1] => [1,2,3] => ([],3)
=> 0
{{1,2},{3}}
=> [2,1,3] => [1,2,3] => ([],3)
=> 0
{{1,3},{2}}
=> [3,2,1] => [1,3,2] => ([(1,2)],3)
=> 1
{{1},{2,3}}
=> [1,3,2] => [1,2,3] => ([],3)
=> 0
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => ([],3)
=> 0
{{1,2,3,4}}
=> [2,3,4,1] => [1,2,3,4] => ([],4)
=> 0
{{1,2,3},{4}}
=> [2,3,1,4] => [1,2,3,4] => ([],4)
=> 0
{{1,2,4},{3}}
=> [2,4,3,1] => [1,2,4,3] => ([(2,3)],4)
=> 1
{{1,2},{3,4}}
=> [2,1,4,3] => [1,2,3,4] => ([],4)
=> 0
{{1,2},{3},{4}}
=> [2,1,3,4] => [1,2,3,4] => ([],4)
=> 0
{{1,3,4},{2}}
=> [3,2,4,1] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> 2
{{1,3},{2,4}}
=> [3,4,1,2] => [1,3,2,4] => ([(2,3)],4)
=> 1
{{1,3},{2},{4}}
=> [3,2,1,4] => [1,3,2,4] => ([(2,3)],4)
=> 1
{{1,4},{2,3}}
=> [4,3,2,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> 2
{{1},{2,3,4}}
=> [1,3,4,2] => [1,2,3,4] => ([],4)
=> 0
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,2,3,4] => ([],4)
=> 0
{{1,4},{2},{3}}
=> [4,2,3,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> 2
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,2,4,3] => ([(2,3)],4)
=> 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,3,4] => ([],4)
=> 0
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,2,3,4,5] => ([],5)
=> 0
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,2,3,4,5] => ([],5)
=> 0
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,2,3,5,4] => ([(3,4)],5)
=> 1
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,2,3,4,5] => ([],5)
=> 0
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,2,3,4,5] => ([],5)
=> 0
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> 2
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> 2
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,2,3,4,5] => ([],5)
=> 0
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,2,3,4,5] => ([],5)
=> 0
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> 2
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> 1
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,2,3,4,5] => ([],5)
=> 0
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> 2
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> 2
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> 3
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [1,3,2,4,5] => ([(3,4)],5)
=> 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [1,3,2,4,5] => ([(3,4)],5)
=> 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> 3
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 2
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [1,3,2,4,5] => ([(3,4)],5)
=> 1
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [1,3,2,4,5] => ([(3,4)],5)
=> 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 4
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> 2
Description
The number of edges of a graph.
The following 36 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000169The cocharge of a standard tableau. St000246The number of non-inversions of a permutation. St000304The load of a permutation. St001341The number of edges in the center of a graph. St001377The major index minus the number of inversions of a permutation. St001397Number of pairs of incomparable elements in a finite poset. St001697The shifted natural comajor index of a standard Young tableau. St000803The number of occurrences of the vincular pattern |132 in a permutation. St000795The mad of a permutation. St000801The number of occurrences of the vincular pattern |312 in a permutation. St000833The comajor index of a permutation. St000866The number of admissible inversions of a permutation in the sense of Shareshian-Wachs. St000961The shifted major index of a permutation. St000067The inversion number of the alternating sign matrix. St000332The positive inversions of an alternating sign matrix. St001428The number of B-inversions of a signed permutation. St001596The number of two-by-two squares inside a skew partition. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St001811The Castelnuovo-Mumford regularity of a permutation. St000454The largest eigenvalue of a graph if it is integral. St001964The interval resolution global dimension of a poset. St001060The distinguishing index of a graph. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001875The number of simple modules with projective dimension at most 1. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St000264The girth of a graph, which is not a tree. St001867The number of alignments of type EN of a signed permutation. St001438The number of missing boxes of a skew partition. St001771The number of occurrences of the signed pattern 1-2 in a signed permutation. St001864The number of excedances of a signed permutation. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001583The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order. St001860The number of factors of the Stanley symmetric function associated with a signed permutation.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!