Your data matches 24 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000490
St000490: Set partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1,2}}
=> 0
{{1},{2}}
=> 1
{{1,2,3}}
=> 0
{{1,2},{3}}
=> 1
{{1,3},{2}}
=> 2
{{1},{2,3}}
=> 1
{{1},{2},{3}}
=> 3
{{1,2,3,4}}
=> 0
{{1,2,3},{4}}
=> 1
{{1,2,4},{3}}
=> 2
{{1,2},{3,4}}
=> 1
{{1,2},{3},{4}}
=> 3
{{1,3,4},{2}}
=> 2
{{1,3},{2,4}}
=> 3
{{1,3},{2},{4}}
=> 4
{{1,4},{2,3}}
=> 2
{{1},{2,3,4}}
=> 1
{{1},{2,3},{4}}
=> 3
{{1,4},{2},{3}}
=> 5
{{1},{2,4},{3}}
=> 4
{{1},{2},{3,4}}
=> 3
{{1},{2},{3},{4}}
=> 6
{{1,2,3,4,5}}
=> 0
{{1,2,3,4},{5}}
=> 1
{{1,2,3,5},{4}}
=> 2
{{1,2,3},{4,5}}
=> 1
{{1,2,3},{4},{5}}
=> 3
{{1,2,4,5},{3}}
=> 2
{{1,2,4},{3,5}}
=> 3
{{1,2,4},{3},{5}}
=> 4
{{1,2,5},{3,4}}
=> 2
{{1,2},{3,4,5}}
=> 1
{{1,2},{3,4},{5}}
=> 3
{{1,2,5},{3},{4}}
=> 5
{{1,2},{3,5},{4}}
=> 4
{{1,2},{3},{4,5}}
=> 3
{{1,2},{3},{4},{5}}
=> 6
{{1,3,4,5},{2}}
=> 2
{{1,3,4},{2,5}}
=> 3
{{1,3,4},{2},{5}}
=> 4
{{1,3,5},{2,4}}
=> 4
{{1,3},{2,4,5}}
=> 3
{{1,3},{2,4},{5}}
=> 5
{{1,3,5},{2},{4}}
=> 5
{{1,3},{2,5},{4}}
=> 6
{{1,3},{2},{4,5}}
=> 4
{{1,3},{2},{4},{5}}
=> 7
{{1,4,5},{2,3}}
=> 2
{{1,4},{2,3,5}}
=> 3
{{1,4},{2,3},{5}}
=> 4
Description
The intertwining number of a set partition. This is defined in [1] as follows: for $\operatorname{int}(a,b) = \{ \min(a,b) < j < \max(a,b) \}$, the '''block intertwiners''' of two disjoint sets $A,B$ of integers is given by $$\{ (a,b) \in A\times B : \operatorname{int}(a,b) \cap A \cup B = \emptyset \}.$$ The intertwining number of a set partition $S$ is now the number of intertwiners of all pairs of blocks of $S$.
St000493: Set partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1,2}}
=> 0
{{1},{2}}
=> 1
{{1,2,3}}
=> 0
{{1,2},{3}}
=> 1
{{1,3},{2}}
=> 1
{{1},{2,3}}
=> 2
{{1},{2},{3}}
=> 3
{{1,2,3,4}}
=> 0
{{1,2,3},{4}}
=> 1
{{1,2,4},{3}}
=> 1
{{1,2},{3,4}}
=> 2
{{1,2},{3},{4}}
=> 3
{{1,3,4},{2}}
=> 1
{{1,3},{2,4}}
=> 2
{{1,3},{2},{4}}
=> 3
{{1,4},{2,3}}
=> 2
{{1},{2,3,4}}
=> 3
{{1},{2,3},{4}}
=> 4
{{1,4},{2},{3}}
=> 3
{{1},{2,4},{3}}
=> 4
{{1},{2},{3,4}}
=> 5
{{1},{2},{3},{4}}
=> 6
{{1,2,3,4,5}}
=> 0
{{1,2,3,4},{5}}
=> 1
{{1,2,3,5},{4}}
=> 1
{{1,2,3},{4,5}}
=> 2
{{1,2,3},{4},{5}}
=> 3
{{1,2,4,5},{3}}
=> 1
{{1,2,4},{3,5}}
=> 2
{{1,2,4},{3},{5}}
=> 3
{{1,2,5},{3,4}}
=> 2
{{1,2},{3,4,5}}
=> 3
{{1,2},{3,4},{5}}
=> 4
{{1,2,5},{3},{4}}
=> 3
{{1,2},{3,5},{4}}
=> 4
{{1,2},{3},{4,5}}
=> 5
{{1,2},{3},{4},{5}}
=> 6
{{1,3,4,5},{2}}
=> 1
{{1,3,4},{2,5}}
=> 2
{{1,3,4},{2},{5}}
=> 3
{{1,3,5},{2,4}}
=> 2
{{1,3},{2,4,5}}
=> 3
{{1,3},{2,4},{5}}
=> 4
{{1,3,5},{2},{4}}
=> 3
{{1,3},{2,5},{4}}
=> 4
{{1,3},{2},{4,5}}
=> 5
{{1,3},{2},{4},{5}}
=> 6
{{1,4,5},{2,3}}
=> 2
{{1,4},{2,3,5}}
=> 3
{{1,4},{2,3},{5}}
=> 4
Description
The los statistic of a set partition. Let $S = B_1,\ldots,B_k$ be a set partition with ordered blocks $B_i$ and with $\operatorname{min} B_a < \operatorname{min} B_b$ for $a < b$. According to [1, Definition 3], a '''los''' (left-opener-smaller) of $S$ is given by a pair $i > j$ such that $j = \operatorname{min} B_b$ and $i \in B_a$ for $a > b$. This is also the dual major index of [2].
Matching statistic: St000499
St000499: Set partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1,2}}
=> 0
{{1},{2}}
=> 1
{{1,2,3}}
=> 0
{{1,2},{3}}
=> 2
{{1,3},{2}}
=> 1
{{1},{2,3}}
=> 1
{{1},{2},{3}}
=> 3
{{1,2,3,4}}
=> 0
{{1,2,3},{4}}
=> 3
{{1,2,4},{3}}
=> 2
{{1,2},{3,4}}
=> 2
{{1,2},{3},{4}}
=> 5
{{1,3,4},{2}}
=> 1
{{1,3},{2,4}}
=> 2
{{1,3},{2},{4}}
=> 4
{{1,4},{2,3}}
=> 1
{{1},{2,3,4}}
=> 1
{{1},{2,3},{4}}
=> 4
{{1,4},{2},{3}}
=> 3
{{1},{2,4},{3}}
=> 3
{{1},{2},{3,4}}
=> 3
{{1},{2},{3},{4}}
=> 6
{{1,2,3,4,5}}
=> 0
{{1,2,3,4},{5}}
=> 4
{{1,2,3,5},{4}}
=> 3
{{1,2,3},{4,5}}
=> 3
{{1,2,3},{4},{5}}
=> 7
{{1,2,4,5},{3}}
=> 2
{{1,2,4},{3,5}}
=> 3
{{1,2,4},{3},{5}}
=> 6
{{1,2,5},{3,4}}
=> 2
{{1,2},{3,4,5}}
=> 2
{{1,2},{3,4},{5}}
=> 6
{{1,2,5},{3},{4}}
=> 5
{{1,2},{3,5},{4}}
=> 5
{{1,2},{3},{4,5}}
=> 5
{{1,2},{3},{4},{5}}
=> 9
{{1,3,4,5},{2}}
=> 1
{{1,3,4},{2,5}}
=> 3
{{1,3,4},{2},{5}}
=> 5
{{1,3,5},{2,4}}
=> 2
{{1,3},{2,4,5}}
=> 2
{{1,3},{2,4},{5}}
=> 6
{{1,3,5},{2},{4}}
=> 4
{{1,3},{2,5},{4}}
=> 5
{{1,3},{2},{4,5}}
=> 4
{{1,3},{2},{4},{5}}
=> 8
{{1,4,5},{2,3}}
=> 1
{{1,4},{2,3,5}}
=> 2
{{1,4},{2,3},{5}}
=> 5
Description
The rcb statistic of a set partition. Let $S = B_1,\ldots,B_k$ be a set partition with ordered blocks $B_i$ and with $\operatorname{min} B_a < \operatorname{min} B_b$ for $a < b$. According to [1, Definition 3], a '''rcb''' (right-closer-bigger) of $S$ is given by a pair $i < j$ such that $j = \operatorname{max} B_b$ and $i \in B_a$ for $a < b$.
Matching statistic: St000008
Mp00128: Set partitions to compositionInteger compositions
Mp00038: Integer compositions reverseInteger compositions
St000008: Integer compositions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1,2}}
=> [2] => [2] => 0
{{1},{2}}
=> [1,1] => [1,1] => 1
{{1,2,3}}
=> [3] => [3] => 0
{{1,2},{3}}
=> [2,1] => [1,2] => 1
{{1,3},{2}}
=> [2,1] => [1,2] => 1
{{1},{2,3}}
=> [1,2] => [2,1] => 2
{{1},{2},{3}}
=> [1,1,1] => [1,1,1] => 3
{{1,2,3,4}}
=> [4] => [4] => 0
{{1,2,3},{4}}
=> [3,1] => [1,3] => 1
{{1,2,4},{3}}
=> [3,1] => [1,3] => 1
{{1,2},{3,4}}
=> [2,2] => [2,2] => 2
{{1,2},{3},{4}}
=> [2,1,1] => [1,1,2] => 3
{{1,3,4},{2}}
=> [3,1] => [1,3] => 1
{{1,3},{2,4}}
=> [2,2] => [2,2] => 2
{{1,3},{2},{4}}
=> [2,1,1] => [1,1,2] => 3
{{1,4},{2,3}}
=> [2,2] => [2,2] => 2
{{1},{2,3,4}}
=> [1,3] => [3,1] => 3
{{1},{2,3},{4}}
=> [1,2,1] => [1,2,1] => 4
{{1,4},{2},{3}}
=> [2,1,1] => [1,1,2] => 3
{{1},{2,4},{3}}
=> [1,2,1] => [1,2,1] => 4
{{1},{2},{3,4}}
=> [1,1,2] => [2,1,1] => 5
{{1},{2},{3},{4}}
=> [1,1,1,1] => [1,1,1,1] => 6
{{1,2,3,4,5}}
=> [5] => [5] => 0
{{1,2,3,4},{5}}
=> [4,1] => [1,4] => 1
{{1,2,3,5},{4}}
=> [4,1] => [1,4] => 1
{{1,2,3},{4,5}}
=> [3,2] => [2,3] => 2
{{1,2,3},{4},{5}}
=> [3,1,1] => [1,1,3] => 3
{{1,2,4,5},{3}}
=> [4,1] => [1,4] => 1
{{1,2,4},{3,5}}
=> [3,2] => [2,3] => 2
{{1,2,4},{3},{5}}
=> [3,1,1] => [1,1,3] => 3
{{1,2,5},{3,4}}
=> [3,2] => [2,3] => 2
{{1,2},{3,4,5}}
=> [2,3] => [3,2] => 3
{{1,2},{3,4},{5}}
=> [2,2,1] => [1,2,2] => 4
{{1,2,5},{3},{4}}
=> [3,1,1] => [1,1,3] => 3
{{1,2},{3,5},{4}}
=> [2,2,1] => [1,2,2] => 4
{{1,2},{3},{4,5}}
=> [2,1,2] => [2,1,2] => 5
{{1,2},{3},{4},{5}}
=> [2,1,1,1] => [1,1,1,2] => 6
{{1,3,4,5},{2}}
=> [4,1] => [1,4] => 1
{{1,3,4},{2,5}}
=> [3,2] => [2,3] => 2
{{1,3,4},{2},{5}}
=> [3,1,1] => [1,1,3] => 3
{{1,3,5},{2,4}}
=> [3,2] => [2,3] => 2
{{1,3},{2,4,5}}
=> [2,3] => [3,2] => 3
{{1,3},{2,4},{5}}
=> [2,2,1] => [1,2,2] => 4
{{1,3,5},{2},{4}}
=> [3,1,1] => [1,1,3] => 3
{{1,3},{2,5},{4}}
=> [2,2,1] => [1,2,2] => 4
{{1,3},{2},{4,5}}
=> [2,1,2] => [2,1,2] => 5
{{1,3},{2},{4},{5}}
=> [2,1,1,1] => [1,1,1,2] => 6
{{1,4,5},{2,3}}
=> [3,2] => [2,3] => 2
{{1,4},{2,3,5}}
=> [2,3] => [3,2] => 3
{{1,4},{2,3},{5}}
=> [2,2,1] => [1,2,2] => 4
Description
The major index of the composition. The descents of a composition $[c_1,c_2,\dots,c_k]$ are the partial sums $c_1, c_1+c_2,\dots, c_1+\dots+c_{k-1}$, excluding the sum of all parts. The major index of a composition is the sum of its descents. For details about the major index see [[Permutations/Descents-Major]].
Matching statistic: St000012
Mp00128: Set partitions to compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00101: Dyck paths decomposition reverseDyck paths
St000012: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1,2}}
=> [2] => [1,1,0,0]
=> [1,0,1,0]
=> 0
{{1},{2}}
=> [1,1] => [1,0,1,0]
=> [1,1,0,0]
=> 1
{{1,2,3}}
=> [3] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
{{1,2},{3}}
=> [2,1] => [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 1
{{1,3},{2}}
=> [2,1] => [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 1
{{1},{2,3}}
=> [1,2] => [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 2
{{1},{2},{3}}
=> [1,1,1] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 3
{{1,2,3,4}}
=> [4] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
{{1,2,3},{4}}
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 1
{{1,2,4},{3}}
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 1
{{1,2},{3,4}}
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
{{1,2},{3},{4}}
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 3
{{1,3,4},{2}}
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 1
{{1,3},{2,4}}
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
{{1,3},{2},{4}}
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 3
{{1,4},{2,3}}
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
{{1},{2,3,4}}
=> [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3
{{1},{2,3},{4}}
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 4
{{1,4},{2},{3}}
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 3
{{1},{2,4},{3}}
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 4
{{1},{2},{3,4}}
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 5
{{1},{2},{3},{4}}
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 6
{{1,2,3,4,5}}
=> [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
{{1,2,3,4},{5}}
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
{{1,2,3,5},{4}}
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
{{1,2,3},{4,5}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2
{{1,2,3},{4},{5}}
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 3
{{1,2,4,5},{3}}
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
{{1,2,4},{3,5}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2
{{1,2,4},{3},{5}}
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 3
{{1,2,5},{3,4}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2
{{1,2},{3,4,5}}
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 3
{{1,2},{3,4},{5}}
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 4
{{1,2,5},{3},{4}}
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 3
{{1,2},{3,5},{4}}
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 4
{{1,2},{3},{4,5}}
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 5
{{1,2},{3},{4},{5}}
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 6
{{1,3,4,5},{2}}
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
{{1,3,4},{2,5}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2
{{1,3,4},{2},{5}}
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 3
{{1,3,5},{2,4}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2
{{1,3},{2,4,5}}
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 3
{{1,3},{2,4},{5}}
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 4
{{1,3,5},{2},{4}}
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 3
{{1,3},{2,5},{4}}
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 4
{{1,3},{2},{4,5}}
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 5
{{1,3},{2},{4},{5}}
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 6
{{1,4,5},{2,3}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2
{{1,4},{2,3,5}}
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 3
{{1,4},{2,3},{5}}
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 4
Description
The area of a Dyck path. This is the number of complete squares in the integer lattice which are below the path and above the x-axis. The 'half-squares' directly above the axis do not contribute to this statistic. 1. Dyck paths are bijection with '''area sequences''' $(a_1,\ldots,a_n)$ such that $a_1 = 0, a_{k+1} \leq a_k + 1$. 2. The generating function $\mathbf{D}_n(q) = \sum_{D \in \mathfrak{D}_n} q^{\operatorname{area}(D)}$ satisfy the recurrence $$\mathbf{D}_{n+1}(q) = \sum q^k \mathbf{D}_k(q) \mathbf{D}_{n-k}(q).$$ 3. The area is equidistributed with [[St000005]] and [[St000006]]. Pairs of these statistics play an important role in the theory of $q,t$-Catalan numbers.
Matching statistic: St000081
Mp00128: Set partitions to compositionInteger compositions
Mp00038: Integer compositions reverseInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000081: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1,2}}
=> [2] => [2] => ([],2)
=> 0
{{1},{2}}
=> [1,1] => [1,1] => ([(0,1)],2)
=> 1
{{1,2,3}}
=> [3] => [3] => ([],3)
=> 0
{{1,2},{3}}
=> [2,1] => [1,2] => ([(1,2)],3)
=> 1
{{1,3},{2}}
=> [2,1] => [1,2] => ([(1,2)],3)
=> 1
{{1},{2,3}}
=> [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 2
{{1},{2},{3}}
=> [1,1,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
{{1,2,3,4}}
=> [4] => [4] => ([],4)
=> 0
{{1,2,3},{4}}
=> [3,1] => [1,3] => ([(2,3)],4)
=> 1
{{1,2,4},{3}}
=> [3,1] => [1,3] => ([(2,3)],4)
=> 1
{{1,2},{3,4}}
=> [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> 2
{{1,2},{3},{4}}
=> [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
{{1,3,4},{2}}
=> [3,1] => [1,3] => ([(2,3)],4)
=> 1
{{1,3},{2,4}}
=> [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> 2
{{1,3},{2},{4}}
=> [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
{{1,4},{2,3}}
=> [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> 2
{{1},{2,3,4}}
=> [1,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
{{1},{2,3},{4}}
=> [1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
{{1,4},{2},{3}}
=> [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
{{1},{2,4},{3}}
=> [1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
{{1},{2},{3,4}}
=> [1,1,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 5
{{1},{2},{3},{4}}
=> [1,1,1,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
{{1,2,3,4,5}}
=> [5] => [5] => ([],5)
=> 0
{{1,2,3,4},{5}}
=> [4,1] => [1,4] => ([(3,4)],5)
=> 1
{{1,2,3,5},{4}}
=> [4,1] => [1,4] => ([(3,4)],5)
=> 1
{{1,2,3},{4,5}}
=> [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> 2
{{1,2,3},{4},{5}}
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 3
{{1,2,4,5},{3}}
=> [4,1] => [1,4] => ([(3,4)],5)
=> 1
{{1,2,4},{3,5}}
=> [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> 2
{{1,2,4},{3},{5}}
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 3
{{1,2,5},{3,4}}
=> [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> 2
{{1,2},{3,4,5}}
=> [2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
{{1,2},{3,4},{5}}
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 4
{{1,2,5},{3},{4}}
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 3
{{1,2},{3,5},{4}}
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 4
{{1,2},{3},{4,5}}
=> [2,1,2] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
{{1,2},{3},{4},{5}}
=> [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
{{1,3,4,5},{2}}
=> [4,1] => [1,4] => ([(3,4)],5)
=> 1
{{1,3,4},{2,5}}
=> [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> 2
{{1,3,4},{2},{5}}
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 3
{{1,3,5},{2,4}}
=> [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> 2
{{1,3},{2,4,5}}
=> [2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
{{1,3},{2,4},{5}}
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 4
{{1,3,5},{2},{4}}
=> [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 3
{{1,3},{2,5},{4}}
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 4
{{1,3},{2},{4,5}}
=> [2,1,2] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
{{1,3},{2},{4},{5}}
=> [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
{{1,4,5},{2,3}}
=> [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> 2
{{1,4},{2,3,5}}
=> [2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
{{1,4},{2,3},{5}}
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 4
Description
The number of edges of a graph.
Matching statistic: St000498
Mp00128: Set partitions to compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00138: Dyck paths to noncrossing partitionSet partitions
St000498: Set partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1,2}}
=> [2] => [1,1,0,0]
=> {{1,2}}
=> 0
{{1},{2}}
=> [1,1] => [1,0,1,0]
=> {{1},{2}}
=> 1
{{1,2,3}}
=> [3] => [1,1,1,0,0,0]
=> {{1,2,3}}
=> 0
{{1,2},{3}}
=> [2,1] => [1,1,0,0,1,0]
=> {{1,2},{3}}
=> 1
{{1,3},{2}}
=> [2,1] => [1,1,0,0,1,0]
=> {{1,2},{3}}
=> 1
{{1},{2,3}}
=> [1,2] => [1,0,1,1,0,0]
=> {{1},{2,3}}
=> 2
{{1},{2},{3}}
=> [1,1,1] => [1,0,1,0,1,0]
=> {{1},{2},{3}}
=> 3
{{1,2,3,4}}
=> [4] => [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 0
{{1,2,3},{4}}
=> [3,1] => [1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> 1
{{1,2,4},{3}}
=> [3,1] => [1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> 1
{{1,2},{3,4}}
=> [2,2] => [1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> 2
{{1,2},{3},{4}}
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> 3
{{1,3,4},{2}}
=> [3,1] => [1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> 1
{{1,3},{2,4}}
=> [2,2] => [1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> 2
{{1,3},{2},{4}}
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> 3
{{1,4},{2,3}}
=> [2,2] => [1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> 2
{{1},{2,3,4}}
=> [1,3] => [1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> 3
{{1},{2,3},{4}}
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> 4
{{1,4},{2},{3}}
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> 3
{{1},{2,4},{3}}
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> 4
{{1},{2},{3,4}}
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> 5
{{1},{2},{3},{4}}
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> 6
{{1,2,3,4,5}}
=> [5] => [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 0
{{1,2,3,4},{5}}
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> {{1,2,3,4},{5}}
=> 1
{{1,2,3,5},{4}}
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> {{1,2,3,4},{5}}
=> 1
{{1,2,3},{4,5}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> {{1,2,3},{4,5}}
=> 2
{{1,2,3},{4},{5}}
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> 3
{{1,2,4,5},{3}}
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> {{1,2,3,4},{5}}
=> 1
{{1,2,4},{3,5}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> {{1,2,3},{4,5}}
=> 2
{{1,2,4},{3},{5}}
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> 3
{{1,2,5},{3,4}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> {{1,2,3},{4,5}}
=> 2
{{1,2},{3,4,5}}
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> 3
{{1,2},{3,4},{5}}
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> 4
{{1,2,5},{3},{4}}
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> 3
{{1,2},{3,5},{4}}
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> 4
{{1,2},{3},{4,5}}
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5}}
=> 5
{{1,2},{3},{4},{5}}
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5}}
=> 6
{{1,3,4,5},{2}}
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> {{1,2,3,4},{5}}
=> 1
{{1,3,4},{2,5}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> {{1,2,3},{4,5}}
=> 2
{{1,3,4},{2},{5}}
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> 3
{{1,3,5},{2,4}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> {{1,2,3},{4,5}}
=> 2
{{1,3},{2,4,5}}
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> 3
{{1,3},{2,4},{5}}
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> 4
{{1,3,5},{2},{4}}
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> 3
{{1,3},{2,5},{4}}
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> 4
{{1,3},{2},{4,5}}
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5}}
=> 5
{{1,3},{2},{4},{5}}
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5}}
=> 6
{{1,4,5},{2,3}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> {{1,2,3},{4,5}}
=> 2
{{1,4},{2,3,5}}
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> 3
{{1,4},{2,3},{5}}
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> 4
Description
The lcs statistic of a set partition. Let $S = B_1,\ldots,B_k$ be a set partition with ordered blocks $B_i$ and with $\operatorname{min} B_a < \operatorname{min} B_b$ for $a < b$. According to [1, Definition 3], a '''lcs''' (left-closer-smaller) of $S$ is given by a pair $i > j$ such that $j = \operatorname{max} B_b$ and $i \in B_a$ for $a > b$.
Matching statistic: St000577
Mp00128: Set partitions to compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00138: Dyck paths to noncrossing partitionSet partitions
St000577: Set partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1,2}}
=> [2] => [1,1,0,0]
=> {{1,2}}
=> 0
{{1},{2}}
=> [1,1] => [1,0,1,0]
=> {{1},{2}}
=> 1
{{1,2,3}}
=> [3] => [1,1,1,0,0,0]
=> {{1,2,3}}
=> 0
{{1,2},{3}}
=> [2,1] => [1,1,0,0,1,0]
=> {{1,2},{3}}
=> 1
{{1,3},{2}}
=> [2,1] => [1,1,0,0,1,0]
=> {{1,2},{3}}
=> 1
{{1},{2,3}}
=> [1,2] => [1,0,1,1,0,0]
=> {{1},{2,3}}
=> 2
{{1},{2},{3}}
=> [1,1,1] => [1,0,1,0,1,0]
=> {{1},{2},{3}}
=> 3
{{1,2,3,4}}
=> [4] => [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 0
{{1,2,3},{4}}
=> [3,1] => [1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> 1
{{1,2,4},{3}}
=> [3,1] => [1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> 1
{{1,2},{3,4}}
=> [2,2] => [1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> 2
{{1,2},{3},{4}}
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> 3
{{1,3,4},{2}}
=> [3,1] => [1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> 1
{{1,3},{2,4}}
=> [2,2] => [1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> 2
{{1,3},{2},{4}}
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> 3
{{1,4},{2,3}}
=> [2,2] => [1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> 2
{{1},{2,3,4}}
=> [1,3] => [1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> 3
{{1},{2,3},{4}}
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> 4
{{1,4},{2},{3}}
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> 3
{{1},{2,4},{3}}
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> 4
{{1},{2},{3,4}}
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> 5
{{1},{2},{3},{4}}
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> 6
{{1,2,3,4,5}}
=> [5] => [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 0
{{1,2,3,4},{5}}
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> {{1,2,3,4},{5}}
=> 1
{{1,2,3,5},{4}}
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> {{1,2,3,4},{5}}
=> 1
{{1,2,3},{4,5}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> {{1,2,3},{4,5}}
=> 2
{{1,2,3},{4},{5}}
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> 3
{{1,2,4,5},{3}}
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> {{1,2,3,4},{5}}
=> 1
{{1,2,4},{3,5}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> {{1,2,3},{4,5}}
=> 2
{{1,2,4},{3},{5}}
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> 3
{{1,2,5},{3,4}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> {{1,2,3},{4,5}}
=> 2
{{1,2},{3,4,5}}
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> 3
{{1,2},{3,4},{5}}
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> 4
{{1,2,5},{3},{4}}
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> 3
{{1,2},{3,5},{4}}
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> 4
{{1,2},{3},{4,5}}
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5}}
=> 5
{{1,2},{3},{4},{5}}
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5}}
=> 6
{{1,3,4,5},{2}}
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> {{1,2,3,4},{5}}
=> 1
{{1,3,4},{2,5}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> {{1,2,3},{4,5}}
=> 2
{{1,3,4},{2},{5}}
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> 3
{{1,3,5},{2,4}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> {{1,2,3},{4,5}}
=> 2
{{1,3},{2,4,5}}
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> 3
{{1,3},{2,4},{5}}
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> 4
{{1,3,5},{2},{4}}
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> 3
{{1,3},{2,5},{4}}
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> 4
{{1,3},{2},{4,5}}
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5}}
=> 5
{{1,3},{2},{4},{5}}
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5}}
=> 6
{{1,4,5},{2,3}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> {{1,2,3},{4,5}}
=> 2
{{1,4},{2,3,5}}
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> 3
{{1,4},{2,3},{5}}
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> 4
Description
The number of occurrences of the pattern {{1},{2}} such that 1 is a maximal element. This is the number of pairs $i\lt j$ in different blocks such that $i$ is the maximal element of a block.
Mp00128: Set partitions to compositionInteger compositions
Mp00038: Integer compositions reverseInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St000947: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1,2}}
=> [2] => [2] => [1,1,0,0]
=> 0
{{1},{2}}
=> [1,1] => [1,1] => [1,0,1,0]
=> 1
{{1,2,3}}
=> [3] => [3] => [1,1,1,0,0,0]
=> 0
{{1,2},{3}}
=> [2,1] => [1,2] => [1,0,1,1,0,0]
=> 1
{{1,3},{2}}
=> [2,1] => [1,2] => [1,0,1,1,0,0]
=> 1
{{1},{2,3}}
=> [1,2] => [2,1] => [1,1,0,0,1,0]
=> 2
{{1},{2},{3}}
=> [1,1,1] => [1,1,1] => [1,0,1,0,1,0]
=> 3
{{1,2,3,4}}
=> [4] => [4] => [1,1,1,1,0,0,0,0]
=> 0
{{1,2,3},{4}}
=> [3,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
{{1,2,4},{3}}
=> [3,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
{{1,2},{3,4}}
=> [2,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
{{1,2},{3},{4}}
=> [2,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 3
{{1,3,4},{2}}
=> [3,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
{{1,3},{2,4}}
=> [2,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
{{1,3},{2},{4}}
=> [2,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 3
{{1,4},{2,3}}
=> [2,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
{{1},{2,3,4}}
=> [1,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 3
{{1},{2,3},{4}}
=> [1,2,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 4
{{1,4},{2},{3}}
=> [2,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 3
{{1},{2,4},{3}}
=> [1,2,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 4
{{1},{2},{3,4}}
=> [1,1,2] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 5
{{1},{2},{3},{4}}
=> [1,1,1,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 6
{{1,2,3,4,5}}
=> [5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 0
{{1,2,3,4},{5}}
=> [4,1] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
{{1,2,3,5},{4}}
=> [4,1] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
{{1,2,3},{4,5}}
=> [3,2] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
{{1,2,3},{4},{5}}
=> [3,1,1] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 3
{{1,2,4,5},{3}}
=> [4,1] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
{{1,2,4},{3,5}}
=> [3,2] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
{{1,2,4},{3},{5}}
=> [3,1,1] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 3
{{1,2,5},{3,4}}
=> [3,2] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
{{1,2},{3,4,5}}
=> [2,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
{{1,2},{3,4},{5}}
=> [2,2,1] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 4
{{1,2,5},{3},{4}}
=> [3,1,1] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 3
{{1,2},{3,5},{4}}
=> [2,2,1] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 4
{{1,2},{3},{4,5}}
=> [2,1,2] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 5
{{1,2},{3},{4},{5}}
=> [2,1,1,1] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 6
{{1,3,4,5},{2}}
=> [4,1] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
{{1,3,4},{2,5}}
=> [3,2] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
{{1,3,4},{2},{5}}
=> [3,1,1] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 3
{{1,3,5},{2,4}}
=> [3,2] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
{{1,3},{2,4,5}}
=> [2,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
{{1,3},{2,4},{5}}
=> [2,2,1] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 4
{{1,3,5},{2},{4}}
=> [3,1,1] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 3
{{1,3},{2,5},{4}}
=> [2,2,1] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 4
{{1,3},{2},{4,5}}
=> [2,1,2] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 5
{{1,3},{2},{4},{5}}
=> [2,1,1,1] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 6
{{1,4,5},{2,3}}
=> [3,2] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
{{1,4},{2,3,5}}
=> [2,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
{{1,4},{2,3},{5}}
=> [2,2,1] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 4
Description
The major index east count of a Dyck path. The descent set $\operatorname{des}(D)$ of a Dyck path $D = D_1 \cdots D_{2n}$ with $D_i \in \{N,E\}$ is given by all indices $i$ such that $D_i = E$ and $D_{i+1} = N$. This is, the positions of the valleys of $D$. The '''major index''' of a Dyck path is then the sum of the positions of the valleys, $\sum_{i \in \operatorname{des}(D)} i$, see [[St000027]]. The '''major index east count''' is given by $\sum_{i \in \operatorname{des}(D)} \#\{ j \leq i \mid D_j = E\}$.
Matching statistic: St001161
Mp00128: Set partitions to compositionInteger compositions
Mp00038: Integer compositions reverseInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St001161: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1,2}}
=> [2] => [2] => [1,1,0,0]
=> 0
{{1},{2}}
=> [1,1] => [1,1] => [1,0,1,0]
=> 1
{{1,2,3}}
=> [3] => [3] => [1,1,1,0,0,0]
=> 0
{{1,2},{3}}
=> [2,1] => [1,2] => [1,0,1,1,0,0]
=> 1
{{1,3},{2}}
=> [2,1] => [1,2] => [1,0,1,1,0,0]
=> 1
{{1},{2,3}}
=> [1,2] => [2,1] => [1,1,0,0,1,0]
=> 2
{{1},{2},{3}}
=> [1,1,1] => [1,1,1] => [1,0,1,0,1,0]
=> 3
{{1,2,3,4}}
=> [4] => [4] => [1,1,1,1,0,0,0,0]
=> 0
{{1,2,3},{4}}
=> [3,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
{{1,2,4},{3}}
=> [3,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
{{1,2},{3,4}}
=> [2,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
{{1,2},{3},{4}}
=> [2,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 3
{{1,3,4},{2}}
=> [3,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
{{1,3},{2,4}}
=> [2,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
{{1,3},{2},{4}}
=> [2,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 3
{{1,4},{2,3}}
=> [2,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
{{1},{2,3,4}}
=> [1,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 3
{{1},{2,3},{4}}
=> [1,2,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 4
{{1,4},{2},{3}}
=> [2,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 3
{{1},{2,4},{3}}
=> [1,2,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 4
{{1},{2},{3,4}}
=> [1,1,2] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 5
{{1},{2},{3},{4}}
=> [1,1,1,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 6
{{1,2,3,4,5}}
=> [5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 0
{{1,2,3,4},{5}}
=> [4,1] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
{{1,2,3,5},{4}}
=> [4,1] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
{{1,2,3},{4,5}}
=> [3,2] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
{{1,2,3},{4},{5}}
=> [3,1,1] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 3
{{1,2,4,5},{3}}
=> [4,1] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
{{1,2,4},{3,5}}
=> [3,2] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
{{1,2,4},{3},{5}}
=> [3,1,1] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 3
{{1,2,5},{3,4}}
=> [3,2] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
{{1,2},{3,4,5}}
=> [2,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
{{1,2},{3,4},{5}}
=> [2,2,1] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 4
{{1,2,5},{3},{4}}
=> [3,1,1] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 3
{{1,2},{3,5},{4}}
=> [2,2,1] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 4
{{1,2},{3},{4,5}}
=> [2,1,2] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 5
{{1,2},{3},{4},{5}}
=> [2,1,1,1] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 6
{{1,3,4,5},{2}}
=> [4,1] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
{{1,3,4},{2,5}}
=> [3,2] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
{{1,3,4},{2},{5}}
=> [3,1,1] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 3
{{1,3,5},{2,4}}
=> [3,2] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
{{1,3},{2,4,5}}
=> [2,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
{{1,3},{2,4},{5}}
=> [2,2,1] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 4
{{1,3,5},{2},{4}}
=> [3,1,1] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 3
{{1,3},{2,5},{4}}
=> [2,2,1] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 4
{{1,3},{2},{4,5}}
=> [2,1,2] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 5
{{1,3},{2},{4},{5}}
=> [2,1,1,1] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 6
{{1,4,5},{2,3}}
=> [3,2] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
{{1,4},{2,3,5}}
=> [2,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
{{1,4},{2,3},{5}}
=> [2,2,1] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 4
Description
The major index north count of a Dyck path. The descent set $\operatorname{des}(D)$ of a Dyck path $D = D_1 \cdots D_{2n}$ with $D_i \in \{N,E\}$ is given by all indices $i$ such that $D_i = E$ and $D_{i+1} = N$. This is, the positions of the valleys of $D$. The '''major index''' of a Dyck path is then the sum of the positions of the valleys, $\sum_{i \in \operatorname{des}(D)} i$, see [[St000027]]. The '''major index north count''' is given by $\sum_{i \in \operatorname{des}(D)} \#\{ j \leq i \mid D_j = N\}$.
The following 14 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000456The monochromatic index of a connected graph. St000161The sum of the sizes of the right subtrees of a binary tree. St000446The disorder of a permutation. St000004The major index of a permutation. St000005The bounce statistic of a Dyck path. St000133The "bounce" of a permutation. St000304The load of a permutation. St001295Gives the vector space dimension of the homomorphism space between J^2 and J^2. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001645The pebbling number of a connected graph. St000454The largest eigenvalue of a graph if it is integral. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001583The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order.