searching the database
Your data matches 207 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000932
(load all 53 compositions to match this statistic)
(load all 53 compositions to match this statistic)
St000932: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> 1 = 2 - 1
[1,1,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0]
=> 2 = 3 - 1
[1,0,1,1,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,0]
=> 0 = 1 - 1
[1,1,0,1,0,0]
=> 1 = 2 - 1
[1,1,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0]
=> 3 = 4 - 1
[1,0,1,0,1,1,0,0]
=> 2 = 3 - 1
[1,0,1,1,0,0,1,0]
=> 1 = 2 - 1
[1,0,1,1,0,1,0,0]
=> 2 = 3 - 1
[1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
[1,1,0,0,1,1,0,0]
=> 0 = 1 - 1
[1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,0,1,0,0]
=> 2 = 3 - 1
[1,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[1,1,1,0,0,0,1,0]
=> 0 = 1 - 1
[1,1,1,0,0,1,0,0]
=> 0 = 1 - 1
[1,1,1,0,1,0,0,0]
=> 1 = 2 - 1
[1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,0,1,0,1,0,1,1,0,0]
=> 3 = 4 - 1
[1,0,1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[1,0,1,0,1,1,0,1,0,0]
=> 3 = 4 - 1
[1,0,1,0,1,1,1,0,0,0]
=> 2 = 3 - 1
[1,0,1,1,0,0,1,0,1,0]
=> 2 = 3 - 1
[1,0,1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
[1,0,1,1,0,1,0,0,1,0]
=> 2 = 3 - 1
[1,0,1,1,0,1,0,1,0,0]
=> 3 = 4 - 1
[1,0,1,1,0,1,1,0,0,0]
=> 2 = 3 - 1
[1,0,1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[1,0,1,1,1,0,0,1,0,0]
=> 1 = 2 - 1
[1,0,1,1,1,0,1,0,0,0]
=> 2 = 3 - 1
[1,0,1,1,1,1,0,0,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,0,1,0,1,0]
=> 2 = 3 - 1
[1,1,0,0,1,0,1,1,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,1,0,0,1,0]
=> 0 = 1 - 1
[1,1,0,0,1,1,0,1,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,1,1,0,0,0]
=> 0 = 1 - 1
[1,1,0,1,0,0,1,0,1,0]
=> 2 = 3 - 1
[1,1,0,1,0,0,1,1,0,0]
=> 1 = 2 - 1
[1,1,0,1,0,1,0,0,1,0]
=> 2 = 3 - 1
[1,1,0,1,0,1,0,1,0,0]
=> 3 = 4 - 1
[1,1,0,1,0,1,1,0,0,0]
=> 2 = 3 - 1
[1,1,0,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,1,0,0,1,0,0]
=> 1 = 2 - 1
[1,1,0,1,1,0,1,0,0,0]
=> 2 = 3 - 1
[1,1,0,1,1,1,0,0,0,0]
=> 1 = 2 - 1
[1,1,1,0,0,0,1,0,1,0]
=> 1 = 2 - 1
Description
The number of occurrences of the pattern UDU in a Dyck path.
The number of Dyck paths with statistic value 0 are counted by the Motzkin numbers [1].
Matching statistic: St001067
(load all 54 compositions to match this statistic)
(load all 54 compositions to match this statistic)
St001067: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> 1 = 2 - 1
[1,1,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0]
=> 2 = 3 - 1
[1,0,1,1,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,0]
=> 0 = 1 - 1
[1,1,0,1,0,0]
=> 1 = 2 - 1
[1,1,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0]
=> 3 = 4 - 1
[1,0,1,0,1,1,0,0]
=> 2 = 3 - 1
[1,0,1,1,0,0,1,0]
=> 1 = 2 - 1
[1,0,1,1,0,1,0,0]
=> 2 = 3 - 1
[1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
[1,1,0,0,1,1,0,0]
=> 0 = 1 - 1
[1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,0,1,0,0]
=> 2 = 3 - 1
[1,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[1,1,1,0,0,0,1,0]
=> 0 = 1 - 1
[1,1,1,0,0,1,0,0]
=> 0 = 1 - 1
[1,1,1,0,1,0,0,0]
=> 1 = 2 - 1
[1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,0,1,0,1,0,1,1,0,0]
=> 3 = 4 - 1
[1,0,1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[1,0,1,0,1,1,0,1,0,0]
=> 3 = 4 - 1
[1,0,1,0,1,1,1,0,0,0]
=> 2 = 3 - 1
[1,0,1,1,0,0,1,0,1,0]
=> 2 = 3 - 1
[1,0,1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
[1,0,1,1,0,1,0,0,1,0]
=> 2 = 3 - 1
[1,0,1,1,0,1,0,1,0,0]
=> 3 = 4 - 1
[1,0,1,1,0,1,1,0,0,0]
=> 2 = 3 - 1
[1,0,1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[1,0,1,1,1,0,0,1,0,0]
=> 1 = 2 - 1
[1,0,1,1,1,0,1,0,0,0]
=> 2 = 3 - 1
[1,0,1,1,1,1,0,0,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,0,1,0,1,0]
=> 2 = 3 - 1
[1,1,0,0,1,0,1,1,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,1,0,0,1,0]
=> 0 = 1 - 1
[1,1,0,0,1,1,0,1,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,1,1,0,0,0]
=> 0 = 1 - 1
[1,1,0,1,0,0,1,0,1,0]
=> 2 = 3 - 1
[1,1,0,1,0,0,1,1,0,0]
=> 1 = 2 - 1
[1,1,0,1,0,1,0,0,1,0]
=> 2 = 3 - 1
[1,1,0,1,0,1,0,1,0,0]
=> 3 = 4 - 1
[1,1,0,1,0,1,1,0,0,0]
=> 2 = 3 - 1
[1,1,0,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,1,0,0,1,0,0]
=> 1 = 2 - 1
[1,1,0,1,1,0,1,0,0,0]
=> 2 = 3 - 1
[1,1,0,1,1,1,0,0,0,0]
=> 1 = 2 - 1
[1,1,1,0,0,0,1,0,1,0]
=> 1 = 2 - 1
Description
The number of simple modules of dominant dimension at least two in the corresponding Nakayama algebra.
Matching statistic: St001189
(load all 27 compositions to match this statistic)
(load all 27 compositions to match this statistic)
St001189: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> 0 = 1 - 1
[1,1,0,0]
=> 1 = 2 - 1
[1,0,1,0,1,0]
=> 0 = 1 - 1
[1,0,1,1,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,0,0]
=> 0 = 1 - 1
[1,1,1,0,0,0]
=> 2 = 3 - 1
[1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
[1,0,1,1,0,0,1,0]
=> 1 = 2 - 1
[1,0,1,1,0,1,0,0]
=> 0 = 1 - 1
[1,0,1,1,1,0,0,0]
=> 2 = 3 - 1
[1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
[1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[1,1,0,1,0,0,1,0]
=> 0 = 1 - 1
[1,1,0,1,0,1,0,0]
=> 0 = 1 - 1
[1,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[1,1,1,0,0,0,1,0]
=> 2 = 3 - 1
[1,1,1,0,0,1,0,0]
=> 1 = 2 - 1
[1,1,1,0,1,0,0,0]
=> 1 = 2 - 1
[1,1,1,1,0,0,0,0]
=> 3 = 4 - 1
[1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
[1,0,1,0,1,1,0,0,1,0]
=> 1 = 2 - 1
[1,0,1,0,1,1,0,1,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,1,1,0,0,0]
=> 2 = 3 - 1
[1,0,1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
[1,0,1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[1,0,1,1,0,1,0,0,1,0]
=> 0 = 1 - 1
[1,0,1,1,0,1,0,1,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[1,0,1,1,1,0,0,0,1,0]
=> 2 = 3 - 1
[1,0,1,1,1,0,0,1,0,0]
=> 1 = 2 - 1
[1,0,1,1,1,0,1,0,0,0]
=> 1 = 2 - 1
[1,0,1,1,1,1,0,0,0,0]
=> 3 = 4 - 1
[1,1,0,0,1,0,1,0,1,0]
=> 1 = 2 - 1
[1,1,0,0,1,0,1,1,0,0]
=> 2 = 3 - 1
[1,1,0,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[1,1,0,0,1,1,0,1,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,1,1,0,0,0]
=> 3 = 4 - 1
[1,1,0,1,0,0,1,0,1,0]
=> 0 = 1 - 1
[1,1,0,1,0,0,1,1,0,0]
=> 1 = 2 - 1
[1,1,0,1,0,1,0,0,1,0]
=> 0 = 1 - 1
[1,1,0,1,0,1,0,1,0,0]
=> 0 = 1 - 1
[1,1,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[1,1,0,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,1,0,0,1,0,0]
=> 0 = 1 - 1
[1,1,0,1,1,0,1,0,0,0]
=> 1 = 2 - 1
[1,1,0,1,1,1,0,0,0,0]
=> 2 = 3 - 1
[1,1,1,0,0,0,1,0,1,0]
=> 2 = 3 - 1
Description
The number of simple modules with dominant and codominant dimension equal to zero in the Nakayama algebra corresponding to the Dyck path.
Matching statistic: St000502
(load all 13 compositions to match this statistic)
(load all 13 compositions to match this statistic)
Mp00138: Dyck paths —to noncrossing partition⟶ Set partitions
St000502: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000502: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> {{1},{2}}
=> 0 = 1 - 1
[1,1,0,0]
=> {{1,2}}
=> 1 = 2 - 1
[1,0,1,0,1,0]
=> {{1},{2},{3}}
=> 0 = 1 - 1
[1,0,1,1,0,0]
=> {{1},{2,3}}
=> 1 = 2 - 1
[1,1,0,0,1,0]
=> {{1,2},{3}}
=> 1 = 2 - 1
[1,1,0,1,0,0]
=> {{1,3},{2}}
=> 0 = 1 - 1
[1,1,1,0,0,0]
=> {{1,2,3}}
=> 2 = 3 - 1
[1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> 0 = 1 - 1
[1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> 1 = 2 - 1
[1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> 1 = 2 - 1
[1,0,1,1,0,1,0,0]
=> {{1},{2,4},{3}}
=> 0 = 1 - 1
[1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> 2 = 3 - 1
[1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> 1 = 2 - 1
[1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> 2 = 3 - 1
[1,1,0,1,0,0,1,0]
=> {{1,3},{2},{4}}
=> 0 = 1 - 1
[1,1,0,1,0,1,0,0]
=> {{1,4},{2},{3}}
=> 0 = 1 - 1
[1,1,0,1,1,0,0,0]
=> {{1,3,4},{2}}
=> 1 = 2 - 1
[1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> 2 = 3 - 1
[1,1,1,0,0,1,0,0]
=> {{1,4},{2,3}}
=> 1 = 2 - 1
[1,1,1,0,1,0,0,0]
=> {{1,2,4},{3}}
=> 1 = 2 - 1
[1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 3 = 4 - 1
[1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5}}
=> 0 = 1 - 1
[1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5}}
=> 1 = 2 - 1
[1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3,4},{5}}
=> 1 = 2 - 1
[1,0,1,0,1,1,0,1,0,0]
=> {{1},{2},{3,5},{4}}
=> 0 = 1 - 1
[1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> 2 = 3 - 1
[1,0,1,1,0,0,1,0,1,0]
=> {{1},{2,3},{4},{5}}
=> 1 = 2 - 1
[1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> 2 = 3 - 1
[1,0,1,1,0,1,0,0,1,0]
=> {{1},{2,4},{3},{5}}
=> 0 = 1 - 1
[1,0,1,1,0,1,0,1,0,0]
=> {{1},{2,5},{3},{4}}
=> 0 = 1 - 1
[1,0,1,1,0,1,1,0,0,0]
=> {{1},{2,4,5},{3}}
=> 1 = 2 - 1
[1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> 2 = 3 - 1
[1,0,1,1,1,0,0,1,0,0]
=> {{1},{2,5},{3,4}}
=> 1 = 2 - 1
[1,0,1,1,1,0,1,0,0,0]
=> {{1},{2,3,5},{4}}
=> 1 = 2 - 1
[1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> 3 = 4 - 1
[1,1,0,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5}}
=> 1 = 2 - 1
[1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5}}
=> 2 = 3 - 1
[1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> 2 = 3 - 1
[1,1,0,0,1,1,0,1,0,0]
=> {{1,2},{3,5},{4}}
=> 1 = 2 - 1
[1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> 3 = 4 - 1
[1,1,0,1,0,0,1,0,1,0]
=> {{1,3},{2},{4},{5}}
=> 0 = 1 - 1
[1,1,0,1,0,0,1,1,0,0]
=> {{1,3},{2},{4,5}}
=> 1 = 2 - 1
[1,1,0,1,0,1,0,0,1,0]
=> {{1,4},{2},{3},{5}}
=> 0 = 1 - 1
[1,1,0,1,0,1,0,1,0,0]
=> {{1,5},{2},{3},{4}}
=> 0 = 1 - 1
[1,1,0,1,0,1,1,0,0,0]
=> {{1,4,5},{2},{3}}
=> 1 = 2 - 1
[1,1,0,1,1,0,0,0,1,0]
=> {{1,3,4},{2},{5}}
=> 1 = 2 - 1
[1,1,0,1,1,0,0,1,0,0]
=> {{1,5},{2},{3,4}}
=> 1 = 2 - 1
[1,1,0,1,1,0,1,0,0,0]
=> {{1,3,5},{2},{4}}
=> 0 = 1 - 1
[1,1,0,1,1,1,0,0,0,0]
=> {{1,3,4,5},{2}}
=> 2 = 3 - 1
[1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> 2 = 3 - 1
Description
The number of successions of a set partitions.
This is the number of indices $i$ such that $i$ and $i+1$ belonging to the same block.
Matching statistic: St000504
Mp00138: Dyck paths —to noncrossing partition⟶ Set partitions
Mp00171: Set partitions —intertwining number to dual major index⟶ Set partitions
St000504: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00171: Set partitions —intertwining number to dual major index⟶ Set partitions
St000504: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> {{1},{2}}
=> {{1},{2}}
=> 1
[1,1,0,0]
=> {{1,2}}
=> {{1,2}}
=> 2
[1,0,1,0,1,0]
=> {{1},{2},{3}}
=> {{1},{2},{3}}
=> 1
[1,0,1,1,0,0]
=> {{1},{2,3}}
=> {{1,3},{2}}
=> 2
[1,1,0,0,1,0]
=> {{1,2},{3}}
=> {{1,2},{3}}
=> 2
[1,1,0,1,0,0]
=> {{1,3},{2}}
=> {{1},{2,3}}
=> 1
[1,1,1,0,0,0]
=> {{1,2,3}}
=> {{1,2,3}}
=> 3
[1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> {{1},{2},{3},{4}}
=> 1
[1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> {{1,4},{2},{3}}
=> 2
[1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> {{1,3},{2},{4}}
=> 2
[1,0,1,1,0,1,0,0]
=> {{1},{2,4},{3}}
=> {{1},{2,4},{3}}
=> 1
[1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> {{1,3,4},{2}}
=> 3
[1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> {{1,2},{3},{4}}
=> 2
[1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> {{1,2,4},{3}}
=> 3
[1,1,0,1,0,0,1,0]
=> {{1,3},{2},{4}}
=> {{1},{2,3},{4}}
=> 1
[1,1,0,1,0,1,0,0]
=> {{1,4},{2},{3}}
=> {{1},{2},{3,4}}
=> 1
[1,1,0,1,1,0,0,0]
=> {{1,3,4},{2}}
=> {{1,4},{2,3}}
=> 2
[1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> {{1,2,3},{4}}
=> 3
[1,1,1,0,0,1,0,0]
=> {{1,4},{2,3}}
=> {{1,3},{2,4}}
=> 2
[1,1,1,0,1,0,0,0]
=> {{1,2,4},{3}}
=> {{1,2},{3,4}}
=> 2
[1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> {{1,2,3,4}}
=> 4
[1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5}}
=> {{1},{2},{3},{4},{5}}
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5}}
=> {{1,5},{2},{3},{4}}
=> 2
[1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3,4},{5}}
=> {{1,4},{2},{3},{5}}
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> {{1},{2},{3,5},{4}}
=> {{1},{2,5},{3},{4}}
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> {{1,4,5},{2},{3}}
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> {{1},{2,3},{4},{5}}
=> {{1,3},{2},{4},{5}}
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> {{1,3,5},{2},{4}}
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> {{1},{2,4},{3},{5}}
=> {{1},{2,4},{3},{5}}
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> {{1},{2,5},{3},{4}}
=> {{1},{2},{3,5},{4}}
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> {{1},{2,4,5},{3}}
=> {{1,5},{2,4},{3}}
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> {{1,3,4},{2},{5}}
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> {{1},{2,5},{3,4}}
=> {{1,4},{2,5},{3}}
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> {{1},{2,3,5},{4}}
=> {{1,3},{2,5},{4}}
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> {{1,3,4,5},{2}}
=> 4
[1,1,0,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5}}
=> {{1,2},{3},{4},{5}}
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5}}
=> {{1,2,5},{3},{4}}
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> {{1,2,4},{3},{5}}
=> 3
[1,1,0,0,1,1,0,1,0,0]
=> {{1,2},{3,5},{4}}
=> {{1,2},{3,5},{4}}
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> {{1,2,4,5},{3}}
=> 4
[1,1,0,1,0,0,1,0,1,0]
=> {{1,3},{2},{4},{5}}
=> {{1},{2,3},{4},{5}}
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> {{1,3},{2},{4,5}}
=> {{1,5},{2,3},{4}}
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> {{1,4},{2},{3},{5}}
=> {{1},{2},{3,4},{5}}
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> {{1,5},{2},{3},{4}}
=> {{1},{2},{3},{4,5}}
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> {{1,4,5},{2},{3}}
=> {{1,5},{2},{3,4}}
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> {{1,3,4},{2},{5}}
=> {{1,4},{2,3},{5}}
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> {{1,5},{2},{3,4}}
=> {{1,4},{2},{3,5}}
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> {{1,3,5},{2},{4}}
=> {{1},{2,3,5},{4}}
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> {{1,3,4,5},{2}}
=> {{1,4,5},{2,3}}
=> 3
[1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> {{1,2,3},{4},{5}}
=> 3
Description
The cardinality of the first block of a set partition.
The number of partitions of $\{1,\ldots,n\}$ into $k$ blocks in which the first block has cardinality $j+1$ is given by $\binom{n-1}{j}S(n-j-1,k-1)$, see [1, Theorem 1.1] and the references therein. Here, $S(n,k)$ are the ''Stirling numbers of the second kind'' counting all set partitions of $\{1,\ldots,n\}$ into $k$ blocks [2].
Matching statistic: St000319
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
St000319: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
St000319: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [2,1] => [2,1]
=> 1
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [3] => [3]
=> 2
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,1,1] => [2,1,1]
=> 1
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,2] => [2,2]
=> 1
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,1] => [3,1]
=> 2
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,1] => [3,1]
=> 2
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4] => [4]
=> 3
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1] => [2,1,1,1]
=> 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => [2,2,1]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => [2,2,1]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => [2,2,1]
=> 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,3] => [3,2]
=> 2
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,1,1] => [3,1,1]
=> 2
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2] => [3,2]
=> 2
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,1,1] => [3,1,1]
=> 2
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [3,1,1] => [3,1,1]
=> 2
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [3,2] => [3,2]
=> 2
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,1] => [4,1]
=> 3
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [4,1] => [4,1]
=> 3
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [4,1] => [4,1]
=> 3
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5] => [5]
=> 4
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1,1] => [2,1,1,1,1]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,1,1,2] => [2,2,1,1]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,1,2,1] => [2,2,1,1]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [2,1,2,1] => [2,2,1,1]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,1,3] => [3,2,1]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,2,1,1] => [2,2,1,1]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [2,2,2] => [2,2,2]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [2,2,1,1] => [2,2,1,1]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [2,2,1,1] => [2,2,1,1]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,2,2] => [2,2,2]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [2,3,1] => [3,2,1]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [2,3,1] => [3,2,1]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,3,1] => [3,2,1]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,4] => [4,2]
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [3,1,1,1] => [3,1,1,1]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,1,2] => [3,2,1]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [3,2,1] => [3,2,1]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,2,1] => [3,2,1]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,3] => [3,3]
=> 3
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [3,1,1,1] => [3,1,1,1]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [3,1,2] => [3,2,1]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [3,1,1,1] => [3,1,1,1]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [3,1,1,1] => [3,1,1,1]
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [3,1,2] => [3,2,1]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [3,2,1] => [3,2,1]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [3,2,1] => [3,2,1]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [3,2,1] => [3,2,1]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [3,3] => [3,3]
=> 3
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,1,1] => [4,1,1]
=> 3
Description
The spin of an integer partition.
The Ferrers shape of an integer partition $\lambda$ can be decomposed into border strips. The spin is then defined to be the total number of crossings of border strips of $\lambda$ with the vertical lines in the Ferrers shape.
The following example is taken from Appendix B in [1]: Let $\lambda = (5,5,4,4,2,1)$. Removing the border strips successively yields the sequence of partitions
$$(5,5,4,4,2,1), (4,3,3,1), (2,2), (1), ().$$
The first strip $(5,5,4,4,2,1) \setminus (4,3,3,1)$ crosses $4$ times, the second strip $(4,3,3,1) \setminus (2,2)$ crosses $3$ times, the strip $(2,2) \setminus (1)$ crosses $1$ time, and the remaining strip $(1) \setminus ()$ does not cross.
This yields the spin of $(5,5,4,4,2,1)$ to be $4+3+1 = 8$.
Matching statistic: St000320
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
St000320: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
St000320: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [2,1] => [2,1]
=> 1
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [3] => [3]
=> 2
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,1,1] => [2,1,1]
=> 1
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,2] => [2,2]
=> 1
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,1] => [3,1]
=> 2
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,1] => [3,1]
=> 2
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4] => [4]
=> 3
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1] => [2,1,1,1]
=> 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => [2,2,1]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => [2,2,1]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => [2,2,1]
=> 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,3] => [3,2]
=> 2
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,1,1] => [3,1,1]
=> 2
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2] => [3,2]
=> 2
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,1,1] => [3,1,1]
=> 2
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [3,1,1] => [3,1,1]
=> 2
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [3,2] => [3,2]
=> 2
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,1] => [4,1]
=> 3
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [4,1] => [4,1]
=> 3
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [4,1] => [4,1]
=> 3
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5] => [5]
=> 4
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1,1] => [2,1,1,1,1]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,1,1,2] => [2,2,1,1]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,1,2,1] => [2,2,1,1]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [2,1,2,1] => [2,2,1,1]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,1,3] => [3,2,1]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,2,1,1] => [2,2,1,1]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [2,2,2] => [2,2,2]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [2,2,1,1] => [2,2,1,1]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [2,2,1,1] => [2,2,1,1]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,2,2] => [2,2,2]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [2,3,1] => [3,2,1]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [2,3,1] => [3,2,1]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,3,1] => [3,2,1]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,4] => [4,2]
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [3,1,1,1] => [3,1,1,1]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,1,2] => [3,2,1]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [3,2,1] => [3,2,1]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,2,1] => [3,2,1]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,3] => [3,3]
=> 3
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [3,1,1,1] => [3,1,1,1]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [3,1,2] => [3,2,1]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [3,1,1,1] => [3,1,1,1]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [3,1,1,1] => [3,1,1,1]
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [3,1,2] => [3,2,1]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [3,2,1] => [3,2,1]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [3,2,1] => [3,2,1]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [3,2,1] => [3,2,1]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [3,3] => [3,3]
=> 3
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,1,1] => [4,1,1]
=> 3
Description
The dinv adjustment of an integer partition.
The Ferrers shape of an integer partition $\lambda = (\lambda_1,\ldots,\lambda_k)$ can be decomposed into border strips. For $0 \leq j < \lambda_1$ let $n_j$ be the length of the border strip starting at $(\lambda_1-j,0)$.
The dinv adjustment is then defined by
$$\sum_{j:n_j > 0}(\lambda_1-1-j).$$
The following example is taken from Appendix B in [2]: Let $\lambda=(5,5,4,4,2,1)$. Removing the border strips successively yields the sequence of partitions
$$(5,5,4,4,2,1),(4,3,3,1),(2,2),(1),(),$$
and we obtain $(n_0,\ldots,n_4) = (10,7,0,3,1)$.
The dinv adjustment is thus $4+3+1+0 = 8$.
Matching statistic: St000382
Mp00138: Dyck paths —to noncrossing partition⟶ Set partitions
Mp00171: Set partitions —intertwining number to dual major index⟶ Set partitions
Mp00128: Set partitions —to composition⟶ Integer compositions
St000382: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00171: Set partitions —intertwining number to dual major index⟶ Set partitions
Mp00128: Set partitions —to composition⟶ Integer compositions
St000382: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> {{1},{2}}
=> {{1},{2}}
=> [1,1] => 1
[1,1,0,0]
=> {{1,2}}
=> {{1,2}}
=> [2] => 2
[1,0,1,0,1,0]
=> {{1},{2},{3}}
=> {{1},{2},{3}}
=> [1,1,1] => 1
[1,0,1,1,0,0]
=> {{1},{2,3}}
=> {{1,3},{2}}
=> [2,1] => 2
[1,1,0,0,1,0]
=> {{1,2},{3}}
=> {{1,2},{3}}
=> [2,1] => 2
[1,1,0,1,0,0]
=> {{1,3},{2}}
=> {{1},{2,3}}
=> [1,2] => 1
[1,1,1,0,0,0]
=> {{1,2,3}}
=> {{1,2,3}}
=> [3] => 3
[1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> {{1},{2},{3},{4}}
=> [1,1,1,1] => 1
[1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> {{1,4},{2},{3}}
=> [2,1,1] => 2
[1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> {{1,3},{2},{4}}
=> [2,1,1] => 2
[1,0,1,1,0,1,0,0]
=> {{1},{2,4},{3}}
=> {{1},{2,4},{3}}
=> [1,2,1] => 1
[1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> {{1,3,4},{2}}
=> [3,1] => 3
[1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> {{1,2},{3},{4}}
=> [2,1,1] => 2
[1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> {{1,2,4},{3}}
=> [3,1] => 3
[1,1,0,1,0,0,1,0]
=> {{1,3},{2},{4}}
=> {{1},{2,3},{4}}
=> [1,2,1] => 1
[1,1,0,1,0,1,0,0]
=> {{1,4},{2},{3}}
=> {{1},{2},{3,4}}
=> [1,1,2] => 1
[1,1,0,1,1,0,0,0]
=> {{1,3,4},{2}}
=> {{1,4},{2,3}}
=> [2,2] => 2
[1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> {{1,2,3},{4}}
=> [3,1] => 3
[1,1,1,0,0,1,0,0]
=> {{1,4},{2,3}}
=> {{1,3},{2,4}}
=> [2,2] => 2
[1,1,1,0,1,0,0,0]
=> {{1,2,4},{3}}
=> {{1,2},{3,4}}
=> [2,2] => 2
[1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> {{1,2,3,4}}
=> [4] => 4
[1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5}}
=> {{1},{2},{3},{4},{5}}
=> [1,1,1,1,1] => 1
[1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5}}
=> {{1,5},{2},{3},{4}}
=> [2,1,1,1] => 2
[1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3,4},{5}}
=> {{1,4},{2},{3},{5}}
=> [2,1,1,1] => 2
[1,0,1,0,1,1,0,1,0,0]
=> {{1},{2},{3,5},{4}}
=> {{1},{2,5},{3},{4}}
=> [1,2,1,1] => 1
[1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> {{1,4,5},{2},{3}}
=> [3,1,1] => 3
[1,0,1,1,0,0,1,0,1,0]
=> {{1},{2,3},{4},{5}}
=> {{1,3},{2},{4},{5}}
=> [2,1,1,1] => 2
[1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> {{1,3,5},{2},{4}}
=> [3,1,1] => 3
[1,0,1,1,0,1,0,0,1,0]
=> {{1},{2,4},{3},{5}}
=> {{1},{2,4},{3},{5}}
=> [1,2,1,1] => 1
[1,0,1,1,0,1,0,1,0,0]
=> {{1},{2,5},{3},{4}}
=> {{1},{2},{3,5},{4}}
=> [1,1,2,1] => 1
[1,0,1,1,0,1,1,0,0,0]
=> {{1},{2,4,5},{3}}
=> {{1,5},{2,4},{3}}
=> [2,2,1] => 2
[1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> {{1,3,4},{2},{5}}
=> [3,1,1] => 3
[1,0,1,1,1,0,0,1,0,0]
=> {{1},{2,5},{3,4}}
=> {{1,4},{2,5},{3}}
=> [2,2,1] => 2
[1,0,1,1,1,0,1,0,0,0]
=> {{1},{2,3,5},{4}}
=> {{1,3},{2,5},{4}}
=> [2,2,1] => 2
[1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> {{1,3,4,5},{2}}
=> [4,1] => 4
[1,1,0,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5}}
=> {{1,2},{3},{4},{5}}
=> [2,1,1,1] => 2
[1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5}}
=> {{1,2,5},{3},{4}}
=> [3,1,1] => 3
[1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> {{1,2,4},{3},{5}}
=> [3,1,1] => 3
[1,1,0,0,1,1,0,1,0,0]
=> {{1,2},{3,5},{4}}
=> {{1,2},{3,5},{4}}
=> [2,2,1] => 2
[1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> {{1,2,4,5},{3}}
=> [4,1] => 4
[1,1,0,1,0,0,1,0,1,0]
=> {{1,3},{2},{4},{5}}
=> {{1},{2,3},{4},{5}}
=> [1,2,1,1] => 1
[1,1,0,1,0,0,1,1,0,0]
=> {{1,3},{2},{4,5}}
=> {{1,5},{2,3},{4}}
=> [2,2,1] => 2
[1,1,0,1,0,1,0,0,1,0]
=> {{1,4},{2},{3},{5}}
=> {{1},{2},{3,4},{5}}
=> [1,1,2,1] => 1
[1,1,0,1,0,1,0,1,0,0]
=> {{1,5},{2},{3},{4}}
=> {{1},{2},{3},{4,5}}
=> [1,1,1,2] => 1
[1,1,0,1,0,1,1,0,0,0]
=> {{1,4,5},{2},{3}}
=> {{1,5},{2},{3,4}}
=> [2,1,2] => 2
[1,1,0,1,1,0,0,0,1,0]
=> {{1,3,4},{2},{5}}
=> {{1,4},{2,3},{5}}
=> [2,2,1] => 2
[1,1,0,1,1,0,0,1,0,0]
=> {{1,5},{2},{3,4}}
=> {{1,4},{2},{3,5}}
=> [2,1,2] => 2
[1,1,0,1,1,0,1,0,0,0]
=> {{1,3,5},{2},{4}}
=> {{1},{2,3,5},{4}}
=> [1,3,1] => 1
[1,1,0,1,1,1,0,0,0,0]
=> {{1,3,4,5},{2}}
=> {{1,4,5},{2,3}}
=> [3,2] => 3
[1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> {{1,2,3},{4},{5}}
=> [3,1,1] => 3
Description
The first part of an integer composition.
Matching statistic: St000445
(load all 19 compositions to match this statistic)
(load all 19 compositions to match this statistic)
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
St000445: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
St000445: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,1] => [1,0,1,0]
=> [1,1,0,1,0,0]
=> 1 = 2 - 1
[1,1,0,0]
=> [2] => [1,1,0,0]
=> [1,1,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0]
=> [1,1,1] => [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 2 = 3 - 1
[1,0,1,1,0,0]
=> [1,2] => [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 0 = 1 - 1
[1,1,0,0,1,0]
=> [2,1] => [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1 = 2 - 1
[1,1,0,1,0,0]
=> [2,1] => [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1 = 2 - 1
[1,1,1,0,0,0]
=> [3] => [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 4 - 1
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1 = 2 - 1
[1,0,1,1,0,1,0,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1 = 2 - 1
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2 = 3 - 1
[1,1,0,0,1,1,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 0 = 1 - 1
[1,1,0,1,0,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2 = 3 - 1
[1,1,0,1,0,1,0,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2 = 3 - 1
[1,1,0,1,1,0,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 0 = 1 - 1
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1 = 2 - 1
[1,1,1,0,0,1,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1 = 2 - 1
[1,1,1,0,1,0,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1 = 2 - 1
[1,1,1,1,0,0,0,0]
=> [4] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 4 = 5 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 2 = 3 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> 2 = 3 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> 2 = 3 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 1 = 2 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> 2 = 3 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> 2 = 3 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> 2 = 3 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 1 = 2 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 1 = 2 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 1 = 2 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 3 = 4 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 3 = 4 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 3 = 4 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 3 = 4 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 1 = 2 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 1 = 2 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 1 = 2 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> 2 = 3 - 1
Description
The number of rises of length 1 of a Dyck path.
Matching statistic: St000475
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
St000475: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
St000475: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [2,1] => [2,1]
=> 1 = 2 - 1
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [3] => [3]
=> 0 = 1 - 1
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,1,1] => [2,1,1]
=> 2 = 3 - 1
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,2] => [2,2]
=> 0 = 1 - 1
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,1] => [3,1]
=> 1 = 2 - 1
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,1] => [3,1]
=> 1 = 2 - 1
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4] => [4]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1] => [2,1,1,1]
=> 3 = 4 - 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => [2,2,1]
=> 1 = 2 - 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => [2,2,1]
=> 1 = 2 - 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => [2,2,1]
=> 1 = 2 - 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,3] => [3,2]
=> 0 = 1 - 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,1,1] => [3,1,1]
=> 2 = 3 - 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2] => [3,2]
=> 0 = 1 - 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,1,1] => [3,1,1]
=> 2 = 3 - 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [3,1,1] => [3,1,1]
=> 2 = 3 - 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [3,2] => [3,2]
=> 0 = 1 - 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,1] => [4,1]
=> 1 = 2 - 1
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [4,1] => [4,1]
=> 1 = 2 - 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [4,1] => [4,1]
=> 1 = 2 - 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5] => [5]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1,1] => [2,1,1,1,1]
=> 4 = 5 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,1,1,2] => [2,2,1,1]
=> 2 = 3 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,1,2,1] => [2,2,1,1]
=> 2 = 3 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [2,1,2,1] => [2,2,1,1]
=> 2 = 3 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,1,3] => [3,2,1]
=> 1 = 2 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,2,1,1] => [2,2,1,1]
=> 2 = 3 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [2,2,2] => [2,2,2]
=> 0 = 1 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [2,2,1,1] => [2,2,1,1]
=> 2 = 3 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [2,2,1,1] => [2,2,1,1]
=> 2 = 3 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,2,2] => [2,2,2]
=> 0 = 1 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [2,3,1] => [3,2,1]
=> 1 = 2 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [2,3,1] => [3,2,1]
=> 1 = 2 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,3,1] => [3,2,1]
=> 1 = 2 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,4] => [4,2]
=> 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [3,1,1,1] => [3,1,1,1]
=> 3 = 4 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,1,2] => [3,2,1]
=> 1 = 2 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [3,2,1] => [3,2,1]
=> 1 = 2 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,2,1] => [3,2,1]
=> 1 = 2 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,3] => [3,3]
=> 0 = 1 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [3,1,1,1] => [3,1,1,1]
=> 3 = 4 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [3,1,2] => [3,2,1]
=> 1 = 2 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [3,1,1,1] => [3,1,1,1]
=> 3 = 4 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [3,1,1,1] => [3,1,1,1]
=> 3 = 4 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [3,1,2] => [3,2,1]
=> 1 = 2 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [3,2,1] => [3,2,1]
=> 1 = 2 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [3,2,1] => [3,2,1]
=> 1 = 2 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [3,2,1] => [3,2,1]
=> 1 = 2 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [3,3] => [3,3]
=> 0 = 1 - 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,1,1] => [4,1,1]
=> 2 = 3 - 1
Description
The number of parts equal to 1 in a partition.
The following 197 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001484The number of singletons of an integer partition. St000142The number of even parts of a partition. St001091The number of parts in an integer partition whose next smaller part has the same size. St000259The diameter of a connected graph. St000931The number of occurrences of the pattern UUU in a Dyck path. St000441The number of successions of a permutation. St000674The number of hills of a Dyck path. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St001226The number of integers i such that the radical of the i-th indecomposable projective module has vanishing first extension group with the Jacobson radical J in the corresponding Nakayama algebra. St001492The number of simple modules that do not appear in the socle of the regular module or have no nontrivial selfextensions with the regular module in the corresponding Nakayama algebra. St001640The number of ascent tops in the permutation such that all smaller elements appear before. St001061The number of indices that are both descents and recoils of a permutation. St000765The number of weak records in an integer composition. St001461The number of topologically connected components of the chord diagram of a permutation. St000214The number of adjacencies of a permutation. St000237The number of small exceedances. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001498The normalised height of a Nakayama algebra with magnitude 1. St001933The largest multiplicity of a part in an integer partition. St000460The hook length of the last cell along the main diagonal of an integer partition. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000031The number of cycles in the cycle decomposition of a permutation. St001631The number of simple modules $S$ with $dim Ext^1(S,A)=1$ in the incidence algebra $A$ of the poset. St000993The multiplicity of the largest part of an integer partition. St000542The number of left-to-right-minima of a permutation. St001875The number of simple modules with projective dimension at most 1. St000541The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. St000680The Grundy value for Hackendot on posets. St000717The number of ordinal summands of a poset. St000906The length of the shortest maximal chain in a poset. St000474Dyson's crank of a partition. St000667The greatest common divisor of the parts of the partition. St000668The least common multiple of the parts of the partition. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000870The product of the hook lengths of the diagonal cells in an integer partition. St001279The sum of the parts of an integer partition that are at least two. St001360The number of covering relations in Young's lattice below a partition. St001389The number of partitions of the same length below the given integer partition. St001527The cyclic permutation representation number of an integer partition. St001571The Cartan determinant of the integer partition. St000264The girth of a graph, which is not a tree. St001568The smallest positive integer that does not appear twice in the partition. St001060The distinguishing index of a graph. St000247The number of singleton blocks of a set partition. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St000925The number of topologically connected components of a set partition. St000248The number of anti-singletons of a set partition. St000260The radius of a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001216The number of indecomposable injective modules in the corresponding Nakayama algebra that have non-vanishing second Ext-group with the regular module. St001223Number of indecomposable projective non-injective modules P such that the modules X and Y in a an Auslander-Reiten sequence ending at P are torsionless. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St001066The number of simple reflexive modules in the corresponding Nakayama algebra. St001483The number of simple module modules that appear in the socle of the regular module but have no nontrivial selfextensions with the regular module. St000118The number of occurrences of the contiguous pattern [.,[.,[.,.]]] in a binary tree. St001126Number of simple module that are 1-regular in the corresponding Nakayama algebra. St000887The maximal number of nonzero entries on a diagonal of a permutation matrix. St001390The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. St001172The number of 1-rises at odd height of a Dyck path. St000986The multiplicity of the eigenvalue zero of the adjacency matrix of the graph. St000723The maximal cardinality of a set of vertices with the same neighbourhood in a graph. St001432The order dimension of the partition. St001024Maximum of dominant dimensions of the simple modules in the Nakayama algebra corresponding to the Dyck path. St000335The difference of lower and upper interactions. St001201The grade of the simple module $S_0$ in the special CNakayama algebra corresponding to the Dyck path. St000365The number of double ascents of a permutation. St000366The number of double descents of a permutation. St000371The number of mid points of decreasing subsequences of length 3 in a permutation. St000731The number of double exceedences of a permutation. St000725The smallest label of a leaf of the increasing binary tree associated to a permutation. St000454The largest eigenvalue of a graph if it is integral. St000358The number of occurrences of the pattern 31-2. St000732The number of double deficiencies of a permutation. St000836The number of descents of distance 2 of a permutation. St001727The number of invisible inversions of a permutation. St001744The number of occurrences of the arrow pattern 1-2 with an arrow from 1 to 2 in a permutation. St001810The number of fixed points of a permutation smaller than its largest moved point. St000648The number of 2-excedences of a permutation. St001545The second Elser number of a connected graph. St000215The number of adjacencies of a permutation, zero appended. St000022The number of fixed points of a permutation. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000956The maximal displacement of a permutation. St001733The number of weak left to right maxima of a Dyck path. St000996The number of exclusive left-to-right maxima of a permutation. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St000359The number of occurrences of the pattern 23-1. St000374The number of exclusive right-to-left minima of a permutation. St000724The label of the leaf of the path following the smaller label in the increasing binary tree associated to a permutation. St001004The number of indices that are either left-to-right maxima or right-to-left minima. St000007The number of saliances of the permutation. St000877The depth of the binary word interpreted as a path. St000937The number of positive values of the symmetric group character corresponding to the partition. St000939The number of characters of the symmetric group whose value on the partition is positive. St001405The number of bonds in a permutation. St000742The number of big ascents of a permutation after prepending zero. St000871The number of very big ascents of a permutation. St001086The number of occurrences of the consecutive pattern 132 in a permutation. St000223The number of nestings in the permutation. St000373The number of weak exceedences of a permutation that are also mid-points of a decreasing subsequence of length $3$. St000153The number of adjacent cycles of a permutation. St000526The number of posets with combinatorially isomorphic order polytopes. St000619The number of cyclic descents of a permutation. St000990The first ascent of a permutation. St001105The number of greedy linear extensions of a poset. St001106The number of supergreedy linear extensions of a poset. St001000Number of indecomposable modules with projective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000895The number of ones on the main diagonal of an alternating sign matrix. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001948The number of augmented double ascents of a permutation. St000864The number of circled entries of the shifted recording tableau of a permutation. St001238The number of simple modules S such that the Auslander-Reiten translate of S is isomorphic to the Nakayama functor applied to the second syzygy of S. St000039The number of crossings of a permutation. St000314The number of left-to-right-maxima of a permutation. St000352The Elizalde-Pak rank of a permutation. St000654The first descent of a permutation. St000991The number of right-to-left minima of a permutation. St000221The number of strong fixed points of a permutation. St000239The number of small weak excedances. St000241The number of cyclical small excedances. St000317The cycle descent number of a permutation. St000338The number of pixed points of a permutation. St000485The length of the longest cycle of a permutation. St000989The number of final rises of a permutation. St001005The number of indices for a permutation that are either left-to-right maxima or right-to-left minima but not both. St001429The number of negative entries in a signed permutation. St000528The height of a poset. St000907The number of maximal antichains of minimal length in a poset. St000911The number of maximal antichains of maximal size in a poset. St001636The number of indecomposable injective modules with projective dimension at most one in the incidence algebra of the poset. St000080The rank of the poset. St001782The order of rowmotion on the set of order ideals of a poset. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001596The number of two-by-two squares inside a skew partition. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St000327The number of cover relations in a poset. St001637The number of (upper) dissectors of a poset. St001668The number of points of the poset minus the width of the poset. St000383The last part of an integer composition. St000982The length of the longest constant subword. St000028The number of stack-sorts needed to sort a permutation. St001686The order of promotion on a Gelfand-Tsetlin pattern. St000741The Colin de Verdière graph invariant. St000455The second largest eigenvalue of a graph if it is integral. St001330The hat guessing number of a graph. St000392The length of the longest run of ones in a binary word. St001862The number of crossings of a signed permutation. St000075The orbit size of a standard tableau under promotion. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000873The aix statistic of a permutation. St001618The cardinality of the Frattini sublattice of a lattice. St001115The number of even descents of a permutation. St000983The length of the longest alternating subword. St000910The number of maximal chains of minimal length in a poset. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St000308The height of the tree associated to a permutation. St000381The largest part of an integer composition. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St001566The length of the longest arithmetic progression in a permutation. St001730The number of times the path corresponding to a binary word crosses the base line. St000035The number of left outer peaks of a permutation. St000647The number of big descents of a permutation. St000834The number of right outer peaks of a permutation. St000899The maximal number of repetitions of an integer composition. St000942The number of critical left to right maxima of the parking functions. St001192The maximal dimension of $Ext_A^2(S,A)$ for a simple module $S$ over the corresponding Nakayama algebra $A$. St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001582The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order. St001904The length of the initial strictly increasing segment of a parking function. St001937The size of the center of a parking function. St000236The number of cyclical small weak excedances. St000649The number of 3-excedences of a permutation. St000894The trace of an alternating sign matrix. St001085The number of occurrences of the vincular pattern |21-3 in a permutation. St001231The number of simple modules that are non-projective and non-injective with the property that they have projective dimension equal to one and that also the Auslander-Reiten translates of the module and the inverse Auslander-Reiten translate of the module have the same projective dimension. St001234The number of indecomposable three dimensional modules with projective dimension one. St001239The largest vector space dimension of the double dual of a simple module in the corresponding Nakayama algebra. St001267The length of the Lyndon factorization of the binary word. St001290The first natural number n such that the tensor product of n copies of D(A) is zero for the corresponding Nakayama algebra A. St001292The injective dimension of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001294The maximal torsionfree index of a simple non-projective module in the corresponding Nakayama algebra. St001296The maximal torsionfree index of an indecomposable non-projective module in the corresponding Nakayama algebra. St001372The length of a longest cyclic run of ones of a binary word. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St001557The number of inversions of the second entry of a permutation. St001589The nesting number of a perfect matching. St001960The number of descents of a permutation minus one if its first entry is not one. St001240The number of indecomposable modules e_i J^2 that have injective dimension at most one in the corresponding Nakayama algebra St001530The depth of a Dyck path.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!