Your data matches 101 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000655: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> 1
[1,0,1,0]
=> 1
[1,1,0,0]
=> 2
[1,0,1,0,1,0]
=> 1
[1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0]
=> 1
[1,1,1,0,0,0]
=> 3
[1,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,0]
=> 1
[1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,0]
=> 1
[1,1,0,1,1,0,0,0]
=> 2
[1,1,1,0,0,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> 4
[1,0,1,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> 2
Description
The length of the minimal rise of a Dyck path. For the length of a maximal rise, see [[St000444]].
Mp00102: Dyck paths rise compositionInteger compositions
St000657: Integer compositions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => 1
[1,0,1,0]
=> [1,1] => 1
[1,1,0,0]
=> [2] => 2
[1,0,1,0,1,0]
=> [1,1,1] => 1
[1,0,1,1,0,0]
=> [1,2] => 1
[1,1,0,0,1,0]
=> [2,1] => 1
[1,1,0,1,0,0]
=> [2,1] => 1
[1,1,1,0,0,0]
=> [3] => 3
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => 1
[1,0,1,0,1,1,0,0]
=> [1,1,2] => 1
[1,0,1,1,0,0,1,0]
=> [1,2,1] => 1
[1,0,1,1,0,1,0,0]
=> [1,2,1] => 1
[1,0,1,1,1,0,0,0]
=> [1,3] => 1
[1,1,0,0,1,0,1,0]
=> [2,1,1] => 1
[1,1,0,0,1,1,0,0]
=> [2,2] => 2
[1,1,0,1,0,0,1,0]
=> [2,1,1] => 1
[1,1,0,1,0,1,0,0]
=> [2,1,1] => 1
[1,1,0,1,1,0,0,0]
=> [2,2] => 2
[1,1,1,0,0,0,1,0]
=> [3,1] => 1
[1,1,1,0,0,1,0,0]
=> [3,1] => 1
[1,1,1,0,1,0,0,0]
=> [3,1] => 1
[1,1,1,1,0,0,0,0]
=> [4] => 4
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,2,1,1] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1] => 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3] => 2
Description
The smallest part of an integer composition.
Mp00102: Dyck paths rise compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St000685: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1,0]
=> 1
[1,0,1,0]
=> [1,1] => [1,0,1,0]
=> 2
[1,1,0,0]
=> [2] => [1,1,0,0]
=> 1
[1,0,1,0,1,0]
=> [1,1,1] => [1,0,1,0,1,0]
=> 3
[1,0,1,1,0,0]
=> [1,2] => [1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> [2,1] => [1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0]
=> [2,1] => [1,1,0,0,1,0]
=> 1
[1,1,1,0,0,0]
=> [3] => [1,1,1,0,0,0]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,0,1,0,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,1,0,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [4] => [1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 1
Description
The dominant dimension of the LNakayama algebra associated to a Dyck path. To every Dyck path there is an LNakayama algebra associated as described in [[St000684]].
Mp00025: Dyck paths to 132-avoiding permutationPermutations
Mp00061: Permutations to increasing treeBinary trees
Mp00010: Binary trees to ordered tree: left child = left brotherOrdered trees
St000700: Ordered trees ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [.,.]
=> [[]]
=> 1
[1,0,1,0]
=> [2,1] => [[.,.],.]
=> [[],[]]
=> 1
[1,1,0,0]
=> [1,2] => [.,[.,.]]
=> [[[]]]
=> 2
[1,0,1,0,1,0]
=> [3,2,1] => [[[.,.],.],.]
=> [[],[],[]]
=> 1
[1,0,1,1,0,0]
=> [2,3,1] => [[.,[.,.]],.]
=> [[[]],[]]
=> 1
[1,1,0,0,1,0]
=> [3,1,2] => [[.,.],[.,.]]
=> [[],[[]]]
=> 1
[1,1,0,1,0,0]
=> [2,1,3] => [[.,.],[.,.]]
=> [[],[[]]]
=> 1
[1,1,1,0,0,0]
=> [1,2,3] => [.,[.,[.,.]]]
=> [[[[]]]]
=> 3
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [[[[.,.],.],.],.]
=> [[],[],[],[]]
=> 1
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [[[.,[.,.]],.],.]
=> [[[]],[],[]]
=> 1
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [[[.,.],[.,.]],.]
=> [[],[[]],[]]
=> 1
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [[[.,.],[.,.]],.]
=> [[],[[]],[]]
=> 1
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [[.,[.,[.,.]]],.]
=> [[[[]]],[]]
=> 1
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [[[.,.],.],[.,.]]
=> [[],[],[[]]]
=> 1
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [[.,[.,.]],[.,.]]
=> [[[]],[[]]]
=> 2
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [[[.,.],.],[.,.]]
=> [[],[],[[]]]
=> 1
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [[[.,.],.],[.,.]]
=> [[],[],[[]]]
=> 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [[.,[.,.]],[.,.]]
=> [[[]],[[]]]
=> 2
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [[.,.],[.,[.,.]]]
=> [[],[[[]]]]
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [[.,.],[.,[.,.]]]
=> [[],[[[]]]]
=> 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> [[],[[[]]]]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[[[[]]]]]
=> 4
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [[[[[.,.],.],.],.],.]
=> [[],[],[],[],[]]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [[[[.,[.,.]],.],.],.]
=> [[[]],[],[],[]]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [[[[.,.],[.,.]],.],.]
=> [[],[[]],[],[]]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [[[[.,.],[.,.]],.],.]
=> [[],[[]],[],[]]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [[[.,[.,[.,.]]],.],.]
=> [[[[]]],[],[]]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [[[[.,.],.],[.,.]],.]
=> [[],[],[[]],[]]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [[[.,[.,.]],[.,.]],.]
=> [[[]],[[]],[]]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [[[[.,.],.],[.,.]],.]
=> [[],[],[[]],[]]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [[[[.,.],.],[.,.]],.]
=> [[],[],[[]],[]]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [[[.,[.,.]],[.,.]],.]
=> [[[]],[[]],[]]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [[[.,.],[.,[.,.]]],.]
=> [[],[[[]]],[]]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [[[.,.],[.,[.,.]]],.]
=> [[],[[[]]],[]]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [[[.,.],[.,[.,.]]],.]
=> [[],[[[]]],[]]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [[.,[.,[.,[.,.]]]],.]
=> [[[[[]]]],[]]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [[[[.,.],.],.],[.,.]]
=> [[],[],[],[[]]]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [[[.,[.,.]],.],[.,.]]
=> [[[]],[],[[]]]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [[[.,.],[.,.]],[.,.]]
=> [[],[[]],[[]]]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [[[.,.],[.,.]],[.,.]]
=> [[],[[]],[[]]]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [[.,[.,[.,.]]],[.,.]]
=> [[[[]]],[[]]]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [[[[.,.],.],.],[.,.]]
=> [[],[],[],[[]]]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [[[.,[.,.]],.],[.,.]]
=> [[[]],[],[[]]]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [[[[.,.],.],.],[.,.]]
=> [[],[],[],[[]]]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [[[[.,.],.],.],[.,.]]
=> [[],[],[],[[]]]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [[[.,[.,.]],.],[.,.]]
=> [[[]],[],[[]]]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [[[.,.],[.,.]],[.,.]]
=> [[],[[]],[[]]]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [[[.,.],[.,.]],[.,.]]
=> [[],[[]],[[]]]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [[[.,.],[.,.]],[.,.]]
=> [[],[[]],[[]]]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [[.,[.,[.,.]]],[.,.]]
=> [[[[]]],[[]]]
=> 2
Description
The protection number of an ordered tree. This is the minimal distance from the root to a leaf.
Mp00138: Dyck paths to noncrossing partitionSet partitions
St001075: Set partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> {{1}}
=> ? = 1
[1,0,1,0]
=> {{1},{2}}
=> 1
[1,1,0,0]
=> {{1,2}}
=> 2
[1,0,1,0,1,0]
=> {{1},{2},{3}}
=> 1
[1,0,1,1,0,0]
=> {{1},{2,3}}
=> 1
[1,1,0,0,1,0]
=> {{1,2},{3}}
=> 1
[1,1,0,1,0,0]
=> {{1,3},{2}}
=> 1
[1,1,1,0,0,0]
=> {{1,2,3}}
=> 3
[1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> 1
[1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> 1
[1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> 1
[1,0,1,1,0,1,0,0]
=> {{1},{2,4},{3}}
=> 1
[1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> 1
[1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> 1
[1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> 2
[1,1,0,1,0,0,1,0]
=> {{1,3},{2},{4}}
=> 1
[1,1,0,1,0,1,0,0]
=> {{1,4},{2},{3}}
=> 1
[1,1,0,1,1,0,0,0]
=> {{1,3,4},{2}}
=> 1
[1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> 1
[1,1,1,0,0,1,0,0]
=> {{1,4},{2,3}}
=> 2
[1,1,1,0,1,0,0,0]
=> {{1,2,4},{3}}
=> 1
[1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 4
[1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5}}
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5}}
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3,4},{5}}
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> {{1},{2},{3,5},{4}}
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> {{1},{2,3},{4},{5}}
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> {{1},{2,4},{3},{5}}
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> {{1},{2,5},{3},{4}}
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> {{1},{2,4,5},{3}}
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> {{1},{2,5},{3,4}}
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> {{1},{2,3,5},{4}}
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5}}
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5}}
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> {{1,2},{3,5},{4}}
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> {{1,3},{2},{4},{5}}
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> {{1,3},{2},{4,5}}
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> {{1,4},{2},{3},{5}}
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> {{1,5},{2},{3},{4}}
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> {{1,4,5},{2},{3}}
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> {{1,3,4},{2},{5}}
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> {{1,5},{2},{3,4}}
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> {{1,3,5},{2},{4}}
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> {{1,3,4,5},{2}}
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> 1
Description
The minimal size of a block of a set partition.
Mp00138: Dyck paths to noncrossing partitionSet partitions
Mp00079: Set partitions shapeInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St000993: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> {{1}}
=> [1]
=> [1]
=> ? = 1
[1,0,1,0]
=> {{1},{2}}
=> [1,1]
=> [2]
=> 1
[1,1,0,0]
=> {{1,2}}
=> [2]
=> [1,1]
=> 2
[1,0,1,0,1,0]
=> {{1},{2},{3}}
=> [1,1,1]
=> [3]
=> 1
[1,0,1,1,0,0]
=> {{1},{2,3}}
=> [2,1]
=> [2,1]
=> 1
[1,1,0,0,1,0]
=> {{1,2},{3}}
=> [2,1]
=> [2,1]
=> 1
[1,1,0,1,0,0]
=> {{1,3},{2}}
=> [2,1]
=> [2,1]
=> 1
[1,1,1,0,0,0]
=> {{1,2,3}}
=> [3]
=> [1,1,1]
=> 3
[1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> [1,1,1,1]
=> [4]
=> 1
[1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> [2,1,1]
=> [3,1]
=> 1
[1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> [2,1,1]
=> [3,1]
=> 1
[1,0,1,1,0,1,0,0]
=> {{1},{2,4},{3}}
=> [2,1,1]
=> [3,1]
=> 1
[1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> [3,1]
=> [2,1,1]
=> 1
[1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> [2,1,1]
=> [3,1]
=> 1
[1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> [2,2]
=> [2,2]
=> 2
[1,1,0,1,0,0,1,0]
=> {{1,3},{2},{4}}
=> [2,1,1]
=> [3,1]
=> 1
[1,1,0,1,0,1,0,0]
=> {{1,4},{2},{3}}
=> [2,1,1]
=> [3,1]
=> 1
[1,1,0,1,1,0,0,0]
=> {{1,3,4},{2}}
=> [3,1]
=> [2,1,1]
=> 1
[1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> [3,1]
=> [2,1,1]
=> 1
[1,1,1,0,0,1,0,0]
=> {{1,4},{2,3}}
=> [2,2]
=> [2,2]
=> 2
[1,1,1,0,1,0,0,0]
=> {{1,2,4},{3}}
=> [3,1]
=> [2,1,1]
=> 1
[1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> [4]
=> [1,1,1,1]
=> 4
[1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5}}
=> [1,1,1,1,1]
=> [5]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5}}
=> [2,1,1,1]
=> [4,1]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3,4},{5}}
=> [2,1,1,1]
=> [4,1]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> {{1},{2},{3,5},{4}}
=> [2,1,1,1]
=> [4,1]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> [3,1,1]
=> [3,1,1]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> {{1},{2,3},{4},{5}}
=> [2,1,1,1]
=> [4,1]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> [2,2,1]
=> [3,2]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> {{1},{2,4},{3},{5}}
=> [2,1,1,1]
=> [4,1]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> {{1},{2,5},{3},{4}}
=> [2,1,1,1]
=> [4,1]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> {{1},{2,4,5},{3}}
=> [3,1,1]
=> [3,1,1]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> [3,1,1]
=> [3,1,1]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> {{1},{2,5},{3,4}}
=> [2,2,1]
=> [3,2]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> {{1},{2,3,5},{4}}
=> [3,1,1]
=> [3,1,1]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> [4,1]
=> [2,1,1,1]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5}}
=> [2,1,1,1]
=> [4,1]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5}}
=> [2,2,1]
=> [3,2]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> [2,2,1]
=> [3,2]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> {{1,2},{3,5},{4}}
=> [2,2,1]
=> [3,2]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> [3,2]
=> [2,2,1]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> {{1,3},{2},{4},{5}}
=> [2,1,1,1]
=> [4,1]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> {{1,3},{2},{4,5}}
=> [2,2,1]
=> [3,2]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> {{1,4},{2},{3},{5}}
=> [2,1,1,1]
=> [4,1]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> {{1,5},{2},{3},{4}}
=> [2,1,1,1]
=> [4,1]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> {{1,4,5},{2},{3}}
=> [3,1,1]
=> [3,1,1]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> {{1,3,4},{2},{5}}
=> [3,1,1]
=> [3,1,1]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> {{1,5},{2},{3,4}}
=> [2,2,1]
=> [3,2]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> {{1,3,5},{2},{4}}
=> [3,1,1]
=> [3,1,1]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> {{1,3,4,5},{2}}
=> [4,1]
=> [2,1,1,1]
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> [3,1,1]
=> [3,1,1]
=> 1
Description
The multiplicity of the largest part of an integer partition.
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
Mp00061: Permutations to increasing treeBinary trees
Mp00012: Binary trees to Dyck path: up step, left tree, down step, right treeDyck paths
St001038: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [.,.]
=> [1,0]
=> ? = 1
[1,0,1,0]
=> [1,2] => [.,[.,.]]
=> [1,0,1,0]
=> 2
[1,1,0,0]
=> [2,1] => [[.,.],.]
=> [1,1,0,0]
=> 1
[1,0,1,0,1,0]
=> [1,2,3] => [.,[.,[.,.]]]
=> [1,0,1,0,1,0]
=> 3
[1,0,1,1,0,0]
=> [1,3,2] => [.,[[.,.],.]]
=> [1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> [2,1,3] => [[.,.],[.,.]]
=> [1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0]
=> [2,3,1] => [[.,[.,.]],.]
=> [1,1,0,1,0,0]
=> 1
[1,1,1,0,0,0]
=> [3,1,2] => [[.,.],[.,.]]
=> [1,1,0,0,1,0]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [.,[.,[[.,.],.]]]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [.,[[.,.],[.,.]]]
=> [1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [.,[[.,[.,.]],.]]
=> [1,0,1,1,0,1,0,0]
=> 1
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [.,[[.,.],[.,.]]]
=> [1,0,1,1,0,0,1,0]
=> 2
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [[.,.],[[.,.],.]]
=> [1,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [[.,[.,.]],[.,.]]
=> [1,1,0,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [[.,[.,[.,.]]],.]
=> [1,1,0,1,0,1,0,0]
=> 1
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [[.,[.,.]],[.,.]]
=> [1,1,0,1,0,0,1,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [[.,.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [[.,.],[[.,.],.]]
=> [1,1,0,0,1,1,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [[.,[.,.]],[.,.]]
=> [1,1,0,1,0,0,1,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [[.,.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [.,[.,[[.,[.,.]],.]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [.,[.,[[.,.],[.,.]]]]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [.,[[.,[.,.]],[.,.]]]
=> [1,0,1,1,0,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [.,[[.,[.,[.,.]]],.]]
=> [1,0,1,1,0,1,0,1,0,0]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [.,[[.,[.,.]],[.,.]]]
=> [1,0,1,1,0,1,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [.,[[.,.],[.,[.,.]]]]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [.,[[.,.],[[.,.],.]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> [1,0,1,1,0,1,0,0,1,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [.,[[.,.],[.,[.,.]]]]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [[.,.],[.,[.,[.,.]]]]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [[.,.],[.,[[.,.],.]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [[.,.],[[.,.],[.,.]]]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [[.,.],[[.,[.,.]],.]]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [[.,.],[[.,.],[.,.]]]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [[.,[.,.]],[.,[.,.]]]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [[.,[.,.]],[[.,.],.]]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [[.,[.,[.,.]]],[.,.]]
=> [1,1,0,1,0,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [[.,[.,[.,[.,.]]]],.]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [[.,[.,[.,.]]],[.,.]]
=> [1,1,0,1,0,1,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [[.,[.,.]],[.,[.,.]]]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [[.,[.,.]],[[.,.],.]]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [[.,[.,[.,.]]],[.,.]]
=> [1,1,0,1,0,1,0,0,1,0]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [[.,[.,.]],[.,[.,.]]]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [[.,.],[.,[.,[.,.]]]]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
Description
The minimal height of a column in the parallelogram polyomino associated with the Dyck path.
Mp00023: Dyck paths to non-crossing permutationPermutations
Mp00108: Permutations cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000667: Integer partitions ⟶ ℤResult quality: 43% values known / values provided: 99%distinct values known / distinct values provided: 43%
Values
[1,0]
=> [1] => [1]
=> []
=> ? = 1
[1,0,1,0]
=> [1,2] => [1,1]
=> [1]
=> 1
[1,1,0,0]
=> [2,1] => [2]
=> []
=> ? = 2
[1,0,1,0,1,0]
=> [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,0]
=> [1,3,2] => [2,1]
=> [1]
=> 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1]
=> [1]
=> 1
[1,1,0,1,0,0]
=> [2,3,1] => [3]
=> []
=> ? = 3
[1,1,1,0,0,0]
=> [3,2,1] => [2,1]
=> [1]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [3,1]
=> [1]
=> 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,2]
=> [2]
=> 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,1]
=> [1]
=> 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4]
=> []
=> ? = 4
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [3,1]
=> [1]
=> 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [3,1]
=> [1]
=> 1
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [2,2]
=> [2]
=> 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [3,1,1]
=> [1,1]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [2,2,1]
=> [2,1]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [3,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [4,1]
=> [1]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [3,1,1]
=> [1,1]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [3,1,1]
=> [1,1]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [2,2,1]
=> [2,1]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,2,1]
=> [2,1]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,2,1]
=> [2,1]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [3,2]
=> [2]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,2,1]
=> [2,1]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,1,1]
=> [1,1]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,2]
=> [2]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,1]
=> [1]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5]
=> []
=> ? = 5
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [4,1]
=> [1]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [3,1,1]
=> [1,1]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [4,1]
=> [1]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [3,1,1]
=> [1,1]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [3,2]
=> [2]
=> 2
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [2,1,1,1]
=> [1,1,1]
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => [2,2,1]
=> [2,1]
=> 1
[1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => [3,1,1]
=> [1,1]
=> 1
[1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => [4,1]
=> [1]
=> 1
[1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => [3,1,1]
=> [1,1]
=> 1
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => [6]
=> []
=> ? = 6
[1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => [7]
=> []
=> ? = 7
Description
The greatest common divisor of the parts of the partition.
Matching statistic: St001119
Mp00137: Dyck paths to symmetric ASMAlternating sign matrices
Mp00002: Alternating sign matrices to left key permutationPermutations
Mp00160: Permutations graph of inversionsGraphs
St001119: Graphs ⟶ ℤResult quality: 99% values known / values provided: 99%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [[1]]
=> [1] => ([],1)
=> 0 = 1 - 1
[1,0,1,0]
=> [[1,0],[0,1]]
=> [1,2] => ([],2)
=> 0 = 1 - 1
[1,1,0,0]
=> [[0,1],[1,0]]
=> [2,1] => ([(0,1)],2)
=> 1 = 2 - 1
[1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,2,3] => ([],3)
=> 0 = 1 - 1
[1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,3,2] => ([(1,2)],3)
=> 0 = 1 - 1
[1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [2,1,3] => ([(1,2)],3)
=> 0 = 1 - 1
[1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,3,2] => ([(1,2)],3)
=> 0 = 1 - 1
[1,1,1,0,0,0]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
[1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,2,3,4] => ([],4)
=> 0 = 1 - 1
[1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,2,4,3] => ([(2,3)],4)
=> 0 = 1 - 1
[1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => ([(2,3)],4)
=> 0 = 1 - 1
[1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => ([(2,3)],4)
=> 0 = 1 - 1
[1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [2,1,3,4] => ([(2,3)],4)
=> 0 = 1 - 1
[1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> 1 = 2 - 1
[1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => ([(2,3)],4)
=> 0 = 1 - 1
[1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => ([(2,3)],4)
=> 0 = 1 - 1
[1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> 1 = 2 - 1
[1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,2,3,4,5] => ([],5)
=> 0 = 1 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => ([(3,4)],5)
=> 0 = 1 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => ([(3,4)],5)
=> 0 = 1 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => ([(3,4)],5)
=> 0 = 1 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => ([(3,4)],5)
=> 0 = 1 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 0 = 1 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => ([(3,4)],5)
=> 0 = 1 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => ([(3,4)],5)
=> 0 = 1 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 0 = 1 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [2,1,3,4,5] => ([(3,4)],5)
=> 0 = 1 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> 0 = 1 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> 0 = 1 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> 0 = 1 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => ([(3,4)],5)
=> 0 = 1 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 0 = 1 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => ([(3,4)],5)
=> 0 = 1 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => ([(3,4)],5)
=> 0 = 1 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 0 = 1 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,1,0,0,1,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0]]
=> ? => ?
=> ? ∊ {1,3,3,3,3,3,3,3} - 1
[1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0]]
=> [3,2,1,7,6,5,4] => ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,3,3,3,3,3,3,3} - 1
[1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0]]
=> [4,3,2,1,7,6,5] => ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,3,3,3,3,3,3,3} - 1
[1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,-1,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0]]
=> [3,2,1,7,6,5,4] => ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,3,3,3,3,3,3,3} - 1
[1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,-1,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0]]
=> [4,3,2,1,7,6,5] => ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,3,3,3,3,3,3,3} - 1
[1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,-1,0,1],[1,0,0,-1,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0]]
=> [3,2,1,7,6,5,4] => ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,3,3,3,3,3,3,3} - 1
[1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,-1,1],[1,0,0,0,-1,1,0],[0,0,0,0,1,0,0]]
=> [4,3,2,1,7,6,5] => ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,3,3,3,3,3,3,3} - 1
[1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,-1,1],[0,1,0,0,-1,1,0],[1,0,0,-1,1,0,0],[0,0,0,1,0,0,0]]
=> [3,2,1,7,6,5,4] => ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,3,3,3,3,3,3,3} - 1
Description
The length of a shortest maximal path in a graph.
Matching statistic: St001316
Mp00137: Dyck paths to symmetric ASMAlternating sign matrices
Mp00002: Alternating sign matrices to left key permutationPermutations
Mp00160: Permutations graph of inversionsGraphs
St001316: Graphs ⟶ ℤResult quality: 86% values known / values provided: 99%distinct values known / distinct values provided: 86%
Values
[1,0]
=> [[1]]
=> [1] => ([],1)
=> 1
[1,0,1,0]
=> [[1,0],[0,1]]
=> [1,2] => ([],2)
=> 1
[1,1,0,0]
=> [[0,1],[1,0]]
=> [2,1] => ([(0,1)],2)
=> 2
[1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,2,3] => ([],3)
=> 1
[1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,3,2] => ([(1,2)],3)
=> 1
[1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [2,1,3] => ([(1,2)],3)
=> 1
[1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,3,2] => ([(1,2)],3)
=> 1
[1,1,1,0,0,0]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,2,3,4] => ([],4)
=> 1
[1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,2,4,3] => ([(2,3)],4)
=> 1
[1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => ([(2,3)],4)
=> 1
[1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => ([(2,3)],4)
=> 1
[1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 1
[1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [2,1,3,4] => ([(2,3)],4)
=> 1
[1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> 2
[1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => ([(2,3)],4)
=> 1
[1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => ([(2,3)],4)
=> 1
[1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 1
[1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 1
[1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> 2
[1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 1
[1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,2,3,4,5] => ([],5)
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => ([(3,4)],5)
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => ([(3,4)],5)
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => ([(3,4)],5)
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => ([(3,4)],5)
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => ([(3,4)],5)
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => ([(3,4)],5)
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [2,1,3,4,5] => ([(3,4)],5)
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => ([(3,4)],5)
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => ([(3,4)],5)
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => ([(3,4)],5)
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [[1,0,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0]]
=> [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,7}
[1,1,0,0,1,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0]]
=> ? => ?
=> ? ∊ {1,1,1,1,1,1,1,1,7}
[1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [[0,1,0,0,0,0,0],[1,-1,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0]]
=> [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,7}
[1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [[0,0,1,0,0,0,0],[0,1,-1,0,0,0,1],[1,-1,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0]]
=> [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,7}
[1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [[0,0,0,1,0,0,0],[0,0,1,-1,0,0,1],[0,1,-1,0,0,1,0],[1,-1,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0]]
=> [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,7}
[1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [[0,0,0,0,1,0,0],[0,0,0,1,-1,0,1],[0,0,1,-1,0,1,0],[0,1,-1,0,1,0,0],[1,-1,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0]]
=> [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,7}
[1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,0,1]]
=> [6,5,4,3,2,1,7] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,7}
[1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,-1,1,0],[0,0,1,-1,1,0,0],[0,1,-1,1,0,0,0],[1,-1,1,0,0,0,0],[0,1,0,0,0,0,0]]
=> [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,7}
[1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,7}
Description
The domatic number of a graph. This is the maximal size of a partition of the vertices into dominating sets.
The following 91 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000284The Plancherel distribution on integer partitions. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000706The product of the factorials of the multiplicities of an integer partition. St000813The number of zero-one matrices with weakly decreasing column sums and row sums given by the partition. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000934The 2-degree of an integer partition. St001128The exponens consonantiae of a partition. St001568The smallest positive integer that does not appear twice in the partition. St000781The number of proper colouring schemes of a Ferrers diagram. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St000908The length of the shortest maximal antichain in a poset. St000210Minimum over maximum difference of elements in cycles. St000487The length of the shortest cycle of a permutation. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001933The largest multiplicity of a part in an integer partition. St001493The number of simple modules with maximal even projective dimension in the corresponding Nakayama algebra. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000278The size of the preimage of the map 'to partition' from Integer compositions to Integer partitions. St000326The position of the first one in a binary word after appending a 1 at the end. St000627The exponent of a binary word. St000913The number of ways to refine the partition into singletons. St000964Gives the dimension of Ext^g(D(A),A) of the corresponding LNakayama algebra, when g denotes the global dimension of that algebra. St000999Number of indecomposable projective module with injective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001006Number of simple modules with projective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001009Number of indecomposable injective modules with projective dimension g when g is the global dimension of the Nakayama algebra corresponding to the Dyck path. St001011Number of simple modules of projective dimension 2 in the Nakayama algebra corresponding to the Dyck path. St001013Number of indecomposable injective modules with codominant dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001063Numbers of 3-torsionfree simple modules in the corresponding Nakayama algebra. St001064Number of simple modules in the corresponding Nakayama algebra that are 3-syzygy modules. St001188The number of simple modules $S$ with grade $\inf \{ i \geq 0 | Ext^i(S,A) \neq 0 \}$ at least two in the Nakayama algebra $A$ corresponding to the Dyck path. St001192The maximal dimension of $Ext_A^2(S,A)$ for a simple module $S$ over the corresponding Nakayama algebra $A$. St001212The number of simple modules in the corresponding Nakayama algebra that have non-zero second Ext-group with the regular module. St001215Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001244The number of simple modules of projective dimension one that are not 1-regular for the Nakayama algebra associated to a Dyck path. St001256Number of simple reflexive modules that are 2-stable reflexive. St001481The minimal height of a peak of a Dyck path. St001507The sum of projective dimension of simple modules with even projective dimension divided by 2 in the LNakayama algebra corresponding to Dyck paths. St001722The number of minimal chains with small intervals between a binary word and the top element. St001786The number of total orderings of the north steps of a Dyck path such that steps after the k-th east step are not among the first k positions in the order. St001804The minimal height of the rectangular inner shape in a cylindrical tableau associated to a tableau. St001487The number of inner corners of a skew partition. St001490The number of connected components of a skew partition. St001571The Cartan determinant of the integer partition. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St000640The rank of the largest boolean interval in a poset. St000914The sum of the values of the Möbius function of a poset. St000100The number of linear extensions of a poset. St000618The number of self-evacuating tableaux of given shape. St001280The number of parts of an integer partition that are at least two. St001432The order dimension of the partition. St001442The number of standard Young tableaux whose major index is divisible by the size of a given integer partition. St001564The value of the forgotten symmetric functions when all variables set to 1. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001780The order of promotion on the set of standard tableaux of given shape. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St001913The number of preimages of an integer partition in Bulgarian solitaire. St001924The number of cells in an integer partition whose arm and leg length coincide. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001890The maximum magnitude of the Möbius function of a poset. St001330The hat guessing number of a graph. St001236The dominant dimension of the corresponding Comp-Nakayama algebra. St000456The monochromatic index of a connected graph. St000310The minimal degree of a vertex of a graph. St001162The minimum jump of a permutation. St000260The radius of a connected graph. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St001344The neighbouring number of a permutation. St001877Number of indecomposable injective modules with projective dimension 2. St000633The size of the automorphism group of a poset. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St001498The normalised height of a Nakayama algebra with magnitude 1. St001820The size of the image of the pop stack sorting operator. St001846The number of elements which do not have a complement in the lattice. St001096The size of the overlap set of a permutation. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000741The Colin de Verdière graph invariant. St000750The number of occurrences of the pattern 4213 in a permutation. St001964The interval resolution global dimension of a poset. St001884The number of borders of a binary word. St000902 The minimal number of repetitions of an integer composition. St001238The number of simple modules S such that the Auslander-Reiten translate of S is isomorphic to the Nakayama functor applied to the second syzygy of S. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001130The number of two successive successions in a permutation. St001060The distinguishing index of a graph.