Your data matches 32 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000668
Mp00204: Permutations LLPSInteger partitions
St000668: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,2] => [1,1]
=> 1
[2,1] => [2]
=> 2
[1,2,3] => [1,1,1]
=> 1
[1,3,2] => [2,1]
=> 2
[2,1,3] => [2,1]
=> 2
[2,3,1] => [2,1]
=> 2
[3,1,2] => [2,1]
=> 2
[3,2,1] => [3]
=> 3
[1,2,3,4] => [1,1,1,1]
=> 1
[1,2,4,3] => [2,1,1]
=> 2
[1,3,2,4] => [2,1,1]
=> 2
[1,3,4,2] => [2,1,1]
=> 2
[1,4,2,3] => [2,1,1]
=> 2
[1,4,3,2] => [3,1]
=> 3
[2,1,3,4] => [2,1,1]
=> 2
[2,1,4,3] => [2,2]
=> 2
[2,3,1,4] => [2,1,1]
=> 2
[2,3,4,1] => [2,1,1]
=> 2
[2,4,1,3] => [2,1,1]
=> 2
[2,4,3,1] => [3,1]
=> 3
[3,1,2,4] => [2,1,1]
=> 2
[3,1,4,2] => [2,2]
=> 2
[3,2,1,4] => [3,1]
=> 3
[3,2,4,1] => [3,1]
=> 3
[3,4,1,2] => [2,1,1]
=> 2
[3,4,2,1] => [3,1]
=> 3
[4,1,2,3] => [2,1,1]
=> 2
[4,1,3,2] => [3,1]
=> 3
[4,2,1,3] => [3,1]
=> 3
[4,2,3,1] => [3,1]
=> 3
[4,3,1,2] => [3,1]
=> 3
[4,3,2,1] => [4]
=> 4
[1,2,3,4,5] => [1,1,1,1,1]
=> 1
[1,2,3,5,4] => [2,1,1,1]
=> 2
[1,2,4,3,5] => [2,1,1,1]
=> 2
[1,2,4,5,3] => [2,1,1,1]
=> 2
[1,2,5,3,4] => [2,1,1,1]
=> 2
[1,2,5,4,3] => [3,1,1]
=> 3
[1,3,2,4,5] => [2,1,1,1]
=> 2
[1,3,2,5,4] => [2,2,1]
=> 2
[1,3,4,2,5] => [2,1,1,1]
=> 2
[1,3,4,5,2] => [2,1,1,1]
=> 2
[1,3,5,2,4] => [2,1,1,1]
=> 2
[1,3,5,4,2] => [3,1,1]
=> 3
[1,4,2,3,5] => [2,1,1,1]
=> 2
[1,4,2,5,3] => [2,2,1]
=> 2
[1,4,3,2,5] => [3,1,1]
=> 3
[1,4,3,5,2] => [3,1,1]
=> 3
[1,4,5,2,3] => [2,1,1,1]
=> 2
[1,4,5,3,2] => [3,1,1]
=> 3
Description
The least common multiple of the parts of the partition.
Matching statistic: St001645
Mp00071: Permutations descent compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
Mp00250: Graphs clique graphGraphs
St001645: Graphs ⟶ ℤResult quality: 50% values known / values provided: 50%distinct values known / distinct values provided: 67%
Values
[1,2] => [2] => ([],2)
=> ([],2)
=> ? = 2
[2,1] => [1,1] => ([(0,1)],2)
=> ([],1)
=> 1
[1,2,3] => [3] => ([],3)
=> ([],3)
=> ? ∊ {2,2,3}
[1,3,2] => [2,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2
[2,1,3] => [1,2] => ([(1,2)],3)
=> ([],2)
=> ? ∊ {2,2,3}
[2,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2
[3,1,2] => [1,2] => ([(1,2)],3)
=> ([],2)
=> ? ∊ {2,2,3}
[3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> 1
[1,2,3,4] => [4] => ([],4)
=> ([],4)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,4}
[1,2,4,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,3,2,4] => [2,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,4}
[1,3,4,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,4,2,3] => [2,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,4}
[1,4,3,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[2,1,3,4] => [1,3] => ([(2,3)],4)
=> ([],3)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,4}
[2,1,4,3] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[2,3,1,4] => [2,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,4}
[2,3,4,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,4,1,3] => [2,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,4}
[2,4,3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[3,1,2,4] => [1,3] => ([(2,3)],4)
=> ([],3)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,4}
[3,1,4,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[3,2,1,4] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,4}
[3,2,4,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[3,4,1,2] => [2,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,4}
[3,4,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[4,1,2,3] => [1,3] => ([(2,3)],4)
=> ([],3)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,4}
[4,1,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[4,2,1,3] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,4}
[4,2,3,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[4,3,1,2] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,3,4}
[4,3,2,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 1
[1,2,3,4,5] => [5] => ([],5)
=> ([],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[1,2,4,5,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,2,5,3,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[1,2,5,4,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,3,2,4,5] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[1,3,2,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,3,4,2,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[1,3,4,5,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,3,5,2,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[1,3,5,4,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,4,2,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[1,4,2,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,4,3,2,5] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[1,4,3,5,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,4,5,2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[1,4,5,3,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,5,2,3,4] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[1,5,2,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,5,3,2,4] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[1,5,3,4,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,5,4,2,3] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[1,5,4,3,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 2
[2,1,3,4,5] => [1,4] => ([(3,4)],5)
=> ([],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[2,1,3,5,4] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,1,4,3,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[2,1,4,5,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,1,5,3,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[2,1,5,4,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 2
[2,3,1,4,5] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[2,3,1,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,3,4,1,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[2,3,4,5,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[2,3,5,1,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[2,3,5,4,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,4,1,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[2,4,1,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,4,3,1,5] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[2,4,3,5,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,4,5,1,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[2,4,5,3,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,5,1,3,4] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[2,5,1,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,5,3,1,4] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[2,5,3,4,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,5,4,1,3] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[2,5,4,3,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 2
[3,1,2,4,5] => [1,4] => ([(3,4)],5)
=> ([],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[3,1,2,5,4] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[3,1,4,2,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[3,1,4,5,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[3,1,5,2,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[3,1,5,4,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 2
[3,2,1,4,5] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[3,2,1,5,4] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 2
[3,2,4,1,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[3,2,4,5,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[3,2,5,1,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[3,2,5,4,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 2
[3,4,1,2,5] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[3,4,1,5,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[3,4,2,1,5] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[3,4,2,5,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[3,4,5,1,2] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[3,4,5,2,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[3,5,1,2,4] => [2,3] => ([(2,4),(3,4)],5)
=> ([(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[3,5,1,4,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
Description
The pebbling number of a connected graph.
Mp00252: Permutations restrictionPermutations
Mp00065: Permutations permutation posetPosets
Mp00206: Posets antichains of maximal sizeLattices
St001875: Lattices ⟶ ℤResult quality: 35% values known / values provided: 35%distinct values known / distinct values provided: 44%
Values
[1,2] => [1] => ([],1)
=> ([],1)
=> ? ∊ {1,2}
[2,1] => [1] => ([],1)
=> ([],1)
=> ? ∊ {1,2}
[1,2,3] => [1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,3}
[1,3,2] => [1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,3}
[2,1,3] => [2,1] => ([],2)
=> ([],1)
=> ? ∊ {1,2,2,2,2,3}
[2,3,1] => [2,1] => ([],2)
=> ([],1)
=> ? ∊ {1,2,2,2,2,3}
[3,1,2] => [1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,3}
[3,2,1] => [2,1] => ([],2)
=> ([],1)
=> ? ∊ {1,2,2,2,2,3}
[1,2,3,4] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[1,2,4,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[1,3,2,4] => [1,3,2] => ([(0,1),(0,2)],3)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
[1,3,4,2] => [1,3,2] => ([(0,1),(0,2)],3)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
[1,4,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[1,4,3,2] => [1,3,2] => ([(0,1),(0,2)],3)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
[2,1,3,4] => [2,1,3] => ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
[2,1,4,3] => [2,1,3] => ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
[2,3,1,4] => [2,3,1] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
[2,3,4,1] => [2,3,1] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
[2,4,1,3] => [2,1,3] => ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
[2,4,3,1] => [2,3,1] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
[3,1,2,4] => [3,1,2] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
[3,1,4,2] => [3,1,2] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
[3,2,1,4] => [3,2,1] => ([],3)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
[3,2,4,1] => [3,2,1] => ([],3)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
[3,4,1,2] => [3,1,2] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
[3,4,2,1] => [3,2,1] => ([],3)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
[4,1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[4,1,3,2] => [1,3,2] => ([(0,1),(0,2)],3)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
[4,2,1,3] => [2,1,3] => ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
[4,2,3,1] => [2,3,1] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
[4,3,1,2] => [3,1,2] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
[4,3,2,1] => [3,2,1] => ([],3)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4}
[1,2,3,4,5] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,2,3,5,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,2,4,3,5] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[1,2,4,5,3] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[1,2,5,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,2,5,4,3] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[1,3,2,4,5] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[1,3,2,5,4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[1,3,4,2,5] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[1,3,4,5,2] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[1,3,5,2,4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[1,3,5,4,2] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[1,4,2,3,5] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[1,4,2,5,3] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[1,4,3,2,5] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[1,4,3,5,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[1,4,5,2,3] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[1,4,5,3,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[1,5,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,5,2,4,3] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[1,5,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[1,5,3,4,2] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[1,5,4,2,3] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[1,5,4,3,2] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[2,1,3,4,5] => [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[2,1,3,5,4] => [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[2,3,4,1,5] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[2,3,4,5,1] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[2,3,5,4,1] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[2,4,1,3,5] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[2,4,1,5,3] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[2,4,5,1,3] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[2,5,3,4,1] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[2,5,4,1,3] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[3,1,4,2,5] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[3,1,4,5,2] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[3,1,5,4,2] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[3,4,1,2,5] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[3,4,1,5,2] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[3,4,5,1,2] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[3,5,1,4,2] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[3,5,4,1,2] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[4,1,2,3,5] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[4,1,2,5,3] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[4,1,5,2,3] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[4,5,1,2,3] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[5,1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[5,2,3,4,1] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[5,2,4,1,3] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[5,3,1,4,2] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[5,3,4,1,2] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[5,4,1,2,3] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[1,2,3,4,5,6] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,2,3,4,6,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,2,3,6,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,2,6,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,3,4,5,2,6] => [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 3
[1,3,4,5,6,2] => [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 3
[1,3,4,6,5,2] => [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 3
[1,3,5,2,4,6] => [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[1,3,5,2,6,4] => [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[1,3,5,6,2,4] => [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[1,3,6,4,5,2] => [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> 3
[1,3,6,5,2,4] => [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[1,4,2,5,3,6] => [1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[1,4,2,5,6,3] => [1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[1,4,2,6,5,3] => [1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[1,4,5,2,3,6] => [1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
Description
The number of simple modules with projective dimension at most 1.
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00024: Dyck paths to 321-avoiding permutationPermutations
Mp00160: Permutations graph of inversionsGraphs
St000264: Graphs ⟶ ℤResult quality: 11% values known / values provided: 27%distinct values known / distinct values provided: 11%
Values
[1,2] => [1,0,1,0]
=> [2,1] => ([(0,1)],2)
=> ? ∊ {1,2}
[2,1] => [1,1,0,0]
=> [1,2] => ([],2)
=> ? ∊ {1,2}
[1,2,3] => [1,0,1,0,1,0]
=> [2,1,3] => ([(1,2)],3)
=> ? ∊ {1,2,2,2,2,3}
[1,3,2] => [1,0,1,1,0,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> ? ∊ {1,2,2,2,2,3}
[2,1,3] => [1,1,0,0,1,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> ? ∊ {1,2,2,2,2,3}
[2,3,1] => [1,1,0,1,0,0]
=> [1,3,2] => ([(1,2)],3)
=> ? ∊ {1,2,2,2,2,3}
[3,1,2] => [1,1,1,0,0,0]
=> [1,2,3] => ([],3)
=> ? ∊ {1,2,2,2,2,3}
[3,2,1] => [1,1,1,0,0,0]
=> [1,2,3] => ([],3)
=> ? ∊ {1,2,2,2,2,3}
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3}
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3}
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3}
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3}
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3}
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3}
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3}
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3}
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3}
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3}
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3}
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3}
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3}
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3}
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3}
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3}
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3}
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3}
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3}
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3}
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3}
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3}
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3}
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,6,6,6,6,6,6,6,6,6,6}
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,6,6,6,6,6,6,6,6,6,6}
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,6,6,6,6,6,6,6,6,6,6}
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,6,6,6,6,6,6,6,6,6,6}
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,6,6,6,6,6,6,6,6,6,6}
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,6,6,6,6,6,6,6,6,6,6}
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,6,6,6,6,6,6,6,6,6,6}
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,6,6,6,6,6,6,6,6,6,6}
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,6,6,6,6,6,6,6,6,6,6}
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,6,6,6,6,6,6,6,6,6,6}
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,6,6,6,6,6,6,6,6,6,6}
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,6,6,6,6,6,6,6,6,6,6}
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,6,6,6,6,6,6,6,6,6,6}
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,6,6,6,6,6,6,6,6,6,6}
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,6,6,6,6,6,6,6,6,6,6}
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0]
=> [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,6,6,6,6,6,6,6,6,6,6}
[1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,6,6,6,6,6,6,6,6,6,6}
[1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,6,6,6,6,6,6,6,6,6,6}
[1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,6,6,6,6,6,6,6,6,6,6}
[2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0]
=> [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[3,1,2,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[3,1,5,2,4] => [1,1,1,0,0,1,1,0,0,0]
=> [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[3,1,5,4,2] => [1,1,1,0,0,1,1,0,0,0]
=> [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[3,2,5,1,4] => [1,1,1,0,0,1,1,0,0,0]
=> [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[3,2,5,4,1] => [1,1,1,0,0,1,1,0,0,0]
=> [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[1,2,3,6,4,5] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [2,4,6,1,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
[1,2,3,6,5,4] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [2,4,6,1,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
[1,2,4,6,3,5] => [1,0,1,0,1,1,0,1,1,0,0,0]
=> [2,4,5,1,3,6] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
[1,2,4,6,5,3] => [1,0,1,0,1,1,0,1,1,0,0,0]
=> [2,4,5,1,3,6] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
[1,2,5,6,3,4] => [1,0,1,0,1,1,1,0,1,0,0,0]
=> [2,4,5,1,6,3] => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[1,2,5,6,4,3] => [1,0,1,0,1,1,1,0,1,0,0,0]
=> [2,4,5,1,6,3] => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[1,2,6,3,4,5] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,4,5,6,1,3] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[1,2,6,3,5,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,4,5,6,1,3] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[1,2,6,4,3,5] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,4,5,6,1,3] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[1,2,6,4,5,3] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,4,5,6,1,3] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[1,2,6,5,3,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,4,5,6,1,3] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[1,2,6,5,4,3] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,4,5,6,1,3] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[1,3,2,5,4,6] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [2,1,5,6,3,4] => ([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[1,3,2,5,6,4] => [1,0,1,1,0,0,1,1,0,1,0,0]
=> [2,5,1,6,3,4] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 4
[1,3,2,6,4,5] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [2,5,6,1,3,4] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
[1,3,2,6,5,4] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [2,5,6,1,3,4] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
[1,3,6,2,4,5] => [1,0,1,1,0,1,1,1,0,0,0,0]
=> [2,3,5,6,1,4] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
[1,3,6,2,5,4] => [1,0,1,1,0,1,1,1,0,0,0,0]
=> [2,3,5,6,1,4] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
[1,3,6,4,2,5] => [1,0,1,1,0,1,1,1,0,0,0,0]
=> [2,3,5,6,1,4] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
[1,3,6,4,5,2] => [1,0,1,1,0,1,1,1,0,0,0,0]
=> [2,3,5,6,1,4] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
[1,3,6,5,2,4] => [1,0,1,1,0,1,1,1,0,0,0,0]
=> [2,3,5,6,1,4] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
[1,3,6,5,4,2] => [1,0,1,1,0,1,1,1,0,0,0,0]
=> [2,3,5,6,1,4] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
[2,1,3,4,6,5] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [3,4,1,2,6,5] => ([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[2,1,3,5,6,4] => [1,1,0,0,1,0,1,1,0,1,0,0]
=> [3,4,1,6,2,5] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 4
[2,1,3,6,4,5] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [3,4,6,1,2,5] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
[2,1,3,6,5,4] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [3,4,6,1,2,5] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
[2,1,4,3,6,5] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [3,4,1,2,5,6] => ([(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[2,1,4,5,6,3] => [1,1,0,0,1,1,0,1,0,1,0,0]
=> [3,4,1,5,2,6] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
[2,1,4,6,3,5] => [1,1,0,0,1,1,0,1,1,0,0,0]
=> [3,4,5,1,2,6] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[2,1,4,6,5,3] => [1,1,0,0,1,1,0,1,1,0,0,0]
=> [3,4,5,1,2,6] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[2,1,5,3,6,4] => [1,1,0,0,1,1,1,0,0,1,0,0]
=> [3,4,1,5,6,2] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
[2,1,5,4,6,3] => [1,1,0,0,1,1,1,0,0,1,0,0]
=> [3,4,1,5,6,2] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 4
[2,1,5,6,3,4] => [1,1,0,0,1,1,1,0,1,0,0,0]
=> [3,4,5,1,6,2] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[2,1,5,6,4,3] => [1,1,0,0,1,1,1,0,1,0,0,0]
=> [3,4,5,1,6,2] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
Description
The girth of a graph, which is not a tree. This is the length of the shortest cycle in the graph.
Mp00072: Permutations binary search tree: left to rightBinary trees
Mp00017: Binary trees to 312-avoiding permutationPermutations
Mp00160: Permutations graph of inversionsGraphs
St000454: Graphs ⟶ ℤResult quality: 25% values known / values provided: 25%distinct values known / distinct values provided: 78%
Values
[1,2] => [.,[.,.]]
=> [2,1] => ([(0,1)],2)
=> 1 = 2 - 1
[2,1] => [[.,.],.]
=> [1,2] => ([],2)
=> 0 = 1 - 1
[1,2,3] => [.,[.,[.,.]]]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
[1,3,2] => [.,[[.,.],.]]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> ? = 2 - 1
[2,1,3] => [[.,.],[.,.]]
=> [1,3,2] => ([(1,2)],3)
=> 1 = 2 - 1
[2,3,1] => [[.,.],[.,.]]
=> [1,3,2] => ([(1,2)],3)
=> 1 = 2 - 1
[3,1,2] => [[.,[.,.]],.]
=> [2,1,3] => ([(1,2)],3)
=> 1 = 2 - 1
[3,2,1] => [[[.,.],.],.]
=> [1,2,3] => ([],3)
=> 0 = 1 - 1
[1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[1,2,4,3] => [.,[.,[[.,.],.]]]
=> [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3,3,3,3} - 1
[1,3,2,4] => [.,[[.,.],[.,.]]]
=> [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3,3,3,3} - 1
[1,3,4,2] => [.,[[.,.],[.,.]]]
=> [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3,3,3,3} - 1
[1,4,2,3] => [.,[[.,[.,.]],.]]
=> [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3,3,3,3} - 1
[1,4,3,2] => [.,[[[.,.],.],.]]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3,3,3,3} - 1
[2,1,3,4] => [[.,.],[.,[.,.]]]
=> [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[2,1,4,3] => [[.,.],[[.,.],.]]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3,3,3,3} - 1
[2,3,1,4] => [[.,.],[.,[.,.]]]
=> [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[2,3,4,1] => [[.,.],[.,[.,.]]]
=> [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[2,4,1,3] => [[.,.],[[.,.],.]]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3,3,3,3} - 1
[2,4,3,1] => [[.,.],[[.,.],.]]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3,3,3,3} - 1
[3,1,2,4] => [[.,[.,.]],[.,.]]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> 1 = 2 - 1
[3,1,4,2] => [[.,[.,.]],[.,.]]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> 1 = 2 - 1
[3,2,1,4] => [[[.,.],.],[.,.]]
=> [1,2,4,3] => ([(2,3)],4)
=> 1 = 2 - 1
[3,2,4,1] => [[[.,.],.],[.,.]]
=> [1,2,4,3] => ([(2,3)],4)
=> 1 = 2 - 1
[3,4,1,2] => [[.,[.,.]],[.,.]]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> 1 = 2 - 1
[3,4,2,1] => [[[.,.],.],[.,.]]
=> [1,2,4,3] => ([(2,3)],4)
=> 1 = 2 - 1
[4,1,2,3] => [[.,[.,[.,.]]],.]
=> [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[4,1,3,2] => [[.,[[.,.],.]],.]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,3,3,3,3,3} - 1
[4,2,1,3] => [[[.,.],[.,.]],.]
=> [1,3,2,4] => ([(2,3)],4)
=> 1 = 2 - 1
[4,2,3,1] => [[[.,.],[.,.]],.]
=> [1,3,2,4] => ([(2,3)],4)
=> 1 = 2 - 1
[4,3,1,2] => [[[.,[.,.]],.],.]
=> [2,1,3,4] => ([(2,3)],4)
=> 1 = 2 - 1
[4,3,2,1] => [[[[.,.],.],.],.]
=> [1,2,3,4] => ([],4)
=> 0 = 1 - 1
[1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6} - 1
[1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6} - 1
[1,2,4,5,3] => [.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6} - 1
[1,2,5,3,4] => [.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6} - 1
[1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6} - 1
[1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6} - 1
[1,3,4,2,5] => [.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6} - 1
[1,3,4,5,2] => [.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6} - 1
[1,3,5,2,4] => [.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6} - 1
[1,3,5,4,2] => [.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6} - 1
[1,4,2,3,5] => [.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6} - 1
[1,4,2,5,3] => [.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6} - 1
[1,4,3,2,5] => [.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6} - 1
[1,4,3,5,2] => [.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6} - 1
[1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6} - 1
[1,4,5,3,2] => [.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6} - 1
[1,5,2,3,4] => [.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6} - 1
[1,5,2,4,3] => [.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6} - 1
[1,5,3,2,4] => [.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6} - 1
[1,5,3,4,2] => [.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6} - 1
[1,5,4,2,3] => [.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6} - 1
[1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[2,1,3,4,5] => [[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[2,1,3,5,4] => [[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6} - 1
[2,1,4,3,5] => [[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6} - 1
[2,1,4,5,3] => [[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6} - 1
[2,1,5,3,4] => [[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6} - 1
[2,1,5,4,3] => [[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6} - 1
[2,3,1,4,5] => [[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[2,3,1,5,4] => [[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6} - 1
[2,3,4,1,5] => [[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[2,3,4,5,1] => [[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[2,3,5,1,4] => [[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6} - 1
[2,3,5,4,1] => [[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6} - 1
[2,4,1,3,5] => [[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6} - 1
[2,4,1,5,3] => [[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6} - 1
[2,4,3,1,5] => [[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6} - 1
[2,4,3,5,1] => [[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6} - 1
[2,4,5,1,3] => [[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6} - 1
[2,4,5,3,1] => [[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6} - 1
[2,5,1,3,4] => [[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6} - 1
[2,5,1,4,3] => [[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6} - 1
[2,5,3,1,4] => [[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6} - 1
[2,5,3,4,1] => [[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6} - 1
[2,5,4,1,3] => [[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6} - 1
[3,1,2,4,5] => [[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[3,1,4,2,5] => [[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[3,1,4,5,2] => [[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[3,2,1,4,5] => [[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[3,2,4,1,5] => [[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[3,2,4,5,1] => [[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[3,4,1,2,5] => [[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[3,4,1,5,2] => [[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[3,4,2,1,5] => [[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[3,4,2,5,1] => [[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[3,4,5,1,2] => [[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[3,4,5,2,1] => [[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[4,1,2,3,5] => [[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[4,1,2,5,3] => [[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[4,1,5,2,3] => [[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[4,2,1,3,5] => [[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 1 = 2 - 1
[4,2,1,5,3] => [[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 1 = 2 - 1
[4,2,3,1,5] => [[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 1 = 2 - 1
[4,2,3,5,1] => [[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 1 = 2 - 1
[4,2,5,1,3] => [[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 1 = 2 - 1
[4,2,5,3,1] => [[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 1 = 2 - 1
Description
The largest eigenvalue of a graph if it is integral. If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree. This statistic is undefined if the largest eigenvalue of the graph is not integral.
Mp00060: Permutations Robinson-Schensted tableau shapeInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00120: Dyck paths Lalanne-Kreweras involutionDyck paths
St001232: Dyck paths ⟶ ℤResult quality: 22% values known / values provided: 22%distinct values known / distinct values provided: 78%
Values
[1,2] => [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0 = 1 - 1
[2,1] => [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1 = 2 - 1
[1,2,3] => [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0 = 1 - 1
[1,3,2] => [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1 = 2 - 1
[2,1,3] => [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1 = 2 - 1
[2,3,1] => [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1 = 2 - 1
[3,1,2] => [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1 = 2 - 1
[3,2,1] => [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> 2 = 3 - 1
[1,2,3,4] => [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[1,2,4,3] => [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[1,3,2,4] => [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[1,3,4,2] => [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[1,4,2,3] => [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[1,4,3,2] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
[2,1,3,4] => [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[2,1,4,3] => [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? ∊ {2,2,2,2} - 1
[2,3,1,4] => [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[2,3,4,1] => [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[2,4,1,3] => [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? ∊ {2,2,2,2} - 1
[2,4,3,1] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
[3,1,2,4] => [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[3,1,4,2] => [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? ∊ {2,2,2,2} - 1
[3,2,1,4] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
[3,2,4,1] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
[3,4,1,2] => [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? ∊ {2,2,2,2} - 1
[3,4,2,1] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
[4,1,2,3] => [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[4,1,3,2] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
[4,2,1,3] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
[4,2,3,1] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
[4,3,1,2] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
[4,3,2,1] => [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3 = 4 - 1
[1,2,3,4,5] => [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0 = 1 - 1
[1,2,3,5,4] => [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
[1,2,4,3,5] => [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
[1,2,4,5,3] => [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
[1,2,5,3,4] => [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
[1,2,5,4,3] => [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2 = 3 - 1
[1,3,2,4,5] => [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
[1,3,2,5,4] => [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,6,6,6,6,6,6,6,6,6} - 1
[1,3,4,2,5] => [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
[1,3,4,5,2] => [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
[1,3,5,2,4] => [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,6,6,6,6,6,6,6,6,6} - 1
[1,3,5,4,2] => [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2 = 3 - 1
[1,4,2,3,5] => [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
[1,4,2,5,3] => [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,6,6,6,6,6,6,6,6,6} - 1
[1,4,3,2,5] => [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2 = 3 - 1
[1,4,3,5,2] => [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2 = 3 - 1
[1,4,5,2,3] => [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,6,6,6,6,6,6,6,6,6} - 1
[1,4,5,3,2] => [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2 = 3 - 1
[1,5,2,3,4] => [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
[1,5,2,4,3] => [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2 = 3 - 1
[1,5,3,2,4] => [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2 = 3 - 1
[1,5,3,4,2] => [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2 = 3 - 1
[1,5,4,2,3] => [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2 = 3 - 1
[1,5,4,3,2] => [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3 = 4 - 1
[2,1,3,4,5] => [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
[2,1,3,5,4] => [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,6,6,6,6,6,6,6,6,6} - 1
[2,1,4,3,5] => [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,6,6,6,6,6,6,6,6,6} - 1
[2,1,4,5,3] => [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,6,6,6,6,6,6,6,6,6} - 1
[2,1,5,3,4] => [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,6,6,6,6,6,6,6,6,6} - 1
[2,1,5,4,3] => [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,6,6,6,6,6,6,6,6,6} - 1
[2,3,1,4,5] => [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
[2,3,1,5,4] => [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,6,6,6,6,6,6,6,6,6} - 1
[2,3,5,1,4] => [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,6,6,6,6,6,6,6,6,6} - 1
[2,4,1,3,5] => [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,6,6,6,6,6,6,6,6,6} - 1
[2,4,1,5,3] => [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,6,6,6,6,6,6,6,6,6} - 1
[2,4,5,1,3] => [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,6,6,6,6,6,6,6,6,6} - 1
[2,5,1,3,4] => [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,6,6,6,6,6,6,6,6,6} - 1
[2,5,1,4,3] => [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,6,6,6,6,6,6,6,6,6} - 1
[2,5,4,1,3] => [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,6,6,6,6,6,6,6,6,6} - 1
[3,1,2,5,4] => [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,6,6,6,6,6,6,6,6,6} - 1
[3,1,4,2,5] => [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,6,6,6,6,6,6,6,6,6} - 1
[3,1,4,5,2] => [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,6,6,6,6,6,6,6,6,6} - 1
[3,1,5,2,4] => [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,6,6,6,6,6,6,6,6,6} - 1
[3,1,5,4,2] => [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,6,6,6,6,6,6,6,6,6} - 1
[3,2,1,5,4] => [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,6,6,6,6,6,6,6,6,6} - 1
[3,2,5,1,4] => [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,6,6,6,6,6,6,6,6,6} - 1
[3,2,5,4,1] => [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,6,6,6,6,6,6,6,6,6} - 1
[3,4,1,2,5] => [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,6,6,6,6,6,6,6,6,6} - 1
[3,4,1,5,2] => [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,6,6,6,6,6,6,6,6,6} - 1
[3,4,5,1,2] => [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,6,6,6,6,6,6,6,6,6} - 1
[3,5,1,2,4] => [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,6,6,6,6,6,6,6,6,6} - 1
[3,5,1,4,2] => [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,6,6,6,6,6,6,6,6,6} - 1
[3,5,2,1,4] => [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,6,6,6,6,6,6,6,6,6} - 1
[3,5,2,4,1] => [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,6,6,6,6,6,6,6,6,6} - 1
[3,5,4,1,2] => [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,6,6,6,6,6,6,6,6,6} - 1
[4,1,2,5,3] => [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,6,6,6,6,6,6,6,6,6} - 1
[4,1,5,2,3] => [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,6,6,6,6,6,6,6,6,6} - 1
[4,1,5,3,2] => [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,6,6,6,6,6,6,6,6,6} - 1
[4,2,1,5,3] => [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,6,6,6,6,6,6,6,6,6} - 1
[4,2,5,1,3] => [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,6,6,6,6,6,6,6,6,6} - 1
[4,2,5,3,1] => [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,6,6,6,6,6,6,6,6,6} - 1
[4,3,1,5,2] => [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,6,6,6,6,6,6,6,6,6} - 1
[4,3,5,1,2] => [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,6,6,6,6,6,6,6,6,6} - 1
[4,5,1,2,3] => [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,6,6,6,6,6,6,6,6,6} - 1
[4,5,1,3,2] => [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,6,6,6,6,6,6,6,6,6} - 1
[4,5,2,1,3] => [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,6,6,6,6,6,6,6,6,6} - 1
[4,5,2,3,1] => [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,6,6,6,6,6,6,6,6,6} - 1
[4,5,3,1,2] => [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,6,6,6,6,6,6,6,6,6} - 1
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00024: Dyck paths to 321-avoiding permutationPermutations
Mp00160: Permutations graph of inversionsGraphs
St000259: Graphs ⟶ ℤResult quality: 19% values known / values provided: 19%distinct values known / distinct values provided: 67%
Values
[1,2] => [1,0,1,0]
=> [2,1] => ([(0,1)],2)
=> 1
[2,1] => [1,1,0,0]
=> [1,2] => ([],2)
=> ? = 2
[1,2,3] => [1,0,1,0,1,0]
=> [2,1,3] => ([(1,2)],3)
=> ? ∊ {1,2,2,3}
[1,3,2] => [1,0,1,1,0,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 2
[2,1,3] => [1,1,0,0,1,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 2
[2,3,1] => [1,1,0,1,0,0]
=> [1,3,2] => ([(1,2)],3)
=> ? ∊ {1,2,2,3}
[3,1,2] => [1,1,1,0,0,0]
=> [1,2,3] => ([],3)
=> ? ∊ {1,2,2,3}
[3,2,1] => [1,1,1,0,0,0]
=> [1,2,3] => ([],3)
=> ? ∊ {1,2,2,3}
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 3
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 3
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 3
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 3
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0]
=> [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[1,5,4,2,3] => [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [3,1,4,2,5] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0]
=> [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 3
[2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4
[2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 3
[2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [3,1,2,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[2,3,5,1,4] => [1,1,0,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[2,3,5,4,1] => [1,1,0,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[2,4,1,3,5] => [1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[2,4,1,5,3] => [1,1,0,1,1,0,0,1,0,0]
=> [1,3,2,4,5] => ([(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[2,4,3,1,5] => [1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[2,4,3,5,1] => [1,1,0,1,1,0,0,1,0,0]
=> [1,3,2,4,5] => ([(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[2,4,5,1,3] => [1,1,0,1,1,0,1,0,0,0]
=> [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[2,4,5,3,1] => [1,1,0,1,1,0,1,0,0,0]
=> [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[2,5,1,3,4] => [1,1,0,1,1,1,0,0,0,0]
=> [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[2,5,1,4,3] => [1,1,0,1,1,1,0,0,0,0]
=> [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[2,5,3,1,4] => [1,1,0,1,1,1,0,0,0,0]
=> [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[2,5,3,4,1] => [1,1,0,1,1,1,0,0,0,0]
=> [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6}
[3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 3
[3,1,2,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[3,1,4,2,5] => [1,1,1,0,0,1,0,0,1,0]
=> [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 3
[3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[3,2,4,1,5] => [1,1,1,0,0,1,0,0,1,0]
=> [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[4,1,2,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[4,1,3,2,5] => [1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[4,2,1,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[4,2,3,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[4,3,1,2,5] => [1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[1,2,3,5,6,4] => [1,0,1,0,1,0,1,1,0,1,0,0]
=> [2,4,1,6,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 5
[1,2,3,6,4,5] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [2,4,6,1,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 3
[1,2,3,6,5,4] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [2,4,6,1,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 3
[1,2,5,3,6,4] => [1,0,1,0,1,1,1,0,0,1,0,0]
=> [2,4,1,5,6,3] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 4
[1,2,5,4,6,3] => [1,0,1,0,1,1,1,0,0,1,0,0]
=> [2,4,1,5,6,3] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 4
[1,2,5,6,3,4] => [1,0,1,0,1,1,1,0,1,0,0,0]
=> [2,4,5,1,6,3] => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[1,2,5,6,4,3] => [1,0,1,0,1,1,1,0,1,0,0,0]
=> [2,4,5,1,6,3] => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[1,2,6,3,4,5] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,4,5,6,1,3] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 3
[1,2,6,3,5,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,4,5,6,1,3] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 3
[1,2,6,4,3,5] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,4,5,6,1,3] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 3
Description
The diameter of a connected graph. This is the greatest distance between any pair of vertices.
Mp00160: Permutations graph of inversionsGraphs
Mp00247: Graphs de-duplicateGraphs
St001330: Graphs ⟶ ℤResult quality: 16% values known / values provided: 16%distinct values known / distinct values provided: 78%
Values
[1,2] => ([],2)
=> ([],1)
=> 1
[2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[1,2,3] => ([],3)
=> ([],1)
=> 1
[1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> 2
[2,1,3] => ([(1,2)],3)
=> ([(1,2)],3)
=> 2
[2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2
[3,1,2] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,2,3,4] => ([],4)
=> ([],1)
=> 1
[1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> 2
[1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> 2
[1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> 2
[1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> 2
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 3
[2,1,3,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> 2
[2,1,4,3] => ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 2
[2,3,1,4] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> 2
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3}
[3,1,2,4] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> 2
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 3
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3}
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> 2
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3}
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3}
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,2,3,4,5] => ([],5)
=> ([],1)
=> 1
[1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> 2
[1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> 2
[1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 2
[1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 2
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 3
[1,3,2,4,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> 2
[1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> 2
[1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 2
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 2
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 2
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 3
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> 2
[1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 3
[1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 2
[1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[1,5,3,2,4] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 3
[1,5,4,2,3] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 3
[1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[2,1,3,4,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> 2
[2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> 2
[2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[2,5,3,1,4] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[3,1,5,4,2] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[3,2,4,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[3,5,2,1,4] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[3,5,2,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[3,5,4,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[4,1,3,2,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[4,1,3,5,2] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[4,1,5,3,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[4,2,1,3,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[4,2,1,5,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[4,2,5,3,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[4,3,5,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[4,3,5,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[4,5,1,3,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[4,5,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[5,1,2,4,3] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[5,1,3,2,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[5,1,3,4,2] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[5,1,4,2,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[5,1,4,3,2] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[5,2,1,3,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[5,2,1,4,3] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[5,2,3,1,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
Description
The hat guessing number of a graph. Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors. Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Matching statistic: St000777
Mp00114: Permutations connectivity setBinary words
Mp00178: Binary words to compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000777: Graphs ⟶ ℤResult quality: 15% values known / values provided: 15%distinct values known / distinct values provided: 67%
Values
[1,2] => 1 => [1,1] => ([(0,1)],2)
=> 2
[2,1] => 0 => [2] => ([],2)
=> ? = 1
[1,2,3] => 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[1,3,2] => 10 => [1,2] => ([(1,2)],3)
=> ? ∊ {1,2,2,2}
[2,1,3] => 01 => [2,1] => ([(0,2),(1,2)],3)
=> 3
[2,3,1] => 00 => [3] => ([],3)
=> ? ∊ {1,2,2,2}
[3,1,2] => 00 => [3] => ([],3)
=> ? ∊ {1,2,2,2}
[3,2,1] => 00 => [3] => ([],3)
=> ? ∊ {1,2,2,2}
[1,2,3,4] => 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,2,4,3] => 110 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3}
[1,3,2,4] => 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,3,4,2] => 100 => [1,3] => ([(2,3)],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3}
[1,4,2,3] => 100 => [1,3] => ([(2,3)],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3}
[1,4,3,2] => 100 => [1,3] => ([(2,3)],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3}
[2,1,3,4] => 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[2,1,4,3] => 010 => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3}
[2,3,1,4] => 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[2,3,4,1] => 000 => [4] => ([],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3}
[2,4,1,3] => 000 => [4] => ([],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3}
[2,4,3,1] => 000 => [4] => ([],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3}
[3,1,2,4] => 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[3,1,4,2] => 000 => [4] => ([],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3}
[3,2,1,4] => 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[3,2,4,1] => 000 => [4] => ([],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3}
[3,4,1,2] => 000 => [4] => ([],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3}
[3,4,2,1] => 000 => [4] => ([],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3}
[4,1,2,3] => 000 => [4] => ([],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3}
[4,1,3,2] => 000 => [4] => ([],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3}
[4,2,1,3] => 000 => [4] => ([],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3}
[4,2,3,1] => 000 => [4] => ([],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3}
[4,3,1,2] => 000 => [4] => ([],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3}
[4,3,2,1] => 000 => [4] => ([],4)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3}
[1,2,3,4,5] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,2,3,5,4] => 1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[1,2,4,3,5] => 1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,2,4,5,3] => 1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[1,2,5,3,4] => 1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[1,2,5,4,3] => 1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[1,3,2,4,5] => 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,3,2,5,4] => 1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[1,3,4,2,5] => 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,3,4,5,2] => 1000 => [1,4] => ([(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[1,3,5,2,4] => 1000 => [1,4] => ([(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[1,3,5,4,2] => 1000 => [1,4] => ([(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[1,4,2,3,5] => 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,4,2,5,3] => 1000 => [1,4] => ([(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[1,4,3,2,5] => 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,4,3,5,2] => 1000 => [1,4] => ([(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[1,4,5,2,3] => 1000 => [1,4] => ([(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[1,4,5,3,2] => 1000 => [1,4] => ([(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[1,5,2,3,4] => 1000 => [1,4] => ([(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[1,5,2,4,3] => 1000 => [1,4] => ([(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[1,5,3,2,4] => 1000 => [1,4] => ([(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[1,5,3,4,2] => 1000 => [1,4] => ([(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[1,5,4,2,3] => 1000 => [1,4] => ([(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[1,5,4,3,2] => 1000 => [1,4] => ([(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[2,1,3,4,5] => 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[2,1,3,5,4] => 0110 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[2,1,4,3,5] => 0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[2,1,4,5,3] => 0100 => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[2,1,5,3,4] => 0100 => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[2,1,5,4,3] => 0100 => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[2,3,1,4,5] => 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[2,3,1,5,4] => 0010 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[2,3,4,1,5] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[2,3,4,5,1] => 0000 => [5] => ([],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[2,3,5,1,4] => 0000 => [5] => ([],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[2,3,5,4,1] => 0000 => [5] => ([],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[2,4,1,3,5] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[2,4,1,5,3] => 0000 => [5] => ([],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6}
[2,4,3,1,5] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[3,1,2,4,5] => 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,1,4,2,5] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[3,2,1,4,5] => 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,2,4,1,5] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[3,4,1,2,5] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[3,4,2,1,5] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[4,1,2,3,5] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[4,1,3,2,5] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[4,2,1,3,5] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[4,2,3,1,5] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[4,3,1,2,5] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[4,3,2,1,5] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,2,3,4,5,6] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,2,3,5,4,6] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,2,4,3,5,6] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,2,4,5,3,6] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,2,5,3,4,6] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,2,5,4,3,6] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,3,2,4,5,6] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,3,2,5,4,6] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,3,4,2,5,6] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,3,4,5,2,6] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,3,5,2,4,6] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,3,5,4,2,6] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,4,2,3,5,6] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,4,2,5,3,6] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,4,3,2,5,6] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,4,3,5,2,6] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,4,5,2,3,6] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
Description
The number of distinct eigenvalues of the distance Laplacian of a connected graph.
Matching statistic: St000143
Mp00065: Permutations permutation posetPosets
Mp00307: Posets promotion cycle typeInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St000143: Integer partitions ⟶ ℤResult quality: 8% values known / values provided: 8%distinct values known / distinct values provided: 56%
Values
[1,2] => ([(0,1)],2)
=> [1]
=> [1]
=> 0 = 1 - 1
[2,1] => ([],2)
=> [2]
=> [1,1]
=> 1 = 2 - 1
[1,2,3] => ([(0,2),(2,1)],3)
=> [1]
=> [1]
=> 0 = 1 - 1
[1,3,2] => ([(0,1),(0,2)],3)
=> [2]
=> [1,1]
=> 1 = 2 - 1
[2,1,3] => ([(0,2),(1,2)],3)
=> [2]
=> [1,1]
=> 1 = 2 - 1
[2,3,1] => ([(1,2)],3)
=> [3]
=> [1,1,1]
=> 1 = 2 - 1
[3,1,2] => ([(1,2)],3)
=> [3]
=> [1,1,1]
=> 1 = 2 - 1
[3,2,1] => ([],3)
=> [3,3]
=> [2,2,2]
=> 2 = 3 - 1
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> [1]
=> [1]
=> 0 = 1 - 1
[1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> [2]
=> [1,1]
=> 1 = 2 - 1
[1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> [2]
=> [1,1]
=> 1 = 2 - 1
[1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> [3]
=> [1,1,1]
=> 1 = 2 - 1
[1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> [3]
=> [1,1,1]
=> 1 = 2 - 1
[1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> [3,3]
=> [2,2,2]
=> 2 = 3 - 1
[2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> [2]
=> [1,1]
=> 1 = 2 - 1
[2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [2,2]
=> 2 = 3 - 1
[2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> [3]
=> [1,1,1]
=> 1 = 2 - 1
[2,3,4,1] => ([(1,2),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 1 = 2 - 1
[2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> [3,2]
=> [2,2,1]
=> 2 = 3 - 1
[2,4,3,1] => ([(1,2),(1,3)],4)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> 1 = 2 - 1
[3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> [3]
=> [1,1,1]
=> 1 = 2 - 1
[3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> [3,2]
=> [2,2,1]
=> 2 = 3 - 1
[3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> [3,3]
=> [2,2,2]
=> 2 = 3 - 1
[3,2,4,1] => ([(1,3),(2,3)],4)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> 1 = 2 - 1
[3,4,1,2] => ([(0,3),(1,2)],4)
=> [4,2]
=> [2,2,1,1]
=> 2 = 3 - 1
[3,4,2,1] => ([(2,3)],4)
=> [4,4,4]
=> [3,3,3,3]
=> ? ∊ {3,3,3,4} - 1
[4,1,2,3] => ([(1,2),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 1 = 2 - 1
[4,1,3,2] => ([(1,2),(1,3)],4)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> 1 = 2 - 1
[4,2,1,3] => ([(1,3),(2,3)],4)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> 1 = 2 - 1
[4,2,3,1] => ([(2,3)],4)
=> [4,4,4]
=> [3,3,3,3]
=> ? ∊ {3,3,3,4} - 1
[4,3,1,2] => ([(2,3)],4)
=> [4,4,4]
=> [3,3,3,3]
=> ? ∊ {3,3,3,4} - 1
[4,3,2,1] => ([],4)
=> [4,4,4,4,4,4]
=> [6,6,6,6]
=> ? ∊ {3,3,3,4} - 1
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> [1]
=> [1]
=> 0 = 1 - 1
[1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5)
=> [2]
=> [1,1]
=> 1 = 2 - 1
[1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [2]
=> [1,1]
=> 1 = 2 - 1
[1,2,4,5,3] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> [3]
=> [1,1,1]
=> 1 = 2 - 1
[1,2,5,3,4] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> [3]
=> [1,1,1]
=> 1 = 2 - 1
[1,2,5,4,3] => ([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,3]
=> [2,2,2]
=> 2 = 3 - 1
[1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [2]
=> [1,1]
=> 1 = 2 - 1
[1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2]
=> [2,2]
=> 2 = 3 - 1
[1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [3]
=> [1,1,1]
=> 1 = 2 - 1
[1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> [4]
=> [1,1,1,1]
=> 1 = 2 - 1
[1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [2,2,1]
=> 2 = 3 - 1
[1,3,5,4,2] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> 1 = 2 - 1
[1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [3]
=> [1,1,1]
=> 1 = 2 - 1
[1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [2,2,1]
=> 2 = 3 - 1
[1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [2,2,2]
=> 2 = 3 - 1
[1,4,3,5,2] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> 1 = 2 - 1
[1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,2]
=> [2,2,1,1]
=> 2 = 3 - 1
[1,4,5,3,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> [4,4,4]
=> [3,3,3,3]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6} - 1
[1,5,2,3,4] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> [4]
=> [1,1,1,1]
=> 1 = 2 - 1
[1,5,2,4,3] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> 1 = 2 - 1
[1,5,3,2,4] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> 1 = 2 - 1
[1,5,3,4,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> [4,4,4]
=> [3,3,3,3]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6} - 1
[1,5,4,2,3] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> [4,4,4]
=> [3,3,3,3]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6} - 1
[1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> [4,4,4,4,4,4]
=> [6,6,6,6]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6} - 1
[2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> [2]
=> [1,1]
=> 1 = 2 - 1
[2,1,3,5,4] => ([(0,4),(1,4),(4,2),(4,3)],5)
=> [2,2]
=> [2,2]
=> 2 = 3 - 1
[2,1,5,4,3] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [6,6]
=> [2,2,2,2,2,2]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6} - 1
[2,4,5,3,1] => ([(1,3),(1,4),(4,2)],5)
=> [15]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6} - 1
[2,5,1,4,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6} - 1
[2,5,3,4,1] => ([(1,3),(1,4),(4,2)],5)
=> [15]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6} - 1
[2,5,4,1,3] => ([(0,4),(1,2),(1,3),(1,4)],5)
=> [10,4,4]
=> [3,3,3,3,1,1,1,1,1,1]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6} - 1
[2,5,4,3,1] => ([(1,2),(1,3),(1,4)],5)
=> [15,15]
=> [2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6} - 1
[3,1,5,4,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6} - 1
[3,2,1,5,4] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6,6]
=> [2,2,2,2,2,2]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6} - 1
[3,2,5,1,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6} - 1
[3,2,5,4,1] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> [5,5,5,5]
=> [4,4,4,4,4]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6} - 1
[3,4,2,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> [4,4,4]
=> [3,3,3,3]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6} - 1
[3,4,2,5,1] => ([(1,4),(2,3),(3,4)],5)
=> [15]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6} - 1
[3,4,5,2,1] => ([(2,3),(3,4)],5)
=> [5,5,5,5]
=> [4,4,4,4,4]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6} - 1
[3,5,1,4,2] => ([(0,3),(0,4),(1,2),(1,4)],5)
=> [12,4]
=> [2,2,2,2,1,1,1,1,1,1,1,1]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6} - 1
[3,5,2,1,4] => ([(0,4),(1,4),(2,3),(2,4)],5)
=> [10,4,4]
=> [3,3,3,3,1,1,1,1,1,1]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6} - 1
[3,5,2,4,1] => ([(1,4),(2,3),(2,4)],5)
=> [15,5,5]
=> [3,3,3,3,3,1,1,1,1,1,1,1,1,1,1]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6} - 1
[3,5,4,1,2] => ([(0,4),(1,2),(1,3)],5)
=> [10,10]
=> [2,2,2,2,2,2,2,2,2,2]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6} - 1
[3,5,4,2,1] => ([(2,3),(2,4)],5)
=> [10,10,10,10]
=> [4,4,4,4,4,4,4,4,4,4]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6} - 1
[4,1,5,3,2] => ([(0,4),(1,2),(1,3),(1,4)],5)
=> [10,4,4]
=> [3,3,3,3,1,1,1,1,1,1]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6} - 1
[4,2,1,5,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6} - 1
[4,2,3,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> [4,4,4]
=> [3,3,3,3]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6} - 1
[4,2,3,5,1] => ([(1,4),(2,3),(3,4)],5)
=> [15]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6} - 1
[4,2,5,1,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> [12,4]
=> [2,2,2,2,1,1,1,1,1,1,1,1]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6} - 1
[4,2,5,3,1] => ([(1,4),(2,3),(2,4)],5)
=> [15,5,5]
=> [3,3,3,3,3,1,1,1,1,1,1,1,1,1,1]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6} - 1
[4,3,1,2,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> [4,4,4]
=> [3,3,3,3]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6} - 1
[4,3,1,5,2] => ([(0,4),(1,4),(2,3),(2,4)],5)
=> [10,4,4]
=> [3,3,3,3,1,1,1,1,1,1]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6} - 1
[4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,4,4,4,4,4]
=> [6,6,6,6]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6} - 1
[4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> [15,15]
=> [2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6} - 1
[4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
=> [10,10]
=> [2,2,2,2,2,2,2,2,2,2]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6} - 1
[4,3,5,2,1] => ([(2,4),(3,4)],5)
=> [10,10,10,10]
=> [4,4,4,4,4,4,4,4,4,4]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6} - 1
[4,5,1,3,2] => ([(0,4),(1,2),(1,3)],5)
=> [10,10]
=> [2,2,2,2,2,2,2,2,2,2]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6} - 1
[4,5,2,1,3] => ([(0,4),(1,4),(2,3)],5)
=> [10,10]
=> [2,2,2,2,2,2,2,2,2,2]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6} - 1
[4,5,2,3,1] => ([(1,4),(2,3)],5)
=> [5,5,5,5,5,5]
=> [6,6,6,6,6]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6} - 1
[4,5,3,1,2] => ([(1,4),(2,3)],5)
=> [5,5,5,5,5,5]
=> [6,6,6,6,6]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6} - 1
[4,5,3,2,1] => ([(3,4)],5)
=> [5,5,5,5,5,5,5,5,5,5,5,5]
=> [12,12,12,12,12]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6} - 1
[5,1,3,4,2] => ([(1,3),(1,4),(4,2)],5)
=> [15]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6} - 1
[5,1,4,2,3] => ([(1,3),(1,4),(4,2)],5)
=> [15]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6} - 1
[5,1,4,3,2] => ([(1,2),(1,3),(1,4)],5)
=> [15,15]
=> [2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6} - 1
[5,2,1,4,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> [5,5,5,5]
=> [4,4,4,4,4]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6} - 1
[5,2,3,1,4] => ([(1,4),(2,3),(3,4)],5)
=> [15]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6} - 1
[5,2,3,4,1] => ([(2,3),(3,4)],5)
=> [5,5,5,5]
=> [4,4,4,4,4]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6} - 1
[5,2,4,1,3] => ([(1,4),(2,3),(2,4)],5)
=> [15,5,5]
=> [3,3,3,3,3,1,1,1,1,1,1,1,1,1,1]
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,6,6,6,6,6,6} - 1
Description
The largest repeated part of a partition. If the parts of the partition are all distinct, the value of the statistic is defined to be zero.
The following 22 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001060The distinguishing index of a graph. St000455The second largest eigenvalue of a graph if it is integral. St000291The number of descents of a binary word. St001907The number of Bastidas - Hohlweg - Saliola excedances of a signed permutation. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001414Half the length of the longest odd length palindromic prefix of a binary word. St001864The number of excedances of a signed permutation. St001896The number of right descents of a signed permutations. St000845The maximal number of elements covered by an element in a poset. St000846The maximal number of elements covering an element of a poset. St001942The number of loops of the quiver corresponding to the reduced incidence algebra of a poset. St001863The number of weak excedances of a signed permutation. St001152The number of pairs with even minimum in a perfect matching. St001712The number of natural descents of a standard Young tableau. St001905The number of preferred parking spots in a parking function less than the index of the car. St001946The number of descents in a parking function. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001624The breadth of a lattice. St001626The number of maximal proper sublattices of a lattice.