searching the database
Your data matches 693 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000781
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
St000781: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1]
=> 1
[2]
=> 1
[1,1]
=> 1
[3]
=> 1
[2,1]
=> 1
[1,1,1]
=> 1
[4]
=> 1
[3,1]
=> 1
[2,2]
=> 1
[2,1,1]
=> 1
[1,1,1,1]
=> 1
[5]
=> 1
[4,1]
=> 1
[3,2]
=> 1
[3,1,1]
=> 1
[2,2,1]
=> 1
[2,1,1,1]
=> 1
[1,1,1,1,1]
=> 1
[6]
=> 1
[5,1]
=> 1
[4,2]
=> 1
[4,1,1]
=> 1
[3,3]
=> 1
[3,2,1]
=> 2
[3,1,1,1]
=> 1
[2,2,2]
=> 1
[2,2,1,1]
=> 1
[2,1,1,1,1]
=> 1
[1,1,1,1,1,1]
=> 1
[7]
=> 1
[6,1]
=> 1
[5,2]
=> 1
[5,1,1]
=> 1
[4,3]
=> 1
[4,2,1]
=> 2
[4,1,1,1]
=> 1
[3,3,1]
=> 1
[3,2,2]
=> 1
[3,2,1,1]
=> 2
[3,1,1,1,1]
=> 1
[2,2,2,1]
=> 1
[2,2,1,1,1]
=> 1
[2,1,1,1,1,1]
=> 1
[1,1,1,1,1,1,1]
=> 1
[8]
=> 1
[7,1]
=> 1
[6,2]
=> 1
[6,1,1]
=> 1
[5,3]
=> 1
[5,2,1]
=> 2
Description
The number of proper colouring schemes of a Ferrers diagram.
A colouring of a Ferrers diagram is proper if no two cells in a row or in a column have the same colour. The minimal number of colours needed is the maximum of the length and the first part of the partition, because we can restrict a latin square to the shape. We can associate to each colouring the integer partition recording how often each colour is used, see [1].
This statistic is the number of distinct such integer partitions that occur.
Matching statistic: St001031
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
St001031: Dyck paths ⟶ ℤResult quality: 50% ●values known / values provided: 84%●distinct values known / distinct values provided: 50%
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
St001031: Dyck paths ⟶ ℤResult quality: 50% ●values known / values provided: 84%●distinct values known / distinct values provided: 50%
Values
[1]
=> [1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
[2]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 2
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 2
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> 1
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {1,2,3,3}
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {1,2,3,3}
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> 1
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> 2
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> 1
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 1
[2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? ∊ {1,2,3,3}
[1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,2,3,3}
[9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {1,2,2,2,3,3}
[8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {1,2,2,2,3,3}
[7,2]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? ∊ {1,2,2,2,3,3}
[3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> ? ∊ {1,2,2,2,3,3}
[2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? ∊ {1,2,2,2,3,3}
[1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,2,2,2,3,3}
[10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {1,1,2,3,3,3,3,3,3,3,3,4}
[9,1]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {1,1,2,3,3,3,3,3,3,3,3,4}
[8,2]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? ∊ {1,1,2,3,3,3,3,3,3,3,3,4}
[8,1,1]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,2,3,3,3,3,3,3,3,3,4}
[7,3]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? ∊ {1,1,2,3,3,3,3,3,3,3,3,4}
[7,2,1]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,1,0,0,0]
=> ? ∊ {1,1,2,3,3,3,3,3,3,3,3,4}
[4,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> ? ∊ {1,1,2,3,3,3,3,3,3,3,3,4}
[3,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,1,0,0,0,0]
=> ? ∊ {1,1,2,3,3,3,3,3,3,3,3,4}
[3,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> ? ∊ {1,1,2,3,3,3,3,3,3,3,3,4}
[2,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? ∊ {1,1,2,3,3,3,3,3,3,3,3,4}
[2,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? ∊ {1,1,2,3,3,3,3,3,3,3,3,4}
[1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,3,3,3,3,3,3,3,3,4}
Description
The height of the bicoloured Motzkin path associated with the Dyck path.
Matching statistic: St001499
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00030: Dyck paths —zeta map⟶ Dyck paths
St001499: Dyck paths ⟶ ℤResult quality: 75% ●values known / values provided: 83%●distinct values known / distinct values provided: 75%
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00030: Dyck paths —zeta map⟶ Dyck paths
St001499: Dyck paths ⟶ ℤResult quality: 75% ●values known / values provided: 83%●distinct values known / distinct values provided: 75%
Values
[1]
=> []
=> []
=> []
=> ? = 1
[2]
=> []
=> []
=> []
=> ? ∊ {1,1}
[1,1]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1}
[3]
=> []
=> []
=> []
=> ? ∊ {1,1}
[2,1]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1}
[1,1,1]
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
[4]
=> []
=> []
=> []
=> ? ∊ {1,1}
[3,1]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1}
[2,2]
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
[2,1,1]
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
[1,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[5]
=> []
=> []
=> []
=> ? ∊ {1,1}
[4,1]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1}
[3,2]
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
[3,1,1]
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
[2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[6]
=> []
=> []
=> []
=> ? ∊ {1,1}
[5,1]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1}
[4,2]
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
[4,1,1]
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
[3,3]
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1
[3,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[3,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[2,2,2]
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2
[2,2,1,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 1
[2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
[7]
=> []
=> []
=> []
=> ? ∊ {1,1}
[6,1]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,1}
[5,2]
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
[5,1,1]
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
[4,3]
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1
[4,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[4,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[3,3,1]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[3,2,2]
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2
[3,2,1,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 1
[3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[2,2,2,1]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[2,2,1,1,1]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
[8]
=> []
=> []
=> []
=> ? ∊ {2,3}
[7,1]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {2,3}
[6,2]
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
[6,1,1]
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
[5,3]
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1
[5,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[5,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[4,4]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 1
[4,3,1]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[4,2,2]
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2
[4,2,1,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 1
[4,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[3,3,2]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2
[3,3,1,1]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1
[3,2,2,1]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[3,2,1,1,1]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1
[3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
[2,2,2,2]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[2,2,2,1,1]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2
[2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 1
[2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
[9]
=> []
=> []
=> []
=> ? ∊ {2,2,2}
[8,1]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {2,2,2}
[1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {2,2,2}
[10]
=> []
=> []
=> []
=> ? ∊ {1,3,3,3,4}
[9,1]
=> [1]
=> [1,0]
=> [1,0]
=> ? ∊ {1,3,3,3,4}
[2,2,1,1,1,1,1,1]
=> [2,1,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? ∊ {1,3,3,3,4}
[2,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,3,3,3,4}
[1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,3,3,3,4}
Description
The number of indecomposable projective-injective modules of a magnitude 1 Nakayama algebra.
We use the bijection in the code by Christian Stump to have a bijection to Dyck paths.
Matching statistic: St001052
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
St001052: Permutations ⟶ ℤResult quality: 83% ●values known / values provided: 83%●distinct values known / distinct values provided: 100%
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
St001052: Permutations ⟶ ℤResult quality: 83% ●values known / values provided: 83%●distinct values known / distinct values provided: 100%
Values
[1]
=> []
=> []
=> [] => ? = 1
[2]
=> []
=> []
=> [] => ? ∊ {1,1}
[1,1]
=> [1]
=> [1,0]
=> [1] => ? ∊ {1,1}
[3]
=> []
=> []
=> [] => ? ∊ {1,1}
[2,1]
=> [1]
=> [1,0]
=> [1] => ? ∊ {1,1}
[1,1,1]
=> [1,1]
=> [1,1,0,0]
=> [2,1] => 1
[4]
=> []
=> []
=> [] => ? ∊ {1,1}
[3,1]
=> [1]
=> [1,0]
=> [1] => ? ∊ {1,1}
[2,2]
=> [2]
=> [1,0,1,0]
=> [1,2] => 1
[2,1,1]
=> [1,1]
=> [1,1,0,0]
=> [2,1] => 1
[1,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [2,3,1] => 1
[5]
=> []
=> []
=> [] => ? ∊ {1,1}
[4,1]
=> [1]
=> [1,0]
=> [1] => ? ∊ {1,1}
[3,2]
=> [2]
=> [1,0,1,0]
=> [1,2] => 1
[3,1,1]
=> [1,1]
=> [1,1,0,0]
=> [2,1] => 1
[2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => 1
[2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [2,3,1] => 1
[1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 1
[6]
=> []
=> []
=> [] => ? ∊ {1,1}
[5,1]
=> [1]
=> [1,0]
=> [1] => ? ∊ {1,1}
[4,2]
=> [2]
=> [1,0,1,0]
=> [1,2] => 1
[4,1,1]
=> [1,1]
=> [1,1,0,0]
=> [2,1] => 1
[3,3]
=> [3]
=> [1,0,1,0,1,0]
=> [1,2,3] => 2
[3,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => 1
[3,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [2,3,1] => 1
[2,2,2]
=> [2,2]
=> [1,1,1,0,0,0]
=> [3,1,2] => 1
[2,2,1,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1
[2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 1
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 1
[7]
=> []
=> []
=> [] => ? ∊ {1,1}
[6,1]
=> [1]
=> [1,0]
=> [1] => ? ∊ {1,1}
[5,2]
=> [2]
=> [1,0,1,0]
=> [1,2] => 1
[5,1,1]
=> [1,1]
=> [1,1,0,0]
=> [2,1] => 1
[4,3]
=> [3]
=> [1,0,1,0,1,0]
=> [1,2,3] => 2
[4,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => 1
[4,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [2,3,1] => 1
[3,3,1]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[3,2,2]
=> [2,2]
=> [1,1,1,0,0,0]
=> [3,1,2] => 1
[3,2,1,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1
[3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 1
[2,2,2,1]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [3,1,4,2] => 2
[2,2,1,1,1]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 1
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 1
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => 1
[8]
=> []
=> []
=> [] => ? ∊ {2,3}
[7,1]
=> [1]
=> [1,0]
=> [1] => ? ∊ {2,3}
[6,2]
=> [2]
=> [1,0,1,0]
=> [1,2] => 1
[6,1,1]
=> [1,1]
=> [1,1,0,0]
=> [2,1] => 1
[5,3]
=> [3]
=> [1,0,1,0,1,0]
=> [1,2,3] => 2
[5,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => 1
[5,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [2,3,1] => 1
[4,4]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 3
[4,3,1]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[4,2,2]
=> [2,2]
=> [1,1,1,0,0,0]
=> [3,1,2] => 1
[4,2,1,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1
[4,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 1
[3,3,2]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,4,2,3] => 2
[3,3,1,1]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 1
[3,2,2,1]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [3,1,4,2] => 2
[3,2,1,1,1]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 1
[3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 1
[2,2,2,2]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [4,1,2,3] => 1
[2,2,2,1,1]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,1,4,5,2] => 2
[2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,2] => 1
[2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => 1
[9]
=> []
=> []
=> [] => ? ∊ {2,2,2}
[8,1]
=> [1]
=> [1,0]
=> [1] => ? ∊ {2,2,2}
[2,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,7,2] => ? ∊ {2,2,2}
[10]
=> []
=> []
=> [] => ? ∊ {3,3,3,3,3,3}
[9,1]
=> [1]
=> [1,0]
=> [1] => ? ∊ {3,3,3,3,3,3}
[3,3,1,1,1,1]
=> [3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,2,4,5,6,7,3] => ? ∊ {3,3,3,3,3,3}
[3,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,7,2] => ? ∊ {3,3,3,3,3,3}
[2,2,2,1,1,1,1]
=> [2,2,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [3,1,4,5,6,7,2] => ? ∊ {3,3,3,3,3,3}
[2,2,1,1,1,1,1,1]
=> [2,1,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,7,8,2] => ? ∊ {3,3,3,3,3,3}
Description
The length of the exterior of a permutation.
The '''exterior''' of a permutation is the longest proper prefix that is also a suffix, when viewed as a pattern. In other words, the length of the exterior of a permutation σ of length n is the largest i<n such that the first i entries of σ are in the same relative order as the last i entries of σ.
Matching statistic: St001064
(load all 71 compositions to match this statistic)
(load all 71 compositions to match this statistic)
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001064: Dyck paths ⟶ ℤResult quality: 75% ●values known / values provided: 80%●distinct values known / distinct values provided: 75%
St001064: Dyck paths ⟶ ℤResult quality: 75% ●values known / values provided: 80%●distinct values known / distinct values provided: 75%
Values
[1]
=> [1,0,1,0]
=> 1
[2]
=> [1,1,0,0,1,0]
=> 1
[1,1]
=> [1,0,1,1,0,0]
=> 1
[3]
=> [1,1,1,0,0,0,1,0]
=> 1
[2,1]
=> [1,0,1,0,1,0]
=> 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> 2
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> 1
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1}
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> 1
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1}
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,2,3,3}
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,2,3,3}
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> 1
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> 2
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> 1
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 1
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? ∊ {1,2,3,3}
[1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? ∊ {1,2,3,3}
[9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,2,2,2,3,3}
[8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,2,2,2,3,3}
[7,2]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,2,2,2,3,3}
[7,1,1]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,2,2,2,3,3}
[3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> ? ∊ {1,1,1,2,2,2,3,3}
[2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,2,2,2,3,3}
[2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,2,2,2,3,3}
[1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,2,2,2,3,3}
[10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,2,2,2,3,3,3,3,3,3,3,4}
[9,1]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,2,2,2,3,3,3,3,3,3,3,4}
[8,2]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,2,2,2,3,3,3,3,3,3,3,4}
[8,1,1]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,2,2,2,3,3,3,3,3,3,3,4}
[7,3]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> ? ∊ {1,1,1,2,2,2,3,3,3,3,3,3,3,4}
[7,2,1]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,2,2,2,3,3,3,3,3,3,3,4}
[7,1,1,1]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,2,2,2,3,3,3,3,3,3,3,4}
[4,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> ? ∊ {1,1,1,2,2,2,3,3,3,3,3,3,3,4}
[3,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> ? ∊ {1,1,1,2,2,2,3,3,3,3,3,3,3,4}
[3,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,2,2,2,3,3,3,3,3,3,3,4}
[2,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,2,2,2,3,3,3,3,3,3,3,4}
[2,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,2,2,2,3,3,3,3,3,3,3,4}
[2,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,2,2,2,3,3,3,3,3,3,3,4}
[1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,2,2,2,3,3,3,3,3,3,3,4}
Description
Number of simple modules in the corresponding Nakayama algebra that are 3-syzygy modules.
Matching statistic: St001025
(load all 84 compositions to match this statistic)
(load all 84 compositions to match this statistic)
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00121: Dyck paths —Cori-Le Borgne involution⟶ Dyck paths
St001025: Dyck paths ⟶ ℤResult quality: 50% ●values known / values provided: 80%●distinct values known / distinct values provided: 50%
Mp00121: Dyck paths —Cori-Le Borgne involution⟶ Dyck paths
St001025: Dyck paths ⟶ ℤResult quality: 50% ●values known / values provided: 80%●distinct values known / distinct values provided: 50%
Values
[1]
=> [1,0,1,0]
=> [1,0,1,0]
=> 0 = 1 - 1
[2]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 0 = 1 - 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 0 = 1 - 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 0 = 1 - 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 0 = 1 - 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 0 = 1 - 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 0 = 1 - 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 0 = 1 - 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 0 = 1 - 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 0 = 1 - 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 0 = 1 - 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 0 = 1 - 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 0 = 1 - 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 0 = 1 - 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 0 = 1 - 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 0 = 1 - 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 0 = 1 - 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 0 = 1 - 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 0 = 1 - 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> 0 = 1 - 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 0 = 1 - 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 0 = 1 - 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 0 = 1 - 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 1 = 2 - 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 0 = 1 - 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 0 = 1 - 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 0 = 1 - 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 0 = 1 - 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 0 = 1 - 1
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> ? ∊ {1,2} - 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> 0 = 1 - 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> 0 = 1 - 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> 0 = 1 - 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 0 = 1 - 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 0 = 1 - 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 0 = 1 - 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 0 = 1 - 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0 = 1 - 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1 = 2 - 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 0 = 1 - 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 0 = 1 - 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 0 = 1 - 1
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> 0 = 1 - 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ? ∊ {1,2} - 1
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0]
=> ? ∊ {2,2,3,3} - 1
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> ? ∊ {2,2,3,3} - 1
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> 0 = 1 - 1
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> 0 = 1 - 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> 0 = 1 - 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> 0 = 1 - 1
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> 0 = 1 - 1
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 0 = 1 - 1
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 0 = 1 - 1
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0 = 1 - 1
[2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? ∊ {2,2,3,3} - 1
[1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> ? ∊ {2,2,3,3} - 1
[9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,2,2,2,3,3} - 1
[8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,2,2,2,3,3} - 1
[7,2]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,2,2,2,3,3} - 1
[7,1,1]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> ? ∊ {1,1,1,2,2,2,3,3} - 1
[3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,2,2,2,3,3} - 1
[2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,2,2,2,3,3} - 1
[2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,2,2,2,3,3} - 1
[1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,2,2,2,3,3} - 1
[10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,3,3,3,3,3,3,3,3,4} - 1
[9,1]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,3,3,3,3,3,3,3,3,4} - 1
[8,2]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,3,3,3,3,3,3,3,3,4} - 1
[8,1,1]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,3,3,3,3,3,3,3,3,4} - 1
[7,3]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,1,0,0]
=> ? ∊ {1,1,1,1,1,3,3,3,3,3,3,3,3,4} - 1
[7,2,1]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,3,3,3,3,3,3,3,3,4} - 1
[7,1,1,1]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,1,1,1,0,0,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,3,3,3,3,3,3,3,3,4} - 1
[4,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,1,0,0]
=> ? ∊ {1,1,1,1,1,3,3,3,3,3,3,3,3,4} - 1
[3,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,3,3,3,3,3,3,3,3,4} - 1
[3,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,3,3,3,3,3,3,3,3,4} - 1
[2,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1,0,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,3,3,3,3,3,3,3,3,4} - 1
[2,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,3,3,3,3,3,3,3,3,4} - 1
[2,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,3,3,3,3,3,3,3,3,4} - 1
[1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,3,3,3,3,3,3,3,3,4} - 1
Description
Number of simple modules with projective dimension 4 in the Nakayama algebra corresponding to the Dyck path.
Matching statistic: St001007
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
Mp00103: Dyck paths —peeling map⟶ Dyck paths
St001007: Dyck paths ⟶ ℤResult quality: 75% ●values known / values provided: 80%●distinct values known / distinct values provided: 75%
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
Mp00103: Dyck paths —peeling map⟶ Dyck paths
St001007: Dyck paths ⟶ ℤResult quality: 75% ●values known / values provided: 80%●distinct values known / distinct values provided: 75%
Values
[1]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
[2]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,0,1,0,1,0]
=> 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {2,2}
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {2,2}
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,3,3}
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,3,3}
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,3,3}
[1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,3,3}
[9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,3,3}
[8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,3,3}
[7,2]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,3,3}
[7,1,1]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,3,3}
[3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,3,3}
[2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,3,3}
[2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,3,3}
[1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,3,3}
[10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[9,1]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[8,2]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[8,1,1]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[7,3]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[7,2,1]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[7,1,1,1]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[4,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[3,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[3,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[2,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[2,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[2,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,3,3,3,3,3,3,3,4}
Description
Number of simple modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path.
Matching statistic: St001011
(load all 20 compositions to match this statistic)
(load all 20 compositions to match this statistic)
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00122: Dyck paths —Elizalde-Deutsch bijection⟶ Dyck paths
Mp00227: Dyck paths —Delest-Viennot-inverse⟶ Dyck paths
St001011: Dyck paths ⟶ ℤResult quality: 50% ●values known / values provided: 80%●distinct values known / distinct values provided: 50%
Mp00122: Dyck paths —Elizalde-Deutsch bijection⟶ Dyck paths
Mp00227: Dyck paths —Delest-Viennot-inverse⟶ Dyck paths
St001011: Dyck paths ⟶ ℤResult quality: 50% ●values known / values provided: 80%●distinct values known / distinct values provided: 50%
Values
[1]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
[2]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1}
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 2
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 1
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {1,1}
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> ? ∊ {2,2,3,3}
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> ? ∊ {2,2,3,3}
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> 1
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> 2
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 1
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 1
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1
[2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {2,2,3,3}
[1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,3,3}
[9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,3,3}
[8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,3,3}
[7,2]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,2,2,2,2,3,3}
[7,1,1]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,2,3,3}
[3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? ∊ {1,1,2,2,2,2,3,3}
[2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,2,2,2,2,3,3}
[2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,2,3,3}
[1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {1,1,2,2,2,2,3,3}
[10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,3,3,3,4}
[9,1]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,3,3,3,4}
[8,2]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,3,3,3,4}
[8,1,1]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,3,3,3,4}
[7,3]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,1,0,0]
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,3,3,3,4}
[7,2,1]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,3,3,3,4}
[7,1,1,1]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,3,3,3,4}
[4,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,3,3,3,4}
[3,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,3,3,3,4}
[3,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,3,3,3,4}
[2,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,3,3,3,4}
[2,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,3,3,3,4}
[2,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,3,3,3,4}
[1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {1,1,2,2,2,3,3,3,3,3,3,3,3,4}
Description
Number of simple modules of projective dimension 2 in the Nakayama algebra corresponding to the Dyck path.
Matching statistic: St001063
(load all 50 compositions to match this statistic)
(load all 50 compositions to match this statistic)
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
Mp00228: Dyck paths —reflect parallelogram polyomino⟶ Dyck paths
St001063: Dyck paths ⟶ ℤResult quality: 75% ●values known / values provided: 80%●distinct values known / distinct values provided: 75%
Mp00099: Dyck paths —bounce path⟶ Dyck paths
Mp00228: Dyck paths —reflect parallelogram polyomino⟶ Dyck paths
St001063: Dyck paths ⟶ ℤResult quality: 75% ●values known / values provided: 80%●distinct values known / distinct values provided: 75%
Values
[1]
=> [1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
[2]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,1,0,0]
=> 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> 2
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> 1
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> ? ∊ {1,2}
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> 2
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 1
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,2}
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0,0]
=> ? ∊ {1,1,2,3}
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,1,0,0]
=> ? ∊ {1,1,2,3}
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,1,0,0,1,0,0]
=> 3
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> 1
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> 2
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> 1
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> ? ∊ {1,1,2,3}
[1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,2,3}
[9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0,0]
=> ? ∊ {1,1,1,2,2,2,2,3}
[8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> ? ∊ {1,1,1,2,2,2,2,3}
[7,2]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> ? ∊ {1,1,1,2,2,2,2,3}
[7,1,1]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,1,0,0]
=> ? ∊ {1,1,1,2,2,2,2,3}
[3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,2,2,2,2,3}
[2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> ? ∊ {1,1,1,2,2,2,2,3}
[2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,2,2,2,2,3}
[1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,2,2,2,2,3}
[10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0,0]
=> ? ∊ {1,1,1,2,2,2,2,3,3,3,3,3,3,4}
[9,1]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0,0]
=> ? ∊ {1,1,1,2,2,2,2,3,3,3,3,3,3,4}
[8,2]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,1,0,1,0,0,0,0,1,0,0]
=> ? ∊ {1,1,1,2,2,2,2,3,3,3,3,3,3,4}
[8,1,1]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> ? ∊ {1,1,1,2,2,2,2,3,3,3,3,3,3,4}
[7,3]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,1,0,0,1,0,0]
=> ? ∊ {1,1,1,2,2,2,2,3,3,3,3,3,3,4}
[7,2,1]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> ? ∊ {1,1,1,2,2,2,2,3,3,3,3,3,3,4}
[7,1,1,1]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,1,0,0]
=> ? ∊ {1,1,1,2,2,2,2,3,3,3,3,3,3,4}
[4,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> ? ∊ {1,1,1,2,2,2,2,3,3,3,3,3,3,4}
[3,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,2,2,2,2,3,3,3,3,3,3,4}
[3,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> ? ∊ {1,1,1,2,2,2,2,3,3,3,3,3,3,4}
[2,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> ? ∊ {1,1,1,2,2,2,2,3,3,3,3,3,3,4}
[2,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,2,2,2,2,3,3,3,3,3,3,4}
[2,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,2,2,2,2,3,3,3,3,3,3,4}
[1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,2,2,2,2,3,3,3,3,3,3,4}
Description
Numbers of 3-torsionfree simple modules in the corresponding Nakayama algebra.
Matching statistic: St001088
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00103: Dyck paths —peeling map⟶ Dyck paths
St001088: Dyck paths ⟶ ℤResult quality: 75% ●values known / values provided: 80%●distinct values known / distinct values provided: 75%
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00103: Dyck paths —peeling map⟶ Dyck paths
St001088: Dyck paths ⟶ ℤResult quality: 75% ●values known / values provided: 80%●distinct values known / distinct values provided: 75%
Values
[1]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
[2]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,0,1,0,1,0]
=> 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,0,1,0,1,0]
=> 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {1,1}
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {1,1}
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {1,2,3,3}
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {1,2,3,3}
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 2
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {1,2,3,3}
[1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {1,2,3,3}
[9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {1,1,2,2,2,2,3,3}
[8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {1,1,2,2,2,2,3,3}
[7,2]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {1,1,2,2,2,2,3,3}
[7,1,1]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {1,1,2,2,2,2,3,3}
[3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {1,1,2,2,2,2,3,3}
[2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {1,1,2,2,2,2,3,3}
[2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {1,1,2,2,2,2,3,3}
[1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {1,1,2,2,2,2,3,3}
[10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {1,2,2,2,2,2,3,3,3,3,3,3,3,4}
[9,1]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {1,2,2,2,2,2,3,3,3,3,3,3,3,4}
[8,2]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {1,2,2,2,2,2,3,3,3,3,3,3,3,4}
[8,1,1]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {1,2,2,2,2,2,3,3,3,3,3,3,3,4}
[7,3]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {1,2,2,2,2,2,3,3,3,3,3,3,3,4}
[7,2,1]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? ∊ {1,2,2,2,2,2,3,3,3,3,3,3,3,4}
[7,1,1,1]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {1,2,2,2,2,2,3,3,3,3,3,3,3,4}
[4,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {1,2,2,2,2,2,3,3,3,3,3,3,3,4}
[3,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {1,2,2,2,2,2,3,3,3,3,3,3,3,4}
[3,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {1,2,2,2,2,2,3,3,3,3,3,3,3,4}
[2,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {1,2,2,2,2,2,3,3,3,3,3,3,3,4}
[2,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {1,2,2,2,2,2,3,3,3,3,3,3,3,4}
[2,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {1,2,2,2,2,2,3,3,3,3,3,3,3,4}
[1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {1,2,2,2,2,2,3,3,3,3,3,3,3,4}
Description
Number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra.
The following 683 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001333The cardinality of a minimal edge-isolating set of a graph. St001498The normalised height of a Nakayama algebra with magnitude 1. St001722The number of minimal chains with small intervals between a binary word and the top element. St000024The number of double up and double down steps of a Dyck path. St000121The number of occurrences of the contiguous pattern [.,[.,[.,[.,.]]]] in a binary tree. St000122The number of occurrences of the contiguous pattern [.,[.,[[.,.],.]]] in a binary tree. St000125The number of occurrences of the contiguous pattern [.,[[[.,.],.],. St000132The number of occurrences of the contiguous pattern [[.,.],[.,[[.,.],.]]] in a binary tree. St000516The number of stretching pairs of a permutation. St000562The number of internal points of a set partition. St000687The dimension of Hom(I,P) for the LNakayama algebra of a Dyck path. St000966Number of peaks minus the global dimension of the corresponding LNakayama algebra. St000980The number of boxes weakly below the path and above the diagonal that lie below at least two peaks. St001189The number of simple modules with dominant and codominant dimension equal to zero in the Nakayama algebra corresponding to the Dyck path. St001418Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St000243The number of cyclic valleys and cyclic peaks of a permutation. St000872The number of very big descents of a permutation. St000099The number of valleys of a permutation, including the boundary. St001212The number of simple modules in the corresponding Nakayama algebra that have non-zero second Ext-group with the regular module. St001235The global dimension of the corresponding Comp-Nakayama algebra. St001294The maximal torsionfree index of a simple non-projective module in the corresponding Nakayama algebra. St000052The number of valleys of a Dyck path not on the x-axis. St000366The number of double descents of a permutation. St000648The number of 2-excedences of a permutation. St001687The number of distinct positions of the pattern letter 2 in occurrences of 213 in a permutation. St000374The number of exclusive right-to-left minima of a permutation. St000996The number of exclusive left-to-right maxima of a permutation. St000649The number of 3-excedences of a permutation. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000326The position of the first one in a binary word after appending a 1 at the end. St000871The number of very big ascents of a permutation. St000862The number of parts of the shifted shape of a permutation. St000666The number of right tethers of a permutation. St001394The genus of a permutation. St001549The number of restricted non-inversions between exceedances. St001559The number of transpositions that are smaller or equal to a permutation in Bruhat order while not being inversions. St001906Half of the difference between the total displacement and the number of inversions and the reflection length of a permutation. St000036The evaluation at 1 of the Kazhdan-Lusztig polynomial with parameters given by the identity and the permutation. St000353The number of inner valleys of a permutation. St000570The Edelman-Greene number of a permutation. St000955Number of times one has Exti(D(A),A)>0 for i>0 for the corresponding LNakayama algebra. St001132The number of leaves in the subtree whose sister has label 1 in the decreasing labelled binary unordered tree associated with the perfect matching. St001744The number of occurrences of the arrow pattern 1-2 with an arrow from 1 to 2 in a permutation. St000640The rank of the largest boolean interval in a poset. St001199The dominant dimension of eAe for the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St000233The number of nestings of a set partition. St000371The number of mid points of decreasing subsequences of length 3 in a permutation. St000373The number of weak exceedences of a permutation that are also mid-points of a decreasing subsequence of length 3. St000731The number of double exceedences of a permutation. St000375The number of non weak exceedences of a permutation that are mid-points of a decreasing subsequence of length 3. St000622The number of occurrences of the patterns 2143 or 4231 in a permutation. St001513The number of nested exceedences of a permutation. St000661The number of rises of length 3 of a Dyck path. St000931The number of occurrences of the pattern UUU in a Dyck path. St001141The number of occurrences of hills of size 3 in a Dyck path. St001732The number of peaks visible from the left. St000497The lcb statistic of a set partition. St000563The number of overlapping pairs of blocks of a set partition. St000585The number of occurrences of the pattern {{1,3},{2}} such that 2 is maximal, (1,3) are consecutive in a block. St000594The number of occurrences of the pattern {{1,3},{2}} such that 1,2 are minimal, (1,3) are consecutive in a block. St000613The number of occurrences of the pattern {{1,3},{2}} such that 2 is minimal, 3 is maximal, (1,3) are consecutive in a block. St000790The number of pairs of centered tunnels, one strictly containing the other, of a Dyck path. St000120The number of left tunnels of a Dyck path. St001196The global dimension of A minus the global dimension of eAe for the corresponding Nakayama algebra with minimal faithful projective-injective module eA. St001344The neighbouring number of a permutation. St001432The order dimension of the partition. St001493The number of simple modules with maximal even projective dimension in the corresponding Nakayama algebra. St001665The number of pure excedances of a permutation. St000360The number of occurrences of the pattern 32-1. St000367The number of simsun double descents of a permutation. St000407The number of occurrences of the pattern 2143 in a permutation. St000449The number of pairs of vertices of a graph with distance 4. St000750The number of occurrences of the pattern 4213 in a permutation. St000751The number of occurrences of either of the pattern 2143 or 2143 in a permutation. St001172The number of 1-rises at odd height of a Dyck path. St001292The injective dimension of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001551The number of restricted non-inversions between exceedances where the rightmost exceedance is linked. St001715The number of non-records in a permutation. St001728The number of invisible descents of a permutation. St000617The number of global maxima of a Dyck path. St001761The maximal multiplicity of a letter in a reduced word of a permutation. St000119The number of occurrences of the pattern 321 in a permutation. St000123The difference in Coxeter length of a permutation and its image under the Simion-Schmidt map. St000223The number of nestings in the permutation. St000358The number of occurrences of the pattern 31-2. St000406The number of occurrences of the pattern 3241 in a permutation. St000864The number of circled entries of the shifted recording tableau of a permutation. St001550The number of inversions between exceedances where the greater exceedance is linked. St001552The number of inversions between excedances and fixed points of a permutation. St001847The number of occurrences of the pattern 1432 in a permutation. St001162The minimum jump of a permutation. St001729The number of visible descents of a permutation. St000437The number of occurrences of the pattern 312 or of the pattern 321 in a permutation. St000623The number of occurrences of the pattern 52341 in a permutation. St000664The number of right ropes of a permutation. St000709The number of occurrences of 14-2-3 or 14-3-2. St000711The number of big exceedences of a permutation. St000732The number of double deficiencies of a permutation. St000801The number of occurrences of the vincular pattern |312 in a permutation. St000802The number of occurrences of the vincular pattern |321 in a permutation. St001411The number of patterns 321 or 3412 in a permutation. St001537The number of cyclic crossings of a permutation. St001727The number of invisible inversions of a permutation. St000405The number of occurrences of the pattern 1324 in a permutation. St000760The length of the longest strictly decreasing subsequence of parts of an integer composition. St000201The number of leaf nodes in a binary tree. St000255The number of reduced Kogan faces with the permutation as type. St000632The jump number of the poset. St001933The largest multiplicity of a part in an integer partition. St000408The number of occurrences of the pattern 4231 in a permutation. St000440The number of occurrences of the pattern 4132 or of the pattern 4231 in a permutation. St000842The breadth of a permutation. St001086The number of occurrences of the consecutive pattern 132 in a permutation. St001107The number of times one can erase the first up and the last down step in a Dyck path and still remain a Dyck path. St001663The number of occurrences of the Hertzsprung pattern 132 in a permutation. St000078The number of alternating sign matrices whose left key is the permutation. St001269The sum of the minimum of the number of exceedances and deficiencies in each cycle of a permutation. St000404The number of occurrences of the pattern 3241 or of the pattern 4231 in a permutation. St000546The number of global descents of a permutation. St000989The number of final rises of a permutation. St001085The number of occurrences of the vincular pattern |21-3 in a permutation. St001139The number of occurrences of hills of size 2 in a Dyck path. St001381The fertility of a permutation. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St000354The number of recoils of a permutation. St000481The number of upper covers of a partition in dominance order. St000876The number of factors in the Catalan decomposition of a binary word. St001737The number of descents of type 2 in a permutation. St000042The number of crossings of a perfect matching. St000220The number of occurrences of the pattern 132 in a permutation. St000296The length of the symmetric border of a binary word. St000356The number of occurrences of the pattern 13-2. St000451The length of the longest pattern of the form k 1 2. St000629The defect of a binary word. St000733The row containing the largest entry of a standard tableau. St000877The depth of the binary word interpreted as a path. St000878The number of ones minus the number of zeros of a binary word. St000885The number of critical steps in the Catalan decomposition of a binary word. St001037The number of inner corners of the upper path of the parallelogram polyomino associated with the Dyck path. St001047The maximal number of arcs crossing a given arc of a perfect matching. St001083The number of boxed occurrences of 132 in a permutation. St001396Number of triples of incomparable elements in a finite poset. St000054The first entry of the permutation. St000676The number of odd rises of a Dyck path. St001359The number of permutations in the equivalence class of a permutation obtained by taking inverses of cycles. St001571The Cartan determinant of the integer partition. St000485The length of the longest cycle of a permutation. St000486The number of cycles of length at least 3 of a permutation. St000779The tier of a permutation. St000800The number of occurrences of the vincular pattern |231 in a permutation. St000962The 3-shifted major index of a permutation. St001087The number of occurrences of the vincular pattern |12-3 in a permutation. St001198The number of simple modules in the algebra eAe with projective dimension at most 1 in the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001206The maximal dimension of an indecomposable projective eAe-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module eA. St000129The number of occurrences of the contiguous pattern [.,[.,[[[.,.],.],.]]] in a binary tree. St000130The number of occurrences of the contiguous pattern [.,[[.,.],[[.,.],.]]] in a binary tree. St000025The number of initial rises of a Dyck path. St000658The number of rises of length 2 of a Dyck path. St000684The global dimension of the LNakayama algebra associated to a Dyck path. St000686The finitistic dominant dimension of a Dyck path. St000701The protection number of a binary tree. St000758The length of the longest staircase fitting into an integer composition. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St001066The number of simple reflexive modules in the corresponding Nakayama algebra. St001068Number of torsionless simple modules in the corresponding Nakayama algebra. St001135The projective dimension of the first simple module in the Nakayama algebra corresponding to the Dyck path. St001203We associate to a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series L=[c0,c1,...,cn−1] such that n=c0<ci for all i>0 a Dyck path as follows:
St001471The magnitude of a Dyck path. St001483The number of simple module modules that appear in the socle of the regular module but have no nontrivial selfextensions with the regular module. St001733The number of weak left to right maxima of a Dyck path. St000002The number of occurrences of the pattern 123 in a permutation. St000053The number of valleys of the Dyck path. St000118The number of occurrences of the contiguous pattern [.,[.,[.,.]]] in a binary tree. St000127The number of occurrences of the contiguous pattern [.,[.,[.,[[.,.],.]]]] in a binary tree. St000128The number of occurrences of the contiguous pattern [.,[.,[[.,[.,.]],.]]] in a binary tree. St000131The number of occurrences of the contiguous pattern [.,[[[[.,.],.],.],. St000196The number of occurrences of the contiguous pattern [[.,.],[.,. St000688The global dimension minus the dominant dimension of the LNakayama algebra associated to a Dyck path. St000903The number of different parts of an integer composition. St000969We make a CNakayama algebra out of the LNakayama algebra (corresponding to the Dyck path) [c0,c1,...,cn−1] by adding c0 to cn−1. St000970Number of peaks minus the dominant dimension of the corresponding LNakayama algebra. St001022Number of simple modules with projective dimension 3 in the Nakayama algebra corresponding to the Dyck path. St001026The maximum of the projective dimensions of the indecomposable non-projective injective modules minus the minimum in the Nakayama algebra corresponding to the Dyck path. St001028Number of simple modules with injective dimension equal to the dominant dimension in the Nakayama algebra corresponding to the Dyck path. St001036The number of inner corners of the parallelogram polyomino associated with the Dyck path. St001067The number of simple modules of dominant dimension at least two in the corresponding Nakayama algebra. St001084The number of occurrences of the vincular pattern |1-23 in a permutation. St001125The number of simple modules that satisfy the 2-regular condition in the corresponding Nakayama algebra. St001167The number of simple modules that appear as the top of an indecomposable non-projective modules that is reflexive in the corresponding Nakayama algebra. St001197The global dimension of eAe for the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001253The number of non-projective indecomposable reflexive modules in the corresponding Nakayama algebra. St001276The number of 2-regular indecomposable modules in the corresponding Nakayama algebra. St001505The number of elements generated by the Dyck path as a map in the full transformation monoid. St001506Half the projective dimension of the unique simple module with even projective dimension in a magnitude 1 Nakayama algebra. St001781The interlacing number of a set partition. St001839The number of excedances of a set partition. St001840The number of descents of a set partition. St001947The number of ties in a parking function. St000092The number of outer peaks of a permutation. St000659The number of rises of length at least 2 of a Dyck path. St000678The number of up steps after the last double rise of a Dyck path. St000990The first ascent of a permutation. St001208The number of connected components of the quiver of A/T when T is the 1-tilting module corresponding to the permutation in the Auslander algebra A of K[x]/(xn). St001236The dominant dimension of the corresponding Comp-Nakayama algebra. St000365The number of double ascents of a permutation. St000372The number of mid points of increasing subsequences of length 3 in a permutation. St000650The number of 3-rises of a permutation. St000663The number of right floats of a permutation. St000932The number of occurrences of the pattern UDU in a Dyck path. St000981The length of the longest zigzag subpath. St001059Number of occurrences of the patterns 41352,42351,51342,52341 in a permutation. St000068The number of minimal elements in a poset. St000745The index of the last row whose first entry is the row number in a standard Young tableau. St000322The skewness of a graph. St001301The first Betti number of the order complex associated with the poset. St001465The number of adjacent transpositions in the cycle decomposition of a permutation. St000487The length of the shortest cycle of a permutation. St000501The size of the first part in the decomposition of a permutation. St000542The number of left-to-right-minima of a permutation. St001468The smallest fixpoint of a permutation. St000210Minimum over maximum difference of elements in cycles. St000359The number of occurrences of the pattern 23-1. St000541The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. St000799The number of occurrences of the vincular pattern |213 in a permutation. St000803The number of occurrences of the vincular pattern |132 in a permutation. St001130The number of two successive successions in a permutation. St001683The number of distinct positions of the pattern letter 3 in occurrences of 132 in a permutation. St001685The number of distinct positions of the pattern letter 1 in occurrences of 132 in a permutation. St001766The number of cells which are not occupied by the same tile in all reduced pipe dreams corresponding to a permutation. St001256Number of simple reflexive modules that are 2-stable reflexive. St000056The decomposition (or block) number of a permutation. St000889The number of alternating sign matrices with the same antidiagonal sums. St000964Gives the dimension of Ext^g(D(A),A) of the corresponding LNakayama algebra, when g denotes the global dimension of that algebra. St000968We make a CNakayama algebra out of the LNakayama algebra (corresponding to the Dyck path) [c0,c1,...,cn−1] by adding c0 to cn−1. St000999Number of indecomposable projective module with injective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001006Number of simple modules with projective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001013Number of indecomposable injective modules with codominant dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001185The number of indecomposable injective modules of grade at least 2 in the corresponding Nakayama algebra. St001192The maximal dimension of Ext2A(S,A) for a simple module S over the corresponding Nakayama algebra A. St001204Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series L=[c0,c1,...,cn−1] such that n=c0<ci for all i>0 a special CNakayama algebra. St001289The vector space dimension of the n-fold tensor product of D(A), where n is maximal such that this n-fold tensor product is nonzero. St001481The minimal height of a peak of a Dyck path. St001859The number of factors of the Stanley symmetric function associated with a permutation. St001941The evaluation at 1 of the modified Kazhdan--Lusztig R polynomial (as in [1, Section 5. St000034The maximum defect over any reduced expression for a permutation and any subexpression. St000217The number of occurrences of the pattern 312 in a permutation. St000221The number of strong fixed points of a permutation. St000234The number of global ascents of a permutation. St000279The size of the preimage of the map 'cycle-as-one-line notation' from Permutations to Permutations. St000317The cycle descent number of a permutation. St000674The number of hills of a Dyck path. St001021Sum of the differences between projective and codominant dimension of the non-projective indecomposable injective modules in the Nakayama algebra corresponding to the Dyck path. St001089Number of indecomposable projective non-injective modules minus the number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001113Number of indecomposable projective non-injective modules with reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St001193The dimension of Ext1A(A/AeA,A) in the corresponding Nakayama algebra A such that eA is a minimal faithful projective-injective module. St001217The projective dimension of the indecomposable injective module I[n-2] in the corresponding Nakayama algebra with simples enumerated from 0 to n-1. St001219Number of simple modules S in the corresponding Nakayama algebra such that the Auslander-Reiten sequence ending at S has the property that all modules in the exact sequence are reflexive. St001221The number of simple modules in the corresponding LNakayama algebra that have 2 dimensional second Extension group with the regular module. St001229The vector space dimension of the first extension group between the Jacobson radical J and J^2. St001231The number of simple modules that are non-projective and non-injective with the property that they have projective dimension equal to one and that also the Auslander-Reiten translates of the module and the inverse Auslander-Reiten translate of the module have the same projective dimension. St001234The number of indecomposable three dimensional modules with projective dimension one. St001239The largest vector space dimension of the double dual of a simple module in the corresponding Nakayama algebra. St001390The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. St001705The number of occurrences of the pattern 2413 in a permutation. St001810The number of fixed points of a permutation smaller than its largest moved point. St000026The position of the first return of a Dyck path. St000035The number of left outer peaks of a permutation. St000069The number of maximal elements of a poset. St000079The number of alternating sign matrices for a given Dyck path. St000096The number of spanning trees of a graph. St000105The number of blocks in the set partition. St000115The single entry in the last row. St000162The number of nontrivial cycles in the cycle decomposition of a permutation. St000261The edge connectivity of a graph. St000262The vertex connectivity of a graph. St000266The number of spanning subgraphs of a graph with the same connected components. St000267The number of maximal spanning forests contained in a graph. St000272The treewidth of a graph. St000286The number of connected components of the complement of a graph. St000287The number of connected components of a graph. St000310The minimal degree of a vertex of a graph. St000314The number of left-to-right-maxima of a permutation. St000335The difference of lower and upper interactions. St000382The first part of an integer composition. St000392The length of the longest run of ones in a binary word. St000443The number of long tunnels of a Dyck path. St000450The number of edges minus the number of vertices plus 2 of a graph. St000456The monochromatic index of a connected graph. St000535The rank-width of a graph. St000536The pathwidth of a graph. St000544The cop number of a graph. St000627The exponent of a binary word. St000647The number of big descents of a permutation. St000654The first descent of a permutation. St000669The number of permutations obtained by switching ascents or descents of size 2. St000685The dominant dimension of the LNakayama algebra associated to a Dyck path. St000696The number of cycles in the breakpoint graph of a permutation. St000740The last entry of a permutation. St000756The sum of the positions of the left to right maxima of a permutation. St000773The multiplicity of the largest Laplacian eigenvalue in a graph. St000775The multiplicity of the largest eigenvalue in a graph. St000785The number of distinct colouring schemes of a graph. St000845The maximal number of elements covered by an element in a poset. St000880The number of connected components of long braid edges in the graph of braid moves of a permutation. St000882The number of connected components of short braid edges in the graph of braid moves of a permutation. St000884The number of isolated descents of a permutation. St000907The number of maximal antichains of minimal length in a poset. St000930The k-Gorenstein degree of the corresponding Nakayama algebra with linear quiver. St000948The chromatic discriminant of a graph. St000965The sum of the dimension of Ext^i(D(A),A) for i=1,. St000974The length of the trunk of an ordered tree. St000991The number of right-to-left minima of a permutation. St001014Number of indecomposable injective modules with codominant dimension equal to the dominant dimension of the Nakayama algebra corresponding to the Dyck path. St001035The convexity degree of the parallelogram polyomino associated with the Dyck path. St001151The number of blocks with odd minimum. St001187The number of simple modules with grade at least one in the corresponding Nakayama algebra. St001188The number of simple modules S with grade inf at least two in the Nakayama algebra A corresponding to the Dyck path. St001191Number of simple modules S with Ext_A^i(S,A)=0 for all i=0,1,...,g-1 in the corresponding Nakayama algebra A with global dimension g. St001194The injective dimension of A/AfA in the corresponding Nakayama algebra A when Af is the minimal faithful projective-injective left A-module St001201The grade of the simple module S_0 in the special CNakayama algebra corresponding to the Dyck path. St001202Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series L=[c_0,c_1,...,c_{n−1}] such that n=c_0 < c_i for all i > 0 a special CNakayama algebra. St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001215Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001220The width of a permutation. St001222Number of simple modules in the corresponding LNakayama algebra that have a unique 2-extension with the regular module. St001224Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St001238The number of simple modules S such that the Auslander-Reiten translate of S is isomorphic to the Nakayama functor applied to the second syzygy of S. St001244The number of simple modules of projective dimension one that are not 1-regular for the Nakayama algebra associated to a Dyck path. St001257The dominant dimension of the double dual of A/J when A is the corresponding Nakayama algebra with Jacobson radical J. St001271The competition number of a graph. St001273The projective dimension of the first term in an injective coresolution of the regular module. St001277The degeneracy of a graph. St001358The largest degree of a regular subgraph of a graph. St001363The Euler characteristic of a graph according to Knill. St001395The number of strictly unfriendly partitions of a graph. St001475The evaluation of the Tutte polynomial of the graph at (x,y) equal to (1,0). St001476The evaluation of the Tutte polynomial of the graph at (x,y) equal to (1,-1). St001496The number of graphs with the same Laplacian spectrum as the given graph. St001501The dominant dimension of magnitude 1 Nakayama algebras. St001503The largest distance of a vertex to a vertex in a cycle in the resolution quiver of the corresponding Nakayama algebra. St001518The number of graphs with the same ordinary spectrum as the given graph. St001546The number of monomials in the Tutte polynomial of a graph. St001592The maximal number of simple paths between any two different vertices of a graph. St001693The excess length of a longest path consisting of elements and blocks of a set partition. St001735The number of permutations with the same set of runs. St001743The discrepancy of a graph. St001792The arboricity of a graph. St001796The absolute value of the quotient of the Tutte polynomial of the graph at (1,1) and (-1,-1). St001828The Euler characteristic of a graph. St001959The product of the heights of the peaks of a Dyck path. St000007The number of saliances of the permutation. St000022The number of fixed points of a permutation. St000039The number of crossings of a permutation. St000041The number of nestings of a perfect matching. St000061The number of nodes on the left branch of a binary tree. St000062The length of the longest increasing subsequence of the permutation. St000065The number of entries equal to -1 in an alternating sign matrix. St000095The number of triangles of a graph. St000098The chromatic number of a graph. St000117The number of centered tunnels of a Dyck path. St000126The number of occurrences of the contiguous pattern [.,[.,[.,[.,[.,.]]]]] in a binary tree. St000133The "bounce" of a permutation. St000153The number of adjacent cycles of a permutation. St000214The number of adjacencies of a permutation. St000215The number of adjacencies of a permutation, zero appended. St000232The number of crossings of a set partition. St000252The number of nodes of degree 3 of a binary tree. St000268The number of strongly connected orientations of a graph. St000276The size of the preimage of the map 'to graph' from Ordered trees to Graphs. St000297The number of leading ones in a binary word. St000298The order dimension or Dushnik-Miller dimension of a poset. St000303The determinant of the product of the incidence matrix and its transpose of a graph divided by 4. St000308The height of the tree associated to a permutation. St000315The number of isolated vertices of a graph. St000323The minimal crossing number of a graph. St000329The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1. St000344The number of strongly connected outdegree sequences of a graph. St000355The number of occurrences of the pattern 21-3. St000357The number of occurrences of the pattern 12-3. St000368The Altshuler-Steinberg determinant of a graph. St000370The genus of a graph. St000379The number of Hamiltonian cycles in a graph. St000397The Strahler number of a rooted tree. St000403The Szeged index minus the Wiener index of a graph. St000425The number of occurrences of the pattern 132 or of the pattern 213 in a permutation. St000441The number of successions of a permutation. St000461The rix statistic of a permutation. St000483The number of times a permutation switches from increasing to decreasing or decreasing to increasing. St000534The number of 2-rises of a permutation. St000637The length of the longest cycle in a graph. St000646The number of big ascents of a permutation. St000665The number of rafts of a permutation. St000679The pruning number of an ordered tree. St000804The number of occurrences of the vincular pattern |123 in a permutation. St000822The Hadwiger number of the graph. St000834The number of right outer peaks of a permutation. St000873The aix statistic of a permutation. St000879The number of long braid edges in the graph of braid moves of a permutation. St000881The number of short braid edges in the graph of braid moves of a permutation. St000951The dimension of Ext^{1}(D(A),A) of the corresponding LNakayama algebra. St000954Number of times the corresponding LNakayama algebra has Ext^i(D(A),A)=0 for i>0. St001004The number of indices that are either left-to-right maxima or right-to-left minima. St001005The number of indices for a permutation that are either left-to-right maxima or right-to-left minima but not both. St001008Number of indecomposable injective modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001010Number of indecomposable injective modules with projective dimension g-1 when g is the global dimension of the Nakayama algebra corresponding to the Dyck path. St001029The size of the core of a graph. St001046The maximal number of arcs nesting a given arc of a perfect matching. St001069The coefficient of the monomial xy of the Tutte polynomial of the graph. St001070The absolute value of the derivative of the chromatic polynomial of the graph at 1. St001071The beta invariant of the graph. St001073The number of nowhere zero 3-flows of a graph. St001082The number of boxed occurrences of 123 in a permutation. St001109The number of proper colourings of a graph with as few colours as possible. St001111The weak 2-dynamic chromatic number of a graph. St001140Number of indecomposable modules with projective and injective dimension at least two in the corresponding Nakayama algebra. St001153The number of blocks with even minimum in a set partition. St001163The number of simple modules with dominant dimension at least three in the corresponding Nakayama algebra. St001164Number of indecomposable injective modules whose socle has projective dimension at most g-1 (g the global dimension) minus the number of indecomposable projective-injective modules. St001165Number of simple modules with even projective dimension in the corresponding Nakayama algebra. St001174The Gorenstein dimension of the algebra A/I when I is the tilting module corresponding to the permutation in the Auslander algebra of K[x]/(x^n). St001181Number of indecomposable injective modules with grade at least 3 in the corresponding Nakayama algebra. St001186Number of simple modules with grade at least 3 in the corresponding Nakayama algebra. St001226The number of integers i such that the radical of the i-th indecomposable projective module has vanishing first extension group with the Jacobson radical J in the corresponding Nakayama algebra. St001230The number of simple modules with injective dimension equal to the dominant dimension equal to one and the dual property. St001264The smallest index i such that the i-th simple module has projective dimension equal to the global dimension of the corresponding Nakayama algebra. St001265The maximal i such that the i-th simple module has projective dimension equal to the global dimension in the corresponding Nakayama algebra. St001266The largest vector space dimension of an indecomposable non-projective module that is reflexive in the corresponding Nakayama algebra. St001290The first natural number n such that the tensor product of n copies of D(A) is zero for the corresponding Nakayama algebra A. St001295Gives the vector space dimension of the homomorphism space between J^2 and J^2. St001305The number of induced cycles on four vertices in a graph. St001309The number of four-cliques in a graph. St001310The number of induced diamond graphs in a graph. St001311The cyclomatic number of a graph. St001316The domatic number of a graph. St001317The minimal number of occurrences of the forest-pattern in a linear ordering of the vertices of the graph. St001324The minimal number of occurrences of the chordal-pattern in a linear ordering of the vertices of the graph. St001325The minimal number of occurrences of the comparability-pattern in a linear ordering of the vertices of the graph. St001326The minimal number of occurrences of the interval-pattern in a linear ordering of the vertices of the graph. St001328The minimal number of occurrences of the bipartite-pattern in a linear ordering of the vertices of the graph. St001329The minimal number of occurrences of the outerplanar pattern in a linear ordering of the vertices of the graph. St001331The size of the minimal feedback vertex set. St001334The minimal number of occurrences of the 3-colorable pattern in a linear ordering of the vertices of the graph. St001335The cardinality of a minimal cycle-isolating set of a graph. St001336The minimal number of vertices in a graph whose complement is triangle-free. St001367The smallest number which does not occur as degree of a vertex in a graph. St001434The number of negative sum pairs of a signed permutation. St001477The number of nowhere zero 5-flows of a graph. St001478The number of nowhere zero 4-flows of a graph. St001480The number of simple summands of the module J^2/J^3. St001494The Alon-Tarsi number of a graph. St001508The degree of the standard monomial associated to a Dyck path relative to the diagonal boundary. St001572The minimal number of edges to remove to make a graph bipartite. St001573The minimal number of edges to remove to make a graph triangle-free. St001577The minimal number of edges to add or remove to make a graph a cograph. St001580The acyclic chromatic number of a graph. St001594The number of indecomposable projective modules in the Nakayama algebra corresponding to the Dyck path such that the UC-condition is satisfied. St001640The number of ascent tops in the permutation such that all smaller elements appear before. St001682The number of distinct positions of the pattern letter 1 in occurrences of 123 in a permutation. St001690The length of a longest path in a graph such that after removing the paths edges, every vertex of the path has distance two from some other vertex of the path. St001716The 1-improper chromatic number of a graph. St001736The total number of cycles in a graph. St001784The minimum of the smallest closer and the second element of the block containing 1 in a set partition. St001793The difference between the clique number and the chromatic number of a graph. St001795The binary logarithm of the evaluation of the Tutte polynomial of the graph at (x,y) equal to (-1,-1). St001797The number of overfull subgraphs of a graph. St001871The number of triconnected components of a graph. St001873For a Nakayama algebra corresponding to a Dyck path, we define the matrix C with entries the Hom-spaces between e_i J and e_j J (the radical of the indecomposable projective modules). St001932The number of pairs of singleton blocks in the noncrossing set partition corresponding to a Dyck path, that can be merged to create another noncrossing set partition. St001108The 2-dynamic chromatic number of a graph. St000667The greatest common divisor of the parts of the partition. St001568The smallest positive integer that does not appear twice in the partition. St000219The number of occurrences of the pattern 231 in a permutation. St001556The number of inversions of the third entry of a permutation. St001811The Castelnuovo-Mumford regularity of a permutation. St001960The number of descents of a permutation minus one if its first entry is not one. St000805The number of peaks of the associated bargraph. St000807The sum of the heights of the valleys of the associated bargraph. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St000908The length of the shortest maximal antichain in a poset. St000914The sum of the values of the Möbius function of a poset. St001532The leading coefficient of the Poincare polynomial of the poset cone. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St001890The maximum magnitude of the Möbius function of a poset. St001001The number of indecomposable modules with projective and injective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001330The hat guessing number of a graph. St000260The radius of a connected graph. St000352The Elizalde-Pak rank of a permutation. St001128The exponens consonantiae of a partition. St001535The number of cyclic alignments of a permutation. St000058The order of a permutation. St000383The last part of an integer composition. St001597The Frobenius rank of a skew partition. St001596The number of two-by-two squares inside a skew partition. St001490The number of connected components of a skew partition. St000668The least common multiple of the parts of the partition. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000708The product of the parts of an integer partition. St000933The number of multipartitions of sizes given by an integer partition. St001942The number of loops of the quiver corresponding to the reduced incidence algebra of a poset. St000717The number of ordinal summands of a poset. St001398Number of subsets of size 3 of elements in a poset that form a "v". St001195The global dimension of the algebra A/AfA of the corresponding Nakayama algebra A with minimal left faithful projective-injective module Af. St001260The permanent of an alternating sign matrix. St000706The product of the factorials of the multiplicities of an integer partition. St000993The multiplicity of the largest part of an integer partition. St001741The largest integer such that all patterns of this size are contained in the permutation. St001964The interval resolution global dimension of a poset. St000015The number of peaks of a Dyck path. St001024Maximum of dominant dimensions of the simple modules in the Nakayama algebra corresponding to the Dyck path. St001393The induced matching number of a graph. St001530The depth of a Dyck path. St000331The number of upper interactions of a Dyck path. St001142The projective dimension of the socle of the regular module as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001169Number of simple modules with projective dimension at least two in the corresponding Nakayama algebra. St001205The number of non-simple indecomposable projective-injective modules of the algebra eAe in the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001216The number of indecomposable injective modules in the corresponding Nakayama algebra that have non-vanishing second Ext-group with the regular module. St001223Number of indecomposable projective non-injective modules P such that the modules X and Y in a an Auslander-Reiten sequence ending at P are torsionless. St001261The Castelnuovo-Mumford regularity of a graph. St001274The number of indecomposable injective modules with projective dimension equal to two. St001296The maximal torsionfree index of an indecomposable non-projective module in the corresponding Nakayama algebra. St001507The sum of projective dimension of simple modules with even projective dimension divided by 2 in the LNakayama algebra corresponding to Dyck paths. St001509The degree of the standard monomial associated to a Dyck path relative to the trivial lower boundary. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St000237The number of small exceedances. St000031The number of cycles in the cycle decomposition of a permutation. St000181The number of connected components of the Hasse diagram for the poset. St001786The number of total orderings of the north steps of a Dyck path such that steps after the k-th east step are not among the first k positions in the order. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000124The cardinality of the preimage of the Simion-Schmidt map. St000447The number of pairs of vertices of a graph with distance 3. St000251The number of nonsingleton blocks of a set partition. St000589The number of occurrences of the pattern {{1},{2,3}} such that 1 is maximal, (2,3) are consecutive in a block. St000590The number of occurrences of the pattern {{1},{2,3}} such that 2 is minimal, 1 is maximal, (2,3) are consecutive in a block. St000595The number of occurrences of the pattern {{1},{2,3}} such that 1 is minimal. St000598The number of occurrences of the pattern {{1},{2,3}} such that 1,2 are minimal, 3 is maximal, (2,3) are consecutive in a block. St000601The number of occurrences of the pattern {{1},{2,3}} such that 1,2 are minimal, (2,3) are consecutive in a block. St000606The number of occurrences of the pattern {{1},{2,3}} such that 1,3 are maximal, (2,3) are consecutive in a block. St000609The number of occurrences of the pattern {{1},{2,3}} such that 1,2 are minimal. St000611The number of occurrences of the pattern {{1},{2,3}} such that 1 is maximal. St000612The number of occurrences of the pattern {{1},{2,3}} such that 1 is minimal, (2,3) are consecutive in a block. St000614The number of occurrences of the pattern {{1},{2,3}} such that 1 is minimal, 3 is maximal, (2,3) are consecutive in a block. St000994The number of cycle peaks and the number of cycle valleys of a permutation. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. St000225Difference between largest and smallest parts in a partition. St000318The number of addable cells of the Ferrers diagram of an integer partition. St001095The number of non-isomorphic posets with precisely one further covering relation. St000281The size of the preimage of the map 'to poset' from Binary trees to Posets. St000282The size of the preimage of the map 'to poset' from Ordered trees to Posets. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St001466The number of transpositions swapping cyclically adjacent numbers in a permutation. St000707The product of the factorials of the parts. St000788The number of nesting-similar perfect matchings of a perfect matching. St000787The number of flips required to make a perfect matching noncrossing. St001533The largest coefficient of the Poincare polynomial of the poset cone. St000556The number of occurrences of the pattern {{1},{2,3}} in a set partition. St000599The number of occurrences of the pattern {{1},{2,3}} such that (2,3) are consecutive in a block. St000605The number of occurrences of the pattern {{1},{2,3}} such that 3 is maximal, (2,3) are consecutive in a block. St001133The smallest label in the subtree rooted at the sister of 1 in the decreasing labelled binary unordered tree associated with the perfect matching. St000754The Grundy value for the game of removing nestings in a perfect matching. St000560The number of occurrences of the pattern {{1,2},{3,4}} in a set partition. St000306The bounce count of a Dyck path. St000694The number of affine bounded permutations that project to a given permutation. St001461The number of topologically connected components of the chord diagram of a permutation. St001590The crossing number of a perfect matching. St001661Half the permanent of the Identity matrix plus the permutation matrix associated to the permutation. St001830The chord expansion number of a perfect matching. St001832The number of non-crossing perfect matchings in the chord expansion of a perfect matching. St000488The number of cycles of a permutation of length at most 2. St001314The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra. St001444The rank of the skew-symmetric form which is non-zero on crossing arcs of a perfect matching. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St001837The number of occurrences of a 312 pattern in the restricted growth word of a perfect matching. St001850The number of Hecke atoms of a permutation. St000084The number of subtrees. St000843The decomposition number of a perfect matching. St001000Number of indecomposable modules with projective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001048The number of leaves in the subtree containing 1 in the decreasing labelled binary unordered tree associated with the perfect matching. St001081The number of minimal length factorizations of a permutation into star transpositions. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001589The nesting number of a perfect matching. St000051The size of the left subtree of a binary tree. St000193The row of the unique '1' in the first column of the alternating sign matrix. St000241The number of cyclical small excedances. St000295The length of the border of a binary word. St000895The number of ones on the main diagonal of an alternating sign matrix. St001049The smallest label in the subtree not containing 1 in the decreasing labelled binary unordered tree associated with the perfect matching. St001061The number of indices that are both descents and recoils of a permutation. St001241The number of non-zero radicals of the indecomposable projective modules that have injective dimension and projective dimension at most one. St001275The projective dimension of the second term in a minimal injective coresolution of the regular module. St001429The number of negative entries in a signed permutation. St001520The number of strict 3-descents. St001831The multiplicity of the non-nesting perfect matching in the chord expansion of a perfect matching. St001856The number of edges in the reduced word graph of a permutation. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000741The Colin de Verdière graph invariant. St000624The normalized sum of the minimal distances to a greater element. St000454The largest eigenvalue of a graph if it is integral. St001043The depth of the leaf closest to the root in the binary unordered tree associated with the perfect matching. St001044The number of pairs whose larger element is at most one more than half the size of the perfect matching. St001487The number of inner corners of a skew partition. St001514The dimension of the top of the Auslander-Reiten translate of the regular modules as a bimodule. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001776The degree of the minimal polynomial of the largest Laplacian eigenvalue of a graph. St001928The number of non-overlapping descents in a permutation. St000090The variation of a composition. St000091The descent variation of a composition. St000283The size of the preimage of the map 'to graph' from Binary trees to Graphs. St000351The determinant of the adjacency matrix of a graph. St000671The maximin edge-connectivity for choosing a subgraph. St000699The toughness times the least common multiple of 1,. St001042The size of the automorphism group of the leaf labelled binary unordered tree associated with the perfect matching. St001119The length of a shortest maximal path in a graph. St001435The number of missing boxes in the first row. St001438The number of missing boxes of a skew partition. St001702The absolute value of the determinant of the adjacency matrix of a graph. St001720The minimal length of a chain of small intervals in a lattice. St001794Half the number of sets of vertices in a graph which are dominating and non-blocking. St001836The number of occurrences of a 213 pattern in the restricted growth word of a perfect matching. St001272The number of graphs with the same degree sequence. St001281The normalized isoperimetric number of a graph. St001306The number of induced paths on four vertices in a graph. St001327The minimal number of occurrences of the split-pattern in a linear ordering of the vertices of the graph. St001353The number of prime nodes in the modular decomposition of a graph. St001356The number of vertices in prime modules of a graph. St001357The maximal degree of a regular spanning subgraph of a graph. St001557The number of inversions of the second entry of a permutation. St001745The number of occurrences of the arrow pattern 13 with an arrow from 1 to 2 in a permutation. St000988The orbit size of a permutation under Foata's bijection. St000023The number of inner peaks of a permutation. St001771The number of occurrences of the signed pattern 1-2 in a signed permutation. St001866The nesting alignments of a signed permutation. St001870The number of positive entries followed by a negative entry in a signed permutation. St001895The oddness of a signed permutation. St001613The binary logarithm of the size of the center of a lattice. St001881The number of factors of a lattice as a Cartesian product of lattices. St001616The number of neutral elements in a lattice. St001846The number of elements which do not have a complement in the lattice. St000764The number of strong records in an integer composition. St000782The indicator function of whether a given perfect matching is an L & P matching. St000768The number of peaks in an integer composition. St001868The number of alignments of type NE of a signed permutation. St001681The number of inclusion-wise minimal subsets of a lattice, whose meet is the bottom element. St001677The number of non-degenerate subsets of a lattice whose meet is the bottom element. St001845The number of join irreducibles minus the rank of a lattice. St001867The number of alignments of type EN of a signed permutation. St001371The length of the longest Yamanouchi prefix of a binary word. St001730The number of times the path corresponding to a binary word crosses the base line. St000657The smallest part of an integer composition. St000763The sum of the positions of the strong records of an integer composition. St001041The depth of the label 1 in the decreasing labelled binary unordered tree associated with the perfect matching. St001267The length of the Lyndon factorization of the binary word. St001355Number of non-empty prefixes of a binary word that contain equally many 0's and 1's. St001437The flex of a binary word. St001621The number of atoms of a lattice. St001884The number of borders of a binary word. St000188The area of the Dyck path corresponding to a parking function and the total displacement of a parking function. St000195The number of secondary dinversion pairs of the dyck path corresponding to a parking function. St000274The number of perfect matchings of a graph. St000455The second largest eigenvalue of a graph if it is integral. St000761The number of ascents in an integer composition. St000894The trace of an alternating sign matrix. St000943The number of spots the most unlucky car had to go further in a parking function. St001131The number of trivial trees on the path to label one in the decreasing labelled binary unordered tree associated with the perfect matching. St001436The index of a given binary word in the lex-order among all its cyclic shifts. St001524The degree of symmetry of a binary word. St001734The lettericity of a graph. St001803The maximal overlap of the cylindrical tableau associated with a tableau. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001804The minimal height of the rectangular inner shape in a cylindrical tableau associated to a tableau. St000900The minimal number of repetitions of a part in an integer composition. St000902 The minimal number of repetitions of an integer composition. St001413Half the length of the longest even length palindromic prefix of a binary word. St001462The number of factors of a standard tableaux under concatenation. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001889The size of the connectivity set of a signed permutation. St000905The number of different multiplicities of parts of an integer composition. St001200The number of simple modules in eAe with projective dimension at most 2 in the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001566The length of the longest arithmetic progression in a permutation. St001738The minimal order of a graph which is not an induced subgraph of the given graph.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!