Your data matches 42 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00031: Dyck paths to 312-avoiding permutationPermutations
St000824: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,2] => 0
[1,1,0,0]
=> [2,1] => 2
[1,0,1,0,1,0]
=> [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,3,2] => 2
[1,1,0,0,1,0]
=> [2,1,3] => 2
[1,1,0,1,0,0]
=> [2,3,1] => 2
[1,1,1,0,0,0]
=> [3,2,1] => 4
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 2
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 2
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 2
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 4
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 2
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 4
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 2
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 4
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 4
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 4
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => 4
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 6
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 4
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 4
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 4
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 4
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 4
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => 4
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 6
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 4
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 4
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 4
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 6
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 4
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 2
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => 4
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => 4
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => 4
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => 4
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => 6
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => 4
Description
The sum of the number of descents and the number of recoils of a permutation. This statistic is the sum of [[St000021]] and [[St000354]].
Mp00146: Dyck paths to tunnel matchingPerfect matchings
Mp00058: Perfect matchings to permutationPermutations
St000366: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [(1,2),(3,4)]
=> [2,1,4,3] => 0
[1,1,0,0]
=> [(1,4),(2,3)]
=> [4,3,2,1] => 2
[1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> [2,1,4,3,6,5] => 0
[1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> [2,1,6,5,4,3] => 2
[1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> [4,3,2,1,6,5] => 2
[1,1,0,1,0,0]
=> [(1,6),(2,3),(4,5)]
=> [6,3,2,5,4,1] => 2
[1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> [6,5,4,3,2,1] => 4
[1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => 0
[1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,8,7,6,5] => 2
[1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [2,1,6,5,4,3,8,7] => 2
[1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> [2,1,8,5,4,7,6,3] => 2
[1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> [2,1,8,7,6,5,4,3] => 4
[1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [4,3,2,1,6,5,8,7] => 2
[1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> [4,3,2,1,8,7,6,5] => 4
[1,1,0,1,0,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [6,3,2,5,4,1,8,7] => 2
[1,1,0,1,0,1,0,0]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [8,3,2,5,4,7,6,1] => 2
[1,1,0,1,1,0,0,0]
=> [(1,8),(2,3),(4,7),(5,6)]
=> [8,3,2,7,6,5,4,1] => 4
[1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> [6,5,4,3,2,1,8,7] => 4
[1,1,1,0,0,1,0,0]
=> [(1,8),(2,5),(3,4),(6,7)]
=> [8,5,4,3,2,7,6,1] => 4
[1,1,1,0,1,0,0,0]
=> [(1,8),(2,7),(3,4),(5,6)]
=> [8,7,4,3,6,5,2,1] => 4
[1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> [8,7,6,5,4,3,2,1] => 6
[1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9)]
=> [2,1,4,3,6,5,10,9,8,7] => 2
[1,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10)]
=> [2,1,4,3,8,7,6,5,10,9] => 2
[1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9)]
=> [2,1,4,3,10,7,6,9,8,5] => 2
[1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8)]
=> [2,1,4,3,10,9,8,7,6,5] => 4
[1,0,1,1,0,0,1,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10)]
=> [2,1,6,5,4,3,8,7,10,9] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9)]
=> [2,1,6,5,4,3,10,9,8,7] => 4
[1,0,1,1,0,1,0,0,1,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,10)]
=> [2,1,8,5,4,7,6,3,10,9] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9)]
=> [2,1,10,5,4,7,6,9,8,3] => 2
[1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8)]
=> [2,1,10,5,4,9,8,7,6,3] => 4
[1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,10)]
=> [2,1,8,7,6,5,4,3,10,9] => 4
[1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9)]
=> [2,1,10,7,6,5,4,9,8,3] => 4
[1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,10),(4,9),(5,6),(7,8)]
=> [2,1,10,9,6,5,8,7,4,3] => 4
[1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7)]
=> [2,1,10,9,8,7,6,5,4,3] => 6
[1,1,0,0,1,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10)]
=> [4,3,2,1,6,5,8,7,10,9] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,10),(8,9)]
=> [4,3,2,1,6,5,10,9,8,7] => 4
[1,1,0,0,1,1,0,0,1,0]
=> [(1,4),(2,3),(5,8),(6,7),(9,10)]
=> [4,3,2,1,8,7,6,5,10,9] => 4
[1,1,0,0,1,1,0,1,0,0]
=> [(1,4),(2,3),(5,10),(6,7),(8,9)]
=> [4,3,2,1,10,7,6,9,8,5] => 4
[1,1,0,0,1,1,1,0,0,0]
=> [(1,4),(2,3),(5,10),(6,9),(7,8)]
=> [4,3,2,1,10,9,8,7,6,5] => 6
[1,1,0,1,0,0,1,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8),(9,10)]
=> [6,3,2,5,4,1,8,7,10,9] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [(1,6),(2,3),(4,5),(7,10),(8,9)]
=> [6,3,2,5,4,1,10,9,8,7] => 4
[1,1,0,1,0,1,0,0,1,0]
=> [(1,8),(2,3),(4,5),(6,7),(9,10)]
=> [8,3,2,5,4,7,6,1,10,9] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [10,3,2,5,4,7,6,9,8,1] => 2
[1,1,0,1,0,1,1,0,0,0]
=> [(1,10),(2,3),(4,5),(6,9),(7,8)]
=> [10,3,2,5,4,9,8,7,6,1] => 4
[1,1,0,1,1,0,0,0,1,0]
=> [(1,8),(2,3),(4,7),(5,6),(9,10)]
=> [8,3,2,7,6,5,4,1,10,9] => 4
[1,1,0,1,1,0,0,1,0,0]
=> [(1,10),(2,3),(4,7),(5,6),(8,9)]
=> [10,3,2,7,6,5,4,9,8,1] => 4
[1,1,0,1,1,0,1,0,0,0]
=> [(1,10),(2,3),(4,9),(5,6),(7,8)]
=> [10,3,2,9,6,5,8,7,4,1] => 4
[1,1,0,1,1,1,0,0,0,0]
=> [(1,10),(2,3),(4,9),(5,8),(6,7)]
=> [10,3,2,9,8,7,6,5,4,1] => 6
[1,1,1,0,0,0,1,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,10)]
=> [6,5,4,3,2,1,8,7,10,9] => 4
Description
The number of double descents of a permutation. A double descent of a permutation $\pi$ is a position $i$ such that $\pi(i) > \pi(i+1) > \pi(i+2)$.
Mp00033: Dyck paths to two-row standard tableauStandard tableaux
Mp00081: Standard tableaux reading word permutationPermutations
St000441: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [[1,3],[2,4]]
=> [2,4,1,3] => 0
[1,1,0,0]
=> [[1,2],[3,4]]
=> [3,4,1,2] => 2
[1,0,1,0,1,0]
=> [[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => 0
[1,0,1,1,0,0]
=> [[1,3,4],[2,5,6]]
=> [2,5,6,1,3,4] => 2
[1,1,0,0,1,0]
=> [[1,2,5],[3,4,6]]
=> [3,4,6,1,2,5] => 2
[1,1,0,1,0,0]
=> [[1,2,4],[3,5,6]]
=> [3,5,6,1,2,4] => 2
[1,1,1,0,0,0]
=> [[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => 4
[1,0,1,0,1,0,1,0]
=> [[1,3,5,7],[2,4,6,8]]
=> [2,4,6,8,1,3,5,7] => 0
[1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> [2,4,7,8,1,3,5,6] => 2
[1,0,1,1,0,0,1,0]
=> [[1,3,4,7],[2,5,6,8]]
=> [2,5,6,8,1,3,4,7] => 2
[1,0,1,1,0,1,0,0]
=> [[1,3,4,6],[2,5,7,8]]
=> [2,5,7,8,1,3,4,6] => 2
[1,0,1,1,1,0,0,0]
=> [[1,3,4,5],[2,6,7,8]]
=> [2,6,7,8,1,3,4,5] => 4
[1,1,0,0,1,0,1,0]
=> [[1,2,5,7],[3,4,6,8]]
=> [3,4,6,8,1,2,5,7] => 2
[1,1,0,0,1,1,0,0]
=> [[1,2,5,6],[3,4,7,8]]
=> [3,4,7,8,1,2,5,6] => 4
[1,1,0,1,0,0,1,0]
=> [[1,2,4,7],[3,5,6,8]]
=> [3,5,6,8,1,2,4,7] => 2
[1,1,0,1,0,1,0,0]
=> [[1,2,4,6],[3,5,7,8]]
=> [3,5,7,8,1,2,4,6] => 2
[1,1,0,1,1,0,0,0]
=> [[1,2,4,5],[3,6,7,8]]
=> [3,6,7,8,1,2,4,5] => 4
[1,1,1,0,0,0,1,0]
=> [[1,2,3,7],[4,5,6,8]]
=> [4,5,6,8,1,2,3,7] => 4
[1,1,1,0,0,1,0,0]
=> [[1,2,3,6],[4,5,7,8]]
=> [4,5,7,8,1,2,3,6] => 4
[1,1,1,0,1,0,0,0]
=> [[1,2,3,5],[4,6,7,8]]
=> [4,6,7,8,1,2,3,5] => 4
[1,1,1,1,0,0,0,0]
=> [[1,2,3,4],[5,6,7,8]]
=> [5,6,7,8,1,2,3,4] => 6
[1,0,1,0,1,0,1,0,1,0]
=> [[1,3,5,7,9],[2,4,6,8,10]]
=> [2,4,6,8,10,1,3,5,7,9] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [[1,3,5,7,8],[2,4,6,9,10]]
=> [2,4,6,9,10,1,3,5,7,8] => 2
[1,0,1,0,1,1,0,0,1,0]
=> [[1,3,5,6,9],[2,4,7,8,10]]
=> [2,4,7,8,10,1,3,5,6,9] => 2
[1,0,1,0,1,1,0,1,0,0]
=> [[1,3,5,6,8],[2,4,7,9,10]]
=> [2,4,7,9,10,1,3,5,6,8] => 2
[1,0,1,0,1,1,1,0,0,0]
=> [[1,3,5,6,7],[2,4,8,9,10]]
=> [2,4,8,9,10,1,3,5,6,7] => 4
[1,0,1,1,0,0,1,0,1,0]
=> [[1,3,4,7,9],[2,5,6,8,10]]
=> [2,5,6,8,10,1,3,4,7,9] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [[1,3,4,7,8],[2,5,6,9,10]]
=> [2,5,6,9,10,1,3,4,7,8] => 4
[1,0,1,1,0,1,0,0,1,0]
=> [[1,3,4,6,9],[2,5,7,8,10]]
=> [2,5,7,8,10,1,3,4,6,9] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [[1,3,4,6,8],[2,5,7,9,10]]
=> [2,5,7,9,10,1,3,4,6,8] => 2
[1,0,1,1,0,1,1,0,0,0]
=> [[1,3,4,6,7],[2,5,8,9,10]]
=> [2,5,8,9,10,1,3,4,6,7] => 4
[1,0,1,1,1,0,0,0,1,0]
=> [[1,3,4,5,9],[2,6,7,8,10]]
=> [2,6,7,8,10,1,3,4,5,9] => 4
[1,0,1,1,1,0,0,1,0,0]
=> [[1,3,4,5,8],[2,6,7,9,10]]
=> [2,6,7,9,10,1,3,4,5,8] => 4
[1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> [2,6,8,9,10,1,3,4,5,7] => 4
[1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> [2,7,8,9,10,1,3,4,5,6] => 6
[1,1,0,0,1,0,1,0,1,0]
=> [[1,2,5,7,9],[3,4,6,8,10]]
=> [3,4,6,8,10,1,2,5,7,9] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [[1,2,5,7,8],[3,4,6,9,10]]
=> [3,4,6,9,10,1,2,5,7,8] => 4
[1,1,0,0,1,1,0,0,1,0]
=> [[1,2,5,6,9],[3,4,7,8,10]]
=> [3,4,7,8,10,1,2,5,6,9] => 4
[1,1,0,0,1,1,0,1,0,0]
=> [[1,2,5,6,8],[3,4,7,9,10]]
=> [3,4,7,9,10,1,2,5,6,8] => 4
[1,1,0,0,1,1,1,0,0,0]
=> [[1,2,5,6,7],[3,4,8,9,10]]
=> [3,4,8,9,10,1,2,5,6,7] => 6
[1,1,0,1,0,0,1,0,1,0]
=> [[1,2,4,7,9],[3,5,6,8,10]]
=> [3,5,6,8,10,1,2,4,7,9] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [[1,2,4,7,8],[3,5,6,9,10]]
=> [3,5,6,9,10,1,2,4,7,8] => 4
[1,1,0,1,0,1,0,0,1,0]
=> [[1,2,4,6,9],[3,5,7,8,10]]
=> [3,5,7,8,10,1,2,4,6,9] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [[1,2,4,6,8],[3,5,7,9,10]]
=> [3,5,7,9,10,1,2,4,6,8] => 2
[1,1,0,1,0,1,1,0,0,0]
=> [[1,2,4,6,7],[3,5,8,9,10]]
=> [3,5,8,9,10,1,2,4,6,7] => 4
[1,1,0,1,1,0,0,0,1,0]
=> [[1,2,4,5,9],[3,6,7,8,10]]
=> [3,6,7,8,10,1,2,4,5,9] => 4
[1,1,0,1,1,0,0,1,0,0]
=> [[1,2,4,5,8],[3,6,7,9,10]]
=> [3,6,7,9,10,1,2,4,5,8] => 4
[1,1,0,1,1,0,1,0,0,0]
=> [[1,2,4,5,7],[3,6,8,9,10]]
=> [3,6,8,9,10,1,2,4,5,7] => 4
[1,1,0,1,1,1,0,0,0,0]
=> [[1,2,4,5,6],[3,7,8,9,10]]
=> [3,7,8,9,10,1,2,4,5,6] => 6
[1,1,1,0,0,0,1,0,1,0]
=> [[1,2,3,7,9],[4,5,6,8,10]]
=> [4,5,6,8,10,1,2,3,7,9] => 4
Description
The number of successions of a permutation. A succession of a permutation $\pi$ is an index $i$ such that $\pi(i)+1 = \pi(i+1)$. Successions are also known as ''small ascents'' or ''1-rises''.
Mp00146: Dyck paths to tunnel matchingPerfect matchings
Mp00058: Perfect matchings to permutationPermutations
St000483: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [(1,2),(3,4)]
=> [2,1,4,3] => 2
[1,1,0,0]
=> [(1,4),(2,3)]
=> [4,3,2,1] => 0
[1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> [2,1,4,3,6,5] => 4
[1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> [2,1,6,5,4,3] => 2
[1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> [4,3,2,1,6,5] => 2
[1,1,0,1,0,0]
=> [(1,6),(2,3),(4,5)]
=> [6,3,2,5,4,1] => 2
[1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> [6,5,4,3,2,1] => 0
[1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => 6
[1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,8,7,6,5] => 4
[1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [2,1,6,5,4,3,8,7] => 4
[1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> [2,1,8,5,4,7,6,3] => 4
[1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> [2,1,8,7,6,5,4,3] => 2
[1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [4,3,2,1,6,5,8,7] => 4
[1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> [4,3,2,1,8,7,6,5] => 2
[1,1,0,1,0,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [6,3,2,5,4,1,8,7] => 4
[1,1,0,1,0,1,0,0]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [8,3,2,5,4,7,6,1] => 4
[1,1,0,1,1,0,0,0]
=> [(1,8),(2,3),(4,7),(5,6)]
=> [8,3,2,7,6,5,4,1] => 2
[1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> [6,5,4,3,2,1,8,7] => 2
[1,1,1,0,0,1,0,0]
=> [(1,8),(2,5),(3,4),(6,7)]
=> [8,5,4,3,2,7,6,1] => 2
[1,1,1,0,1,0,0,0]
=> [(1,8),(2,7),(3,4),(5,6)]
=> [8,7,4,3,6,5,2,1] => 2
[1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> [8,7,6,5,4,3,2,1] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 8
[1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9)]
=> [2,1,4,3,6,5,10,9,8,7] => 6
[1,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10)]
=> [2,1,4,3,8,7,6,5,10,9] => 6
[1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9)]
=> [2,1,4,3,10,7,6,9,8,5] => 6
[1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8)]
=> [2,1,4,3,10,9,8,7,6,5] => 4
[1,0,1,1,0,0,1,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10)]
=> [2,1,6,5,4,3,8,7,10,9] => 6
[1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9)]
=> [2,1,6,5,4,3,10,9,8,7] => 4
[1,0,1,1,0,1,0,0,1,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,10)]
=> [2,1,8,5,4,7,6,3,10,9] => 6
[1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9)]
=> [2,1,10,5,4,7,6,9,8,3] => 6
[1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8)]
=> [2,1,10,5,4,9,8,7,6,3] => 4
[1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,10)]
=> [2,1,8,7,6,5,4,3,10,9] => 4
[1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9)]
=> [2,1,10,7,6,5,4,9,8,3] => 4
[1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,10),(4,9),(5,6),(7,8)]
=> [2,1,10,9,6,5,8,7,4,3] => 4
[1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7)]
=> [2,1,10,9,8,7,6,5,4,3] => 2
[1,1,0,0,1,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10)]
=> [4,3,2,1,6,5,8,7,10,9] => 6
[1,1,0,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,10),(8,9)]
=> [4,3,2,1,6,5,10,9,8,7] => 4
[1,1,0,0,1,1,0,0,1,0]
=> [(1,4),(2,3),(5,8),(6,7),(9,10)]
=> [4,3,2,1,8,7,6,5,10,9] => 4
[1,1,0,0,1,1,0,1,0,0]
=> [(1,4),(2,3),(5,10),(6,7),(8,9)]
=> [4,3,2,1,10,7,6,9,8,5] => 4
[1,1,0,0,1,1,1,0,0,0]
=> [(1,4),(2,3),(5,10),(6,9),(7,8)]
=> [4,3,2,1,10,9,8,7,6,5] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8),(9,10)]
=> [6,3,2,5,4,1,8,7,10,9] => 6
[1,1,0,1,0,0,1,1,0,0]
=> [(1,6),(2,3),(4,5),(7,10),(8,9)]
=> [6,3,2,5,4,1,10,9,8,7] => 4
[1,1,0,1,0,1,0,0,1,0]
=> [(1,8),(2,3),(4,5),(6,7),(9,10)]
=> [8,3,2,5,4,7,6,1,10,9] => 6
[1,1,0,1,0,1,0,1,0,0]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [10,3,2,5,4,7,6,9,8,1] => 6
[1,1,0,1,0,1,1,0,0,0]
=> [(1,10),(2,3),(4,5),(6,9),(7,8)]
=> [10,3,2,5,4,9,8,7,6,1] => 4
[1,1,0,1,1,0,0,0,1,0]
=> [(1,8),(2,3),(4,7),(5,6),(9,10)]
=> [8,3,2,7,6,5,4,1,10,9] => 4
[1,1,0,1,1,0,0,1,0,0]
=> [(1,10),(2,3),(4,7),(5,6),(8,9)]
=> [10,3,2,7,6,5,4,9,8,1] => 4
[1,1,0,1,1,0,1,0,0,0]
=> [(1,10),(2,3),(4,9),(5,6),(7,8)]
=> [10,3,2,9,6,5,8,7,4,1] => 4
[1,1,0,1,1,1,0,0,0,0]
=> [(1,10),(2,3),(4,9),(5,8),(6,7)]
=> [10,3,2,9,8,7,6,5,4,1] => 2
[1,1,1,0,0,0,1,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,10)]
=> [6,5,4,3,2,1,8,7,10,9] => 4
Description
The number of times a permutation switches from increasing to decreasing or decreasing to increasing. This is the same as the number of inner peaks plus the number of inner valleys and called alternating runs in [2]
Mp00035: Dyck paths to alternating sign matrixAlternating sign matrices
Mp00002: Alternating sign matrices to left key permutationPermutations
St000830: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [[1,0],[0,1]]
=> [1,2] => 0
[1,1,0,0]
=> [[0,1],[1,0]]
=> [2,1] => 2
[1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,2,3] => 0
[1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,3,2] => 2
[1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [2,1,3] => 2
[1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,3,2] => 2
[1,1,1,0,0,0]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [3,1,2] => 4
[1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,2,4,3] => 2
[1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 2
[1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 2
[1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 4
[1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [2,1,3,4] => 2
[1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [2,1,4,3] => 4
[1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 2
[1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 2
[1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 4
[1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [3,1,2,4] => 4
[1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [2,1,4,3] => 4
[1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 4
[1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [4,1,2,3] => 6
[1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 2
[1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 2
[1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 2
[1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => 4
[1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 4
[1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 2
[1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => 4
[1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => 4
[1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 4
[1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => 4
[1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,5,2,3,4] => 6
[1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [2,1,3,4,5] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 4
[1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => 4
[1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 4
[1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [2,1,5,3,4] => 6
[1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 4
[1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 2
[1,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => 4
[1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => 4
[1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 4
[1,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => 4
[1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,5,2,3,4] => 6
[1,1,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [3,1,2,4,5] => 4
Description
The total displacement of a permutation. This is, for a permutation $\pi$ of $n$, given by $\sum_{i = 1}^n | \pi(i) - i |.$ This is twice the statistic [[St000029]] and can be found in [3, Problem 5.1.1.28] and also in [1, 2].
Mp00033: Dyck paths to two-row standard tableauStandard tableaux
Mp00081: Standard tableaux reading word permutationPermutations
St000696: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [[1,3],[2,4]]
=> [2,4,1,3] => 1 = 0 + 1
[1,1,0,0]
=> [[1,2],[3,4]]
=> [3,4,1,2] => 3 = 2 + 1
[1,0,1,0,1,0]
=> [[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => 1 = 0 + 1
[1,0,1,1,0,0]
=> [[1,3,4],[2,5,6]]
=> [2,5,6,1,3,4] => 3 = 2 + 1
[1,1,0,0,1,0]
=> [[1,2,5],[3,4,6]]
=> [3,4,6,1,2,5] => 3 = 2 + 1
[1,1,0,1,0,0]
=> [[1,2,4],[3,5,6]]
=> [3,5,6,1,2,4] => 3 = 2 + 1
[1,1,1,0,0,0]
=> [[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => 5 = 4 + 1
[1,0,1,0,1,0,1,0]
=> [[1,3,5,7],[2,4,6,8]]
=> [2,4,6,8,1,3,5,7] => 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> [2,4,7,8,1,3,5,6] => 3 = 2 + 1
[1,0,1,1,0,0,1,0]
=> [[1,3,4,7],[2,5,6,8]]
=> [2,5,6,8,1,3,4,7] => 3 = 2 + 1
[1,0,1,1,0,1,0,0]
=> [[1,3,4,6],[2,5,7,8]]
=> [2,5,7,8,1,3,4,6] => 3 = 2 + 1
[1,0,1,1,1,0,0,0]
=> [[1,3,4,5],[2,6,7,8]]
=> [2,6,7,8,1,3,4,5] => 5 = 4 + 1
[1,1,0,0,1,0,1,0]
=> [[1,2,5,7],[3,4,6,8]]
=> [3,4,6,8,1,2,5,7] => 3 = 2 + 1
[1,1,0,0,1,1,0,0]
=> [[1,2,5,6],[3,4,7,8]]
=> [3,4,7,8,1,2,5,6] => 5 = 4 + 1
[1,1,0,1,0,0,1,0]
=> [[1,2,4,7],[3,5,6,8]]
=> [3,5,6,8,1,2,4,7] => 3 = 2 + 1
[1,1,0,1,0,1,0,0]
=> [[1,2,4,6],[3,5,7,8]]
=> [3,5,7,8,1,2,4,6] => 3 = 2 + 1
[1,1,0,1,1,0,0,0]
=> [[1,2,4,5],[3,6,7,8]]
=> [3,6,7,8,1,2,4,5] => 5 = 4 + 1
[1,1,1,0,0,0,1,0]
=> [[1,2,3,7],[4,5,6,8]]
=> [4,5,6,8,1,2,3,7] => 5 = 4 + 1
[1,1,1,0,0,1,0,0]
=> [[1,2,3,6],[4,5,7,8]]
=> [4,5,7,8,1,2,3,6] => 5 = 4 + 1
[1,1,1,0,1,0,0,0]
=> [[1,2,3,5],[4,6,7,8]]
=> [4,6,7,8,1,2,3,5] => 5 = 4 + 1
[1,1,1,1,0,0,0,0]
=> [[1,2,3,4],[5,6,7,8]]
=> [5,6,7,8,1,2,3,4] => 7 = 6 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [[1,3,5,7,9],[2,4,6,8,10]]
=> [2,4,6,8,10,1,3,5,7,9] => 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [[1,3,5,7,8],[2,4,6,9,10]]
=> [2,4,6,9,10,1,3,5,7,8] => 3 = 2 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [[1,3,5,6,9],[2,4,7,8,10]]
=> [2,4,7,8,10,1,3,5,6,9] => 3 = 2 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [[1,3,5,6,8],[2,4,7,9,10]]
=> [2,4,7,9,10,1,3,5,6,8] => 3 = 2 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [[1,3,5,6,7],[2,4,8,9,10]]
=> [2,4,8,9,10,1,3,5,6,7] => 5 = 4 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [[1,3,4,7,9],[2,5,6,8,10]]
=> [2,5,6,8,10,1,3,4,7,9] => 3 = 2 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [[1,3,4,7,8],[2,5,6,9,10]]
=> [2,5,6,9,10,1,3,4,7,8] => 5 = 4 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [[1,3,4,6,9],[2,5,7,8,10]]
=> [2,5,7,8,10,1,3,4,6,9] => 3 = 2 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [[1,3,4,6,8],[2,5,7,9,10]]
=> [2,5,7,9,10,1,3,4,6,8] => 3 = 2 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [[1,3,4,6,7],[2,5,8,9,10]]
=> [2,5,8,9,10,1,3,4,6,7] => 5 = 4 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [[1,3,4,5,9],[2,6,7,8,10]]
=> [2,6,7,8,10,1,3,4,5,9] => 5 = 4 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [[1,3,4,5,8],[2,6,7,9,10]]
=> [2,6,7,9,10,1,3,4,5,8] => 5 = 4 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> [2,6,8,9,10,1,3,4,5,7] => 5 = 4 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> [2,7,8,9,10,1,3,4,5,6] => 7 = 6 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [[1,2,5,7,9],[3,4,6,8,10]]
=> [3,4,6,8,10,1,2,5,7,9] => 3 = 2 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [[1,2,5,7,8],[3,4,6,9,10]]
=> [3,4,6,9,10,1,2,5,7,8] => 5 = 4 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [[1,2,5,6,9],[3,4,7,8,10]]
=> [3,4,7,8,10,1,2,5,6,9] => 5 = 4 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [[1,2,5,6,8],[3,4,7,9,10]]
=> [3,4,7,9,10,1,2,5,6,8] => 5 = 4 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [[1,2,5,6,7],[3,4,8,9,10]]
=> [3,4,8,9,10,1,2,5,6,7] => 7 = 6 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [[1,2,4,7,9],[3,5,6,8,10]]
=> [3,5,6,8,10,1,2,4,7,9] => 3 = 2 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [[1,2,4,7,8],[3,5,6,9,10]]
=> [3,5,6,9,10,1,2,4,7,8] => 5 = 4 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [[1,2,4,6,9],[3,5,7,8,10]]
=> [3,5,7,8,10,1,2,4,6,9] => 3 = 2 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [[1,2,4,6,8],[3,5,7,9,10]]
=> [3,5,7,9,10,1,2,4,6,8] => 3 = 2 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [[1,2,4,6,7],[3,5,8,9,10]]
=> [3,5,8,9,10,1,2,4,6,7] => 5 = 4 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [[1,2,4,5,9],[3,6,7,8,10]]
=> [3,6,7,8,10,1,2,4,5,9] => 5 = 4 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [[1,2,4,5,8],[3,6,7,9,10]]
=> [3,6,7,9,10,1,2,4,5,8] => 5 = 4 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [[1,2,4,5,7],[3,6,8,9,10]]
=> [3,6,8,9,10,1,2,4,5,7] => 5 = 4 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [[1,2,4,5,6],[3,7,8,9,10]]
=> [3,7,8,9,10,1,2,4,5,6] => 7 = 6 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [[1,2,3,7,9],[4,5,6,8,10]]
=> [4,5,6,8,10,1,2,3,7,9] => 5 = 4 + 1
Description
The number of cycles in the breakpoint graph of a permutation. The breakpoint graph of a permutation $\pi_1,\dots,\pi_n$ is the directed, bicoloured graph with vertices $0,\dots,n$, a grey edge from $i$ to $i+1$ and a black edge from $\pi_i$ to $\pi_{i-1}$ for $0\leq i\leq n$, all indices taken modulo $n+1$. This graph decomposes into alternating cycles, which this statistic counts. The distribution of this statistic on permutations of $n-1$ is, according to [cor.1, 5] and [eq.6, 6], given by $$ \frac{1}{n(n+1)}((q+n)_{n+1}-(q)_{n+1}), $$ where $(x)_n=x(x-1)\dots(x-n+1)$.
Mp00033: Dyck paths to two-row standard tableauStandard tableaux
Mp00081: Standard tableaux reading word permutationPermutations
St000742: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [[1,3],[2,4]]
=> [2,4,1,3] => 3 = 2 + 1
[1,1,0,0]
=> [[1,2],[3,4]]
=> [3,4,1,2] => 1 = 0 + 1
[1,0,1,0,1,0]
=> [[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => 5 = 4 + 1
[1,0,1,1,0,0]
=> [[1,3,4],[2,5,6]]
=> [2,5,6,1,3,4] => 3 = 2 + 1
[1,1,0,0,1,0]
=> [[1,2,5],[3,4,6]]
=> [3,4,6,1,2,5] => 3 = 2 + 1
[1,1,0,1,0,0]
=> [[1,2,4],[3,5,6]]
=> [3,5,6,1,2,4] => 3 = 2 + 1
[1,1,1,0,0,0]
=> [[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [[1,3,5,7],[2,4,6,8]]
=> [2,4,6,8,1,3,5,7] => 7 = 6 + 1
[1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> [2,4,7,8,1,3,5,6] => 5 = 4 + 1
[1,0,1,1,0,0,1,0]
=> [[1,3,4,7],[2,5,6,8]]
=> [2,5,6,8,1,3,4,7] => 5 = 4 + 1
[1,0,1,1,0,1,0,0]
=> [[1,3,4,6],[2,5,7,8]]
=> [2,5,7,8,1,3,4,6] => 5 = 4 + 1
[1,0,1,1,1,0,0,0]
=> [[1,3,4,5],[2,6,7,8]]
=> [2,6,7,8,1,3,4,5] => 3 = 2 + 1
[1,1,0,0,1,0,1,0]
=> [[1,2,5,7],[3,4,6,8]]
=> [3,4,6,8,1,2,5,7] => 5 = 4 + 1
[1,1,0,0,1,1,0,0]
=> [[1,2,5,6],[3,4,7,8]]
=> [3,4,7,8,1,2,5,6] => 3 = 2 + 1
[1,1,0,1,0,0,1,0]
=> [[1,2,4,7],[3,5,6,8]]
=> [3,5,6,8,1,2,4,7] => 5 = 4 + 1
[1,1,0,1,0,1,0,0]
=> [[1,2,4,6],[3,5,7,8]]
=> [3,5,7,8,1,2,4,6] => 5 = 4 + 1
[1,1,0,1,1,0,0,0]
=> [[1,2,4,5],[3,6,7,8]]
=> [3,6,7,8,1,2,4,5] => 3 = 2 + 1
[1,1,1,0,0,0,1,0]
=> [[1,2,3,7],[4,5,6,8]]
=> [4,5,6,8,1,2,3,7] => 3 = 2 + 1
[1,1,1,0,0,1,0,0]
=> [[1,2,3,6],[4,5,7,8]]
=> [4,5,7,8,1,2,3,6] => 3 = 2 + 1
[1,1,1,0,1,0,0,0]
=> [[1,2,3,5],[4,6,7,8]]
=> [4,6,7,8,1,2,3,5] => 3 = 2 + 1
[1,1,1,1,0,0,0,0]
=> [[1,2,3,4],[5,6,7,8]]
=> [5,6,7,8,1,2,3,4] => 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [[1,3,5,7,9],[2,4,6,8,10]]
=> [2,4,6,8,10,1,3,5,7,9] => 9 = 8 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [[1,3,5,7,8],[2,4,6,9,10]]
=> [2,4,6,9,10,1,3,5,7,8] => 7 = 6 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [[1,3,5,6,9],[2,4,7,8,10]]
=> [2,4,7,8,10,1,3,5,6,9] => 7 = 6 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [[1,3,5,6,8],[2,4,7,9,10]]
=> [2,4,7,9,10,1,3,5,6,8] => 7 = 6 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [[1,3,5,6,7],[2,4,8,9,10]]
=> [2,4,8,9,10,1,3,5,6,7] => 5 = 4 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [[1,3,4,7,9],[2,5,6,8,10]]
=> [2,5,6,8,10,1,3,4,7,9] => 7 = 6 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [[1,3,4,7,8],[2,5,6,9,10]]
=> [2,5,6,9,10,1,3,4,7,8] => 5 = 4 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [[1,3,4,6,9],[2,5,7,8,10]]
=> [2,5,7,8,10,1,3,4,6,9] => 7 = 6 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [[1,3,4,6,8],[2,5,7,9,10]]
=> [2,5,7,9,10,1,3,4,6,8] => 7 = 6 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [[1,3,4,6,7],[2,5,8,9,10]]
=> [2,5,8,9,10,1,3,4,6,7] => 5 = 4 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [[1,3,4,5,9],[2,6,7,8,10]]
=> [2,6,7,8,10,1,3,4,5,9] => 5 = 4 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [[1,3,4,5,8],[2,6,7,9,10]]
=> [2,6,7,9,10,1,3,4,5,8] => 5 = 4 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> [2,6,8,9,10,1,3,4,5,7] => 5 = 4 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> [2,7,8,9,10,1,3,4,5,6] => 3 = 2 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [[1,2,5,7,9],[3,4,6,8,10]]
=> [3,4,6,8,10,1,2,5,7,9] => 7 = 6 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [[1,2,5,7,8],[3,4,6,9,10]]
=> [3,4,6,9,10,1,2,5,7,8] => 5 = 4 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [[1,2,5,6,9],[3,4,7,8,10]]
=> [3,4,7,8,10,1,2,5,6,9] => 5 = 4 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [[1,2,5,6,8],[3,4,7,9,10]]
=> [3,4,7,9,10,1,2,5,6,8] => 5 = 4 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [[1,2,5,6,7],[3,4,8,9,10]]
=> [3,4,8,9,10,1,2,5,6,7] => 3 = 2 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [[1,2,4,7,9],[3,5,6,8,10]]
=> [3,5,6,8,10,1,2,4,7,9] => 7 = 6 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [[1,2,4,7,8],[3,5,6,9,10]]
=> [3,5,6,9,10,1,2,4,7,8] => 5 = 4 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [[1,2,4,6,9],[3,5,7,8,10]]
=> [3,5,7,8,10,1,2,4,6,9] => 7 = 6 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [[1,2,4,6,8],[3,5,7,9,10]]
=> [3,5,7,9,10,1,2,4,6,8] => 7 = 6 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [[1,2,4,6,7],[3,5,8,9,10]]
=> [3,5,8,9,10,1,2,4,6,7] => 5 = 4 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [[1,2,4,5,9],[3,6,7,8,10]]
=> [3,6,7,8,10,1,2,4,5,9] => 5 = 4 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [[1,2,4,5,8],[3,6,7,9,10]]
=> [3,6,7,9,10,1,2,4,5,8] => 5 = 4 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [[1,2,4,5,7],[3,6,8,9,10]]
=> [3,6,8,9,10,1,2,4,5,7] => 5 = 4 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [[1,2,4,5,6],[3,7,8,9,10]]
=> [3,7,8,9,10,1,2,4,5,6] => 3 = 2 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [[1,2,3,7,9],[4,5,6,8,10]]
=> [4,5,6,8,10,1,2,3,7,9] => 5 = 4 + 1
Description
The number of big ascents of a permutation after prepending zero. Given a permutation $\pi$ of $\{1,\ldots,n\}$ we set $\pi(0) = 0$ and then count the number of indices $i \in \{0,\ldots,n-1\}$ such that $\pi(i+1) - \pi(i) > 1$. It was shown in [1, Theorem 1.3] and in [2, Corollary 5.7] that this statistic is equidistributed with the number of descents ([[St000021]]). G. Han provided a bijection on permutations sending this statistic to the number of descents [3] using a simple variant of the first fundamental transformation [[Mp00086]]. [[St000646]] is the statistic without the border condition $\pi(0) = 0$.
Mp00033: Dyck paths to two-row standard tableauStandard tableaux
Mp00106: Standard tableaux catabolismStandard tableaux
St000743: Standard tableaux ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [[1,3],[2,4]]
=> [[1,2,4],[3]]
=> 1 = 0 + 1
[1,1,0,0]
=> [[1,2],[3,4]]
=> [[1,2,3,4]]
=> 3 = 2 + 1
[1,0,1,0,1,0]
=> [[1,3,5],[2,4,6]]
=> [[1,2,4,6],[3,5]]
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [[1,3,4],[2,5,6]]
=> [[1,2,4,5,6],[3]]
=> 3 = 2 + 1
[1,1,0,0,1,0]
=> [[1,2,5],[3,4,6]]
=> [[1,2,3,4,6],[5]]
=> 3 = 2 + 1
[1,1,0,1,0,0]
=> [[1,2,4],[3,5,6]]
=> [[1,2,3,5,6],[4]]
=> 3 = 2 + 1
[1,1,1,0,0,0]
=> [[1,2,3],[4,5,6]]
=> [[1,2,3,4,5,6]]
=> 5 = 4 + 1
[1,0,1,0,1,0,1,0]
=> [[1,3,5,7],[2,4,6,8]]
=> [[1,2,4,6,8],[3,5,7]]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> [[1,2,4,6,7,8],[3,5]]
=> 3 = 2 + 1
[1,0,1,1,0,0,1,0]
=> [[1,3,4,7],[2,5,6,8]]
=> [[1,2,4,5,6,8],[3,7]]
=> 3 = 2 + 1
[1,0,1,1,0,1,0,0]
=> [[1,3,4,6],[2,5,7,8]]
=> [[1,2,4,5,7,8],[3,6]]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,0]
=> [[1,3,4,5],[2,6,7,8]]
=> [[1,2,4,5,6,7,8],[3]]
=> 5 = 4 + 1
[1,1,0,0,1,0,1,0]
=> [[1,2,5,7],[3,4,6,8]]
=> [[1,2,3,4,6,8],[5,7]]
=> 3 = 2 + 1
[1,1,0,0,1,1,0,0]
=> [[1,2,5,6],[3,4,7,8]]
=> [[1,2,3,4,7,8],[5,6]]
=> 5 = 4 + 1
[1,1,0,1,0,0,1,0]
=> [[1,2,4,7],[3,5,6,8]]
=> [[1,2,3,5,6,8],[4,7]]
=> 3 = 2 + 1
[1,1,0,1,0,1,0,0]
=> [[1,2,4,6],[3,5,7,8]]
=> [[1,2,3,5,7,8],[4,6]]
=> 3 = 2 + 1
[1,1,0,1,1,0,0,0]
=> [[1,2,4,5],[3,6,7,8]]
=> [[1,2,3,5,6,7,8],[4]]
=> 5 = 4 + 1
[1,1,1,0,0,0,1,0]
=> [[1,2,3,7],[4,5,6,8]]
=> [[1,2,3,4,5,6,8],[7]]
=> 5 = 4 + 1
[1,1,1,0,0,1,0,0]
=> [[1,2,3,6],[4,5,7,8]]
=> [[1,2,3,4,5,7,8],[6]]
=> 5 = 4 + 1
[1,1,1,0,1,0,0,0]
=> [[1,2,3,5],[4,6,7,8]]
=> [[1,2,3,4,6,7,8],[5]]
=> 5 = 4 + 1
[1,1,1,1,0,0,0,0]
=> [[1,2,3,4],[5,6,7,8]]
=> [[1,2,3,4,5,6,7,8]]
=> 7 = 6 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [[1,3,5,7,9],[2,4,6,8,10]]
=> [[1,2,4,6,8,10],[3,5,7,9]]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [[1,3,5,7,8],[2,4,6,9,10]]
=> [[1,2,4,6,8,9,10],[3,5,7]]
=> 3 = 2 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [[1,3,5,6,9],[2,4,7,8,10]]
=> [[1,2,4,6,7,8,10],[3,5,9]]
=> 3 = 2 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [[1,3,5,6,8],[2,4,7,9,10]]
=> [[1,2,4,6,7,9,10],[3,5,8]]
=> 3 = 2 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [[1,3,5,6,7],[2,4,8,9,10]]
=> [[1,2,4,6,7,8,9,10],[3,5]]
=> 5 = 4 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [[1,3,4,7,9],[2,5,6,8,10]]
=> [[1,2,4,5,6,8,10],[3,7,9]]
=> 3 = 2 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [[1,3,4,7,8],[2,5,6,9,10]]
=> [[1,2,4,5,6,9,10],[3,7,8]]
=> 5 = 4 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [[1,3,4,6,9],[2,5,7,8,10]]
=> [[1,2,4,5,7,8,10],[3,6,9]]
=> 3 = 2 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [[1,3,4,6,8],[2,5,7,9,10]]
=> [[1,2,4,5,7,9,10],[3,6,8]]
=> 3 = 2 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [[1,3,4,6,7],[2,5,8,9,10]]
=> [[1,2,4,5,7,8,9,10],[3,6]]
=> 5 = 4 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [[1,3,4,5,9],[2,6,7,8,10]]
=> [[1,2,4,5,6,7,8,10],[3,9]]
=> 5 = 4 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [[1,3,4,5,8],[2,6,7,9,10]]
=> [[1,2,4,5,6,7,9,10],[3,8]]
=> 5 = 4 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> [[1,2,4,5,6,8,9,10],[3,7]]
=> 5 = 4 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> [[1,2,4,5,6,7,8,9,10],[3]]
=> 7 = 6 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [[1,2,5,7,9],[3,4,6,8,10]]
=> [[1,2,3,4,6,8,10],[5,7,9]]
=> 3 = 2 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [[1,2,5,7,8],[3,4,6,9,10]]
=> [[1,2,3,4,6,9,10],[5,7,8]]
=> 5 = 4 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [[1,2,5,6,9],[3,4,7,8,10]]
=> [[1,2,3,4,7,8,10],[5,6,9]]
=> 5 = 4 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [[1,2,5,6,8],[3,4,7,9,10]]
=> [[1,2,3,4,7,9,10],[5,6,8]]
=> 5 = 4 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [[1,2,5,6,7],[3,4,8,9,10]]
=> [[1,2,3,4,7,8,9,10],[5,6]]
=> 7 = 6 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [[1,2,4,7,9],[3,5,6,8,10]]
=> [[1,2,3,5,6,8,10],[4,7,9]]
=> 3 = 2 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [[1,2,4,7,8],[3,5,6,9,10]]
=> [[1,2,3,5,6,9,10],[4,7,8]]
=> 5 = 4 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [[1,2,4,6,9],[3,5,7,8,10]]
=> [[1,2,3,5,7,8,10],[4,6,9]]
=> 3 = 2 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [[1,2,4,6,8],[3,5,7,9,10]]
=> [[1,2,3,5,7,9,10],[4,6,8]]
=> 3 = 2 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [[1,2,4,6,7],[3,5,8,9,10]]
=> [[1,2,3,5,7,8,9,10],[4,6]]
=> 5 = 4 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [[1,2,4,5,9],[3,6,7,8,10]]
=> [[1,2,3,5,6,7,8,10],[4,9]]
=> 5 = 4 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [[1,2,4,5,8],[3,6,7,9,10]]
=> [[1,2,3,5,6,7,9,10],[4,8]]
=> 5 = 4 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [[1,2,4,5,7],[3,6,8,9,10]]
=> [[1,2,3,5,6,8,9,10],[4,7]]
=> 5 = 4 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [[1,2,4,5,6],[3,7,8,9,10]]
=> [[1,2,3,5,6,7,8,9,10],[4]]
=> 7 = 6 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [[1,2,3,7,9],[4,5,6,8,10]]
=> [[1,2,3,4,5,6,8,10],[7,9]]
=> 5 = 4 + 1
Description
The number of entries in a standard Young tableau such that the next integer is a neighbour.
Matching statistic: St000350
Mp00035: Dyck paths to alternating sign matrixAlternating sign matrices
Mp00002: Alternating sign matrices to left key permutationPermutations
Mp00160: Permutations graph of inversionsGraphs
St000350: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [[1,0],[0,1]]
=> [1,2] => ([],2)
=> 0
[1,1,0,0]
=> [[0,1],[1,0]]
=> [2,1] => ([(0,1)],2)
=> 2
[1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,2,3] => ([],3)
=> 0
[1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,3,2] => ([(1,2)],3)
=> 2
[1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [2,1,3] => ([(1,2)],3)
=> 2
[1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,3,2] => ([(1,2)],3)
=> 2
[1,1,1,0,0,0]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 4
[1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,2,3,4] => ([],4)
=> 0
[1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,2,4,3] => ([(2,3)],4)
=> 2
[1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => ([(2,3)],4)
=> 2
[1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => ([(2,3)],4)
=> 2
[1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => ([(1,3),(2,3)],4)
=> 4
[1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [2,1,3,4] => ([(2,3)],4)
=> 2
[1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> 4
[1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => ([(2,3)],4)
=> 2
[1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => ([(2,3)],4)
=> 2
[1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => ([(1,3),(2,3)],4)
=> 4
[1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> 4
[1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> 4
[1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => ([(1,3),(2,3)],4)
=> 4
[1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 6
[1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,2,3,4,5] => ([],5)
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => ([(3,4)],5)
=> 2
[1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => ([(3,4)],5)
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => ([(3,4)],5)
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> 4
[1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => ([(3,4)],5)
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 4
[1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => ([(3,4)],5)
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => ([(3,4)],5)
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> 4
[1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> 4
[1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 4
[1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> 4
[1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> 6
[1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [2,1,3,4,5] => ([(3,4)],5)
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> 4
[1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> 4
[1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> 4
[1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> 6
[1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => ([(3,4)],5)
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 4
[1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => ([(3,4)],5)
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => ([(3,4)],5)
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> 4
[1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> 4
[1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 4
[1,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> 4
[1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> 6
[1,1,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> 4
Description
The sum of the vertex degrees of a graph. This is clearly equal to twice the number of edges, and, incidentally, also equal to the trace of the Laplacian matrix of a graph. From this it follows that it is also the sum of the squares of the eigenvalues of the adjacency matrix of the graph. The Laplacian matrix is defined as $D-A$ where $D$ is the degree matrix (the diagonal matrix with the vertex degrees on the diagonal) and where $A$ is the adjacency matrix. See [1] for detailed definitions.
Mp00025: Dyck paths to 132-avoiding permutationPermutations
Mp00160: Permutations graph of inversionsGraphs
Mp00154: Graphs coreGraphs
St000422: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[1,1,0,0]
=> [1,2] => ([],2)
=> ([],1)
=> 0
[1,0,1,0,1,0]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 4
[1,0,1,1,0,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2
[1,1,0,0,1,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2
[1,1,0,1,0,0]
=> [2,1,3] => ([(1,2)],3)
=> ([(0,1)],2)
=> 2
[1,1,1,0,0,0]
=> [1,2,3] => ([],3)
=> ([],1)
=> 0
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 4
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 4
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 4
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 4
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> 2
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 4
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 4
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => ([(2,3)],4)
=> ([(0,1)],2)
=> 2
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 8
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 4
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 4
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 4
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 4
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 4
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 4
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 4
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 4
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 4
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 4
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 4
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 4
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 4
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 4
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 2
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 4
Description
The energy of a graph, if it is integral. The energy of a graph is the sum of the absolute values of its eigenvalues. This statistic is only defined for graphs with integral energy. It is known, that the energy is never an odd integer [2]. In fact, it is never the square root of an odd integer [3]. The energy of a graph is the sum of the energies of the connected components of a graph. The energy of the complete graph $K_n$ equals $2n-2$. For this reason, we do not define the energy of the empty graph.
The following 32 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000915The Ore degree of a graph. St001500The global dimension of magnitude 1 Nakayama algebras. St000010The length of the partition. St001814The number of partitions interlacing the given partition. St001486The number of corners of the ribbon associated with an integer composition. St000877The depth of the binary word interpreted as a path. St000885The number of critical steps in the Catalan decomposition of a binary word. St000953The largest degree of an irreducible factor of the Coxeter polynomial of the Dyck path over the rational numbers. St000878The number of ones minus the number of zeros of a binary word. St000288The number of ones in a binary word. St000371The number of mid points of decreasing subsequences of length 3 in a permutation. St000691The number of changes of a binary word. St001278The number of indecomposable modules that are fixed by $\tau \Omega^1$ composed with its inverse in the corresponding Nakayama algebra. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St001004The number of indices that are either left-to-right maxima or right-to-left minima. St000264The girth of a graph, which is not a tree. St001893The flag descent of a signed permutation. St001817The number of flag weak exceedances of a signed permutation. St001892The flag excedance statistic of a signed permutation. St000703The number of deficiencies of a permutation. St000245The number of ascents of a permutation. St000672The number of minimal elements in Bruhat order not less than the permutation. St001083The number of boxed occurrences of 132 in a permutation. St000394The sum of the heights of the peaks of a Dyck path minus the number of peaks. St000097The order of the largest clique of the graph. St001182Number of indecomposable injective modules with codominant dimension at least two in the corresponding Nakayama algebra. St000820The number of compositions obtained by rotating the composition. St000011The number of touch points (or returns) of a Dyck path. St000490The intertwining number of a set partition. St000502The number of successions of a set partitions. St000248The number of anti-singletons of a set partition.