searching the database
Your data matches 18 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000904
(load all 12 compositions to match this statistic)
(load all 12 compositions to match this statistic)
St000904: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => 1
[1,1] => 2
[2] => 1
[1,1,1] => 3
[1,2] => 1
[2,1] => 1
[3] => 1
[1,1,1,1] => 4
[1,1,2] => 2
[1,2,1] => 2
[1,3] => 1
[2,1,1] => 2
[2,2] => 2
[3,1] => 1
[4] => 1
[1,1,1,1,1] => 5
[1,1,1,2] => 3
[1,1,2,1] => 3
[1,1,3] => 2
[1,2,1,1] => 3
[1,2,2] => 2
[1,3,1] => 2
[1,4] => 1
[2,1,1,1] => 3
[2,1,2] => 2
[2,2,1] => 2
[2,3] => 1
[3,1,1] => 2
[3,2] => 1
[4,1] => 1
[5] => 1
[1,1,1,1,1,1] => 6
[1,1,1,1,2] => 4
[1,1,1,2,1] => 4
[1,1,1,3] => 3
[1,1,2,1,1] => 4
[1,1,2,2] => 2
[1,1,3,1] => 3
[1,1,4] => 2
[1,2,1,1,1] => 4
[1,2,1,2] => 2
[1,2,2,1] => 2
[1,2,3] => 1
[1,3,1,1] => 3
[1,3,2] => 1
[1,4,1] => 2
[1,5] => 1
[2,1,1,1,1] => 4
[2,1,1,2] => 2
[2,1,2,1] => 2
Description
The maximal number of repetitions of an integer composition.
Matching statistic: St001933
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00040: Integer compositions —to partition⟶ Integer partitions
St001933: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St001933: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1]
=> 1
[1,1] => [1,1]
=> 2
[2] => [2]
=> 1
[1,1,1] => [1,1,1]
=> 3
[1,2] => [2,1]
=> 1
[2,1] => [2,1]
=> 1
[3] => [3]
=> 1
[1,1,1,1] => [1,1,1,1]
=> 4
[1,1,2] => [2,1,1]
=> 2
[1,2,1] => [2,1,1]
=> 2
[1,3] => [3,1]
=> 1
[2,1,1] => [2,1,1]
=> 2
[2,2] => [2,2]
=> 2
[3,1] => [3,1]
=> 1
[4] => [4]
=> 1
[1,1,1,1,1] => [1,1,1,1,1]
=> 5
[1,1,1,2] => [2,1,1,1]
=> 3
[1,1,2,1] => [2,1,1,1]
=> 3
[1,1,3] => [3,1,1]
=> 2
[1,2,1,1] => [2,1,1,1]
=> 3
[1,2,2] => [2,2,1]
=> 2
[1,3,1] => [3,1,1]
=> 2
[1,4] => [4,1]
=> 1
[2,1,1,1] => [2,1,1,1]
=> 3
[2,1,2] => [2,2,1]
=> 2
[2,2,1] => [2,2,1]
=> 2
[2,3] => [3,2]
=> 1
[3,1,1] => [3,1,1]
=> 2
[3,2] => [3,2]
=> 1
[4,1] => [4,1]
=> 1
[5] => [5]
=> 1
[1,1,1,1,1,1] => [1,1,1,1,1,1]
=> 6
[1,1,1,1,2] => [2,1,1,1,1]
=> 4
[1,1,1,2,1] => [2,1,1,1,1]
=> 4
[1,1,1,3] => [3,1,1,1]
=> 3
[1,1,2,1,1] => [2,1,1,1,1]
=> 4
[1,1,2,2] => [2,2,1,1]
=> 2
[1,1,3,1] => [3,1,1,1]
=> 3
[1,1,4] => [4,1,1]
=> 2
[1,2,1,1,1] => [2,1,1,1,1]
=> 4
[1,2,1,2] => [2,2,1,1]
=> 2
[1,2,2,1] => [2,2,1,1]
=> 2
[1,2,3] => [3,2,1]
=> 1
[1,3,1,1] => [3,1,1,1]
=> 3
[1,3,2] => [3,2,1]
=> 1
[1,4,1] => [4,1,1]
=> 2
[1,5] => [5,1]
=> 1
[2,1,1,1,1] => [2,1,1,1,1]
=> 4
[2,1,1,2] => [2,2,1,1]
=> 2
[2,1,2,1] => [2,2,1,1]
=> 2
Description
The largest multiplicity of a part in an integer partition.
Matching statistic: St000392
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00040: Integer compositions —to partition⟶ Integer partitions
Mp00095: Integer partitions —to binary word⟶ Binary words
St000392: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00095: Integer partitions —to binary word⟶ Binary words
St000392: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1]
=> 10 => 1
[1,1] => [1,1]
=> 110 => 2
[2] => [2]
=> 100 => 1
[1,1,1] => [1,1,1]
=> 1110 => 3
[1,2] => [2,1]
=> 1010 => 1
[2,1] => [2,1]
=> 1010 => 1
[3] => [3]
=> 1000 => 1
[1,1,1,1] => [1,1,1,1]
=> 11110 => 4
[1,1,2] => [2,1,1]
=> 10110 => 2
[1,2,1] => [2,1,1]
=> 10110 => 2
[1,3] => [3,1]
=> 10010 => 1
[2,1,1] => [2,1,1]
=> 10110 => 2
[2,2] => [2,2]
=> 1100 => 2
[3,1] => [3,1]
=> 10010 => 1
[4] => [4]
=> 10000 => 1
[1,1,1,1,1] => [1,1,1,1,1]
=> 111110 => 5
[1,1,1,2] => [2,1,1,1]
=> 101110 => 3
[1,1,2,1] => [2,1,1,1]
=> 101110 => 3
[1,1,3] => [3,1,1]
=> 100110 => 2
[1,2,1,1] => [2,1,1,1]
=> 101110 => 3
[1,2,2] => [2,2,1]
=> 11010 => 2
[1,3,1] => [3,1,1]
=> 100110 => 2
[1,4] => [4,1]
=> 100010 => 1
[2,1,1,1] => [2,1,1,1]
=> 101110 => 3
[2,1,2] => [2,2,1]
=> 11010 => 2
[2,2,1] => [2,2,1]
=> 11010 => 2
[2,3] => [3,2]
=> 10100 => 1
[3,1,1] => [3,1,1]
=> 100110 => 2
[3,2] => [3,2]
=> 10100 => 1
[4,1] => [4,1]
=> 100010 => 1
[5] => [5]
=> 100000 => 1
[1,1,1,1,1,1] => [1,1,1,1,1,1]
=> 1111110 => 6
[1,1,1,1,2] => [2,1,1,1,1]
=> 1011110 => 4
[1,1,1,2,1] => [2,1,1,1,1]
=> 1011110 => 4
[1,1,1,3] => [3,1,1,1]
=> 1001110 => 3
[1,1,2,1,1] => [2,1,1,1,1]
=> 1011110 => 4
[1,1,2,2] => [2,2,1,1]
=> 110110 => 2
[1,1,3,1] => [3,1,1,1]
=> 1001110 => 3
[1,1,4] => [4,1,1]
=> 1000110 => 2
[1,2,1,1,1] => [2,1,1,1,1]
=> 1011110 => 4
[1,2,1,2] => [2,2,1,1]
=> 110110 => 2
[1,2,2,1] => [2,2,1,1]
=> 110110 => 2
[1,2,3] => [3,2,1]
=> 101010 => 1
[1,3,1,1] => [3,1,1,1]
=> 1001110 => 3
[1,3,2] => [3,2,1]
=> 101010 => 1
[1,4,1] => [4,1,1]
=> 1000110 => 2
[1,5] => [5,1]
=> 1000010 => 1
[2,1,1,1,1] => [2,1,1,1,1]
=> 1011110 => 4
[2,1,1,2] => [2,2,1,1]
=> 110110 => 2
[2,1,2,1] => [2,2,1,1]
=> 110110 => 2
Description
The length of the longest run of ones in a binary word.
Matching statistic: St001372
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00040: Integer compositions —to partition⟶ Integer partitions
Mp00095: Integer partitions —to binary word⟶ Binary words
St001372: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00095: Integer partitions —to binary word⟶ Binary words
St001372: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1]
=> 10 => 1
[1,1] => [1,1]
=> 110 => 2
[2] => [2]
=> 100 => 1
[1,1,1] => [1,1,1]
=> 1110 => 3
[1,2] => [2,1]
=> 1010 => 1
[2,1] => [2,1]
=> 1010 => 1
[3] => [3]
=> 1000 => 1
[1,1,1,1] => [1,1,1,1]
=> 11110 => 4
[1,1,2] => [2,1,1]
=> 10110 => 2
[1,2,1] => [2,1,1]
=> 10110 => 2
[1,3] => [3,1]
=> 10010 => 1
[2,1,1] => [2,1,1]
=> 10110 => 2
[2,2] => [2,2]
=> 1100 => 2
[3,1] => [3,1]
=> 10010 => 1
[4] => [4]
=> 10000 => 1
[1,1,1,1,1] => [1,1,1,1,1]
=> 111110 => 5
[1,1,1,2] => [2,1,1,1]
=> 101110 => 3
[1,1,2,1] => [2,1,1,1]
=> 101110 => 3
[1,1,3] => [3,1,1]
=> 100110 => 2
[1,2,1,1] => [2,1,1,1]
=> 101110 => 3
[1,2,2] => [2,2,1]
=> 11010 => 2
[1,3,1] => [3,1,1]
=> 100110 => 2
[1,4] => [4,1]
=> 100010 => 1
[2,1,1,1] => [2,1,1,1]
=> 101110 => 3
[2,1,2] => [2,2,1]
=> 11010 => 2
[2,2,1] => [2,2,1]
=> 11010 => 2
[2,3] => [3,2]
=> 10100 => 1
[3,1,1] => [3,1,1]
=> 100110 => 2
[3,2] => [3,2]
=> 10100 => 1
[4,1] => [4,1]
=> 100010 => 1
[5] => [5]
=> 100000 => 1
[1,1,1,1,1,1] => [1,1,1,1,1,1]
=> 1111110 => 6
[1,1,1,1,2] => [2,1,1,1,1]
=> 1011110 => 4
[1,1,1,2,1] => [2,1,1,1,1]
=> 1011110 => 4
[1,1,1,3] => [3,1,1,1]
=> 1001110 => 3
[1,1,2,1,1] => [2,1,1,1,1]
=> 1011110 => 4
[1,1,2,2] => [2,2,1,1]
=> 110110 => 2
[1,1,3,1] => [3,1,1,1]
=> 1001110 => 3
[1,1,4] => [4,1,1]
=> 1000110 => 2
[1,2,1,1,1] => [2,1,1,1,1]
=> 1011110 => 4
[1,2,1,2] => [2,2,1,1]
=> 110110 => 2
[1,2,2,1] => [2,2,1,1]
=> 110110 => 2
[1,2,3] => [3,2,1]
=> 101010 => 1
[1,3,1,1] => [3,1,1,1]
=> 1001110 => 3
[1,3,2] => [3,2,1]
=> 101010 => 1
[1,4,1] => [4,1,1]
=> 1000110 => 2
[1,5] => [5,1]
=> 1000010 => 1
[2,1,1,1,1] => [2,1,1,1,1]
=> 1011110 => 4
[2,1,1,2] => [2,2,1,1]
=> 110110 => 2
[2,1,2,1] => [2,2,1,1]
=> 110110 => 2
Description
The length of a longest cyclic run of ones of a binary word.
Consider the binary word as a cyclic arrangement of ones and zeros. Then this statistic is the length of the longest continuous sequence of ones in this arrangement.
Matching statistic: St000757
Mp00040: Integer compositions —to partition⟶ Integer partitions
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00207: Standard tableaux —horizontal strip sizes⟶ Integer compositions
St000757: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00207: Standard tableaux —horizontal strip sizes⟶ Integer compositions
St000757: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1]
=> [[1]]
=> [1] => 1
[1,1] => [1,1]
=> [[1],[2]]
=> [1,1] => 2
[2] => [2]
=> [[1,2]]
=> [2] => 1
[1,1,1] => [1,1,1]
=> [[1],[2],[3]]
=> [1,1,1] => 3
[1,2] => [2,1]
=> [[1,2],[3]]
=> [2,1] => 1
[2,1] => [2,1]
=> [[1,2],[3]]
=> [2,1] => 1
[3] => [3]
=> [[1,2,3]]
=> [3] => 1
[1,1,1,1] => [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [1,1,1,1] => 4
[1,1,2] => [2,1,1]
=> [[1,2],[3],[4]]
=> [2,1,1] => 2
[1,2,1] => [2,1,1]
=> [[1,2],[3],[4]]
=> [2,1,1] => 2
[1,3] => [3,1]
=> [[1,2,3],[4]]
=> [3,1] => 1
[2,1,1] => [2,1,1]
=> [[1,2],[3],[4]]
=> [2,1,1] => 2
[2,2] => [2,2]
=> [[1,2],[3,4]]
=> [2,2] => 2
[3,1] => [3,1]
=> [[1,2,3],[4]]
=> [3,1] => 1
[4] => [4]
=> [[1,2,3,4]]
=> [4] => 1
[1,1,1,1,1] => [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [1,1,1,1,1] => 5
[1,1,1,2] => [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [2,1,1,1] => 3
[1,1,2,1] => [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [2,1,1,1] => 3
[1,1,3] => [3,1,1]
=> [[1,2,3],[4],[5]]
=> [3,1,1] => 2
[1,2,1,1] => [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [2,1,1,1] => 3
[1,2,2] => [2,2,1]
=> [[1,2],[3,4],[5]]
=> [2,2,1] => 2
[1,3,1] => [3,1,1]
=> [[1,2,3],[4],[5]]
=> [3,1,1] => 2
[1,4] => [4,1]
=> [[1,2,3,4],[5]]
=> [4,1] => 1
[2,1,1,1] => [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [2,1,1,1] => 3
[2,1,2] => [2,2,1]
=> [[1,2],[3,4],[5]]
=> [2,2,1] => 2
[2,2,1] => [2,2,1]
=> [[1,2],[3,4],[5]]
=> [2,2,1] => 2
[2,3] => [3,2]
=> [[1,2,3],[4,5]]
=> [3,2] => 1
[3,1,1] => [3,1,1]
=> [[1,2,3],[4],[5]]
=> [3,1,1] => 2
[3,2] => [3,2]
=> [[1,2,3],[4,5]]
=> [3,2] => 1
[4,1] => [4,1]
=> [[1,2,3,4],[5]]
=> [4,1] => 1
[5] => [5]
=> [[1,2,3,4,5]]
=> [5] => 1
[1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [1,1,1,1,1,1] => 6
[1,1,1,1,2] => [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [2,1,1,1,1] => 4
[1,1,1,2,1] => [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [2,1,1,1,1] => 4
[1,1,1,3] => [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [3,1,1,1] => 3
[1,1,2,1,1] => [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [2,1,1,1,1] => 4
[1,1,2,2] => [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [2,2,1,1] => 2
[1,1,3,1] => [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [3,1,1,1] => 3
[1,1,4] => [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [4,1,1] => 2
[1,2,1,1,1] => [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [2,1,1,1,1] => 4
[1,2,1,2] => [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [2,2,1,1] => 2
[1,2,2,1] => [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [2,2,1,1] => 2
[1,2,3] => [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [3,2,1] => 1
[1,3,1,1] => [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [3,1,1,1] => 3
[1,3,2] => [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [3,2,1] => 1
[1,4,1] => [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [4,1,1] => 2
[1,5] => [5,1]
=> [[1,2,3,4,5],[6]]
=> [5,1] => 1
[2,1,1,1,1] => [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [2,1,1,1,1] => 4
[2,1,1,2] => [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [2,2,1,1] => 2
[2,1,2,1] => [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [2,2,1,1] => 2
Description
The length of the longest weakly inreasing subsequence of parts of an integer composition.
Matching statistic: St000899
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00040: Integer compositions —to partition⟶ Integer partitions
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
Mp00207: Standard tableaux —horizontal strip sizes⟶ Integer compositions
St000899: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
Mp00207: Standard tableaux —horizontal strip sizes⟶ Integer compositions
St000899: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1]
=> [[1]]
=> [1] => 1
[1,1] => [1,1]
=> [[1],[2]]
=> [1,1] => 2
[2] => [2]
=> [[1,2]]
=> [2] => 1
[1,1,1] => [1,1,1]
=> [[1],[2],[3]]
=> [1,1,1] => 3
[1,2] => [2,1]
=> [[1,3],[2]]
=> [1,2] => 1
[2,1] => [2,1]
=> [[1,3],[2]]
=> [1,2] => 1
[3] => [3]
=> [[1,2,3]]
=> [3] => 1
[1,1,1,1] => [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [1,1,1,1] => 4
[1,1,2] => [2,1,1]
=> [[1,4],[2],[3]]
=> [1,1,2] => 2
[1,2,1] => [2,1,1]
=> [[1,4],[2],[3]]
=> [1,1,2] => 2
[1,3] => [3,1]
=> [[1,3,4],[2]]
=> [1,3] => 1
[2,1,1] => [2,1,1]
=> [[1,4],[2],[3]]
=> [1,1,2] => 2
[2,2] => [2,2]
=> [[1,2],[3,4]]
=> [2,2] => 2
[3,1] => [3,1]
=> [[1,3,4],[2]]
=> [1,3] => 1
[4] => [4]
=> [[1,2,3,4]]
=> [4] => 1
[1,1,1,1,1] => [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [1,1,1,1,1] => 5
[1,1,1,2] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [1,1,1,2] => 3
[1,1,2,1] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [1,1,1,2] => 3
[1,1,3] => [3,1,1]
=> [[1,4,5],[2],[3]]
=> [1,1,3] => 2
[1,2,1,1] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [1,1,1,2] => 3
[1,2,2] => [2,2,1]
=> [[1,3],[2,5],[4]]
=> [1,2,2] => 2
[1,3,1] => [3,1,1]
=> [[1,4,5],[2],[3]]
=> [1,1,3] => 2
[1,4] => [4,1]
=> [[1,3,4,5],[2]]
=> [1,4] => 1
[2,1,1,1] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [1,1,1,2] => 3
[2,1,2] => [2,2,1]
=> [[1,3],[2,5],[4]]
=> [1,2,2] => 2
[2,2,1] => [2,2,1]
=> [[1,3],[2,5],[4]]
=> [1,2,2] => 2
[2,3] => [3,2]
=> [[1,2,5],[3,4]]
=> [2,3] => 1
[3,1,1] => [3,1,1]
=> [[1,4,5],[2],[3]]
=> [1,1,3] => 2
[3,2] => [3,2]
=> [[1,2,5],[3,4]]
=> [2,3] => 1
[4,1] => [4,1]
=> [[1,3,4,5],[2]]
=> [1,4] => 1
[5] => [5]
=> [[1,2,3,4,5]]
=> [5] => 1
[1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [1,1,1,1,1,1] => 6
[1,1,1,1,2] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [1,1,1,1,2] => 4
[1,1,1,2,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [1,1,1,1,2] => 4
[1,1,1,3] => [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [1,1,1,3] => 3
[1,1,2,1,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [1,1,1,1,2] => 4
[1,1,2,2] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [1,1,2,2] => 2
[1,1,3,1] => [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [1,1,1,3] => 3
[1,1,4] => [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [1,1,4] => 2
[1,2,1,1,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [1,1,1,1,2] => 4
[1,2,1,2] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [1,1,2,2] => 2
[1,2,2,1] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [1,1,2,2] => 2
[1,2,3] => [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [1,2,3] => 1
[1,3,1,1] => [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [1,1,1,3] => 3
[1,3,2] => [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [1,2,3] => 1
[1,4,1] => [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [1,1,4] => 2
[1,5] => [5,1]
=> [[1,3,4,5,6],[2]]
=> [1,5] => 1
[2,1,1,1,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [1,1,1,1,2] => 4
[2,1,1,2] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [1,1,2,2] => 2
[2,1,2,1] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [1,1,2,2] => 2
Description
The maximal number of repetitions of an integer composition.
This is the maximal part of the composition obtained by applying the delta morphism.
Matching statistic: St000771
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
[1] => ([],1)
=> ([],1)
=> 1
[1,1] => ([(0,1)],2)
=> ([],1)
=> 1
[2] => ([],2)
=> ([],2)
=> ? = 2
[1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> 1
[1,2] => ([(1,2)],3)
=> ([],2)
=> ? ∊ {1,3}
[2,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
[3] => ([],3)
=> ([],3)
=> ? ∊ {1,3}
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 1
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ? ∊ {2,2,2,4}
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
[1,3] => ([(2,3)],4)
=> ([],3)
=> ? ∊ {2,2,2,4}
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
[2,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,4}
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[4] => ([],4)
=> ([],4)
=> ? ∊ {2,2,2,4}
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 1
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? ∊ {1,2,2,2,3,3,3,5}
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ? ∊ {1,2,2,2,3,3,3,5}
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {1,2,2,2,3,3,3,5}
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,4] => ([(3,4)],5)
=> ([],4)
=> ? ∊ {1,2,2,2,3,3,3,5}
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {1,2,2,2,3,3,3,5}
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[2,3] => ([(2,4),(3,4)],5)
=> ([(2,3)],4)
=> ? ∊ {1,2,2,2,3,3,3,5}
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,3,3,3,5}
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[5] => ([],5)
=> ([],5)
=> ? ∊ {1,2,2,2,3,3,3,5}
[1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> 1
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,4,4,4,4,6}
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,4,4,4,4,6}
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,4,4,4,4,6}
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([],4)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,4,4,4,4,6}
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,4,4,4,4,6}
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,4,4,4,4,6}
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,4,4,4,4,6}
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,5] => ([(4,5)],6)
=> ([],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,4,4,4,4,6}
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,4,4,4,4,6}
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,4,4,4,4,6}
[2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,4,4,4,4,6}
[2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[2,4] => ([(3,5),(4,5)],6)
=> ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,4,4,4,4,6}
[3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,4,4,4,4,6}
[3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[3,3] => ([(2,5),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,4,4,4,4,6}
[4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,4,4,4,4,6}
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[6] => ([],6)
=> ([],6)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,4,4,4,4,6}
[1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> 1
[1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,5,5,5,5,5,7}
[1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 1
[1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],3)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,5,5,5,5,5,7}
[1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 1
[1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,5,5,5,5,5,7}
[1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],4)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,5,5,5,5,5,7}
[1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 1
[1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,5,5,5,5,5,7}
[1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,5,5,5,5,5,7}
[1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,5,5,5,5,5,7}
[1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> ([],5)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,5,5,5,5,5,7}
[1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 1
[1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,5,5,5,5,5,7}
[1,2,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,5,5,5,5,5,7}
[1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,5,5,5,5,5,7}
[1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,5,5,5,5,5,7}
[1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,5,5,5,5,5,7}
[1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,5,5,5,5,5,7}
[1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,5,5,5,5,5,7}
[1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,6] => ([(5,6)],7)
=> ([],6)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,5,5,5,5,5,7}
[2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 1
[2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,5,5,5,5,5,7}
[2,1,1,2,1] => ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,5,5,5,5,5,7}
[2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,5,5,5,5,5,7}
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$
\left(\begin{array}{rrrr}
4 & -1 & -2 & -1 \\
-1 & 4 & -1 & -2 \\
-2 & -1 & 4 & -1 \\
-1 & -2 & -1 & 4
\end{array}\right).
$$
Its eigenvalues are $0,4,4,6$, so the statistic is $2$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
Matching statistic: St000772
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
[1] => ([],1)
=> ([],1)
=> 1
[1,1] => ([(0,1)],2)
=> ([],1)
=> 1
[2] => ([],2)
=> ([],2)
=> ? = 2
[1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> 1
[1,2] => ([(1,2)],3)
=> ([],2)
=> ? ∊ {1,3}
[2,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
[3] => ([],3)
=> ([],3)
=> ? ∊ {1,3}
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 1
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ? ∊ {2,2,2,4}
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
[1,3] => ([(2,3)],4)
=> ([],3)
=> ? ∊ {2,2,2,4}
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
[2,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,4}
[3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[4] => ([],4)
=> ([],4)
=> ? ∊ {2,2,2,4}
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 1
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? ∊ {1,2,2,2,3,3,3,5}
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ? ∊ {1,2,2,2,3,3,3,5}
[1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {1,2,2,2,3,3,3,5}
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,4] => ([(3,4)],5)
=> ([],4)
=> ? ∊ {1,2,2,2,3,3,3,5}
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {1,2,2,2,3,3,3,5}
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[2,3] => ([(2,4),(3,4)],5)
=> ([(2,3)],4)
=> ? ∊ {1,2,2,2,3,3,3,5}
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,3,3,3,5}
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[5] => ([],5)
=> ([],5)
=> ? ∊ {1,2,2,2,3,3,3,5}
[1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> 1
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,4,4,4,4,6}
[1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,4,4,4,4,6}
[1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,4,4,4,4,6}
[1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([],4)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,4,4,4,4,6}
[1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,4,4,4,4,6}
[1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,4,4,4,4,6}
[1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,4,4,4,4,6}
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,5] => ([(4,5)],6)
=> ([],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,4,4,4,4,6}
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,4,4,4,4,6}
[2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,4,4,4,4,6}
[2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,4,4,4,4,6}
[2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[2,4] => ([(3,5),(4,5)],6)
=> ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,4,4,4,4,6}
[3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,4,4,4,4,6}
[3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[3,3] => ([(2,5),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,4,4,4,4,6}
[4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,4,4,4,4,6}
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[6] => ([],6)
=> ([],6)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,3,4,4,4,4,6}
[1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> 1
[1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,5,5,5,5,5,7}
[1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 1
[1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],3)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,5,5,5,5,5,7}
[1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 1
[1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,5,5,5,5,5,7}
[1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],4)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,5,5,5,5,5,7}
[1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 1
[1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,5,5,5,5,5,7}
[1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,5,5,5,5,5,7}
[1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,5,5,5,5,5,7}
[1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> ([],5)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,5,5,5,5,5,7}
[1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 1
[1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,5,5,5,5,5,7}
[1,2,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,5,5,5,5,5,7}
[1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,5,5,5,5,5,7}
[1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,5,5,5,5,5,7}
[1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,5,5,5,5,5,7}
[1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,5,5,5,5,5,7}
[1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,5,5,5,5,5,7}
[1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,6] => ([(5,6)],7)
=> ([],6)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,5,5,5,5,5,7}
[2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 1
[2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,5,5,5,5,5,7}
[2,1,1,2,1] => ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,5,5,5,5,5,7}
[2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,5,5,5,5,5,7}
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$
\left(\begin{array}{rrrr}
4 & -1 & -2 & -1 \\
-1 & 4 & -1 & -2 \\
-2 & -1 & 4 & -1 \\
-1 & -2 & -1 & 4
\end{array}\right).
$$
Its eigenvalues are $0,4,4,6$, so the statistic is $1$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore also statistic $1$.
The graphs with statistic $n-1$, $n-2$ and $n-3$ have been characterised, see [1].
Matching statistic: St001878
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00192: Skew partitions —dominating sublattice⟶ Lattices
Mp00197: Lattices —lattice of congruences⟶ Lattices
St001878: Lattices ⟶ ℤResult quality: 10% ●values known / values provided: 10%●distinct values known / distinct values provided: 22%
Mp00192: Skew partitions —dominating sublattice⟶ Lattices
Mp00197: Lattices —lattice of congruences⟶ Lattices
St001878: Lattices ⟶ ℤResult quality: 10% ●values known / values provided: 10%●distinct values known / distinct values provided: 22%
Values
[1] => [[1],[]]
=> ([],1)
=> ([],1)
=> ? = 1
[1,1] => [[1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,2}
[2] => [[2],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,2}
[1,1,1] => [[1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,3}
[1,2] => [[2,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,3}
[2,1] => [[2,2],[1]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,3}
[3] => [[3],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,3}
[1,1,1,1] => [[1,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,4}
[1,1,2] => [[2,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,4}
[1,2,1] => [[2,2,1],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,2,2,2,2,4}
[1,3] => [[3,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,4}
[2,1,1] => [[2,2,2],[1,1]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,4}
[2,2] => [[3,2],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,2,2,2,2,4}
[3,1] => [[3,3],[2]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,4}
[4] => [[4],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,2,2,2,2,4}
[1,1,1,1,1] => [[1,1,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[1,1,1,2] => [[2,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[1,1,2,1] => [[2,2,1,1],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[1,1,3] => [[3,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[1,2,1,1] => [[2,2,2,1],[1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[1,2,2] => [[3,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,3,1] => [[3,3,1],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[1,4] => [[4,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[2,1,2] => [[3,2,2],[1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[2,2,1] => [[3,3,2],[2,1]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,3] => [[4,2],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[3,1,1] => [[3,3,3],[2,2]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[3,2] => [[4,3],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[4,1] => [[4,4],[3]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[5] => [[5],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2,2,2,2,3,3,3,3,5}
[1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,6}
[1,1,1,1,2] => [[2,1,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,6}
[1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,6}
[1,1,1,3] => [[3,1,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,6}
[1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,1,2,2] => [[3,2,1,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,1,3,1] => [[3,3,1,1],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,6}
[1,1,4] => [[4,1,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,6}
[1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,6}
[1,2,1,2] => [[3,2,2,1],[1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,2,1] => [[3,3,2,1],[2,1]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,6}
[1,2,3] => [[4,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,3,1,1] => [[3,3,3,1],[2,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,6}
[1,3,2] => [[4,3,1],[2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,4,1] => [[4,4,1],[3]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,6}
[1,5] => [[5,1],[]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,6}
[2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,6}
[2,1,1,2] => [[3,2,2,2],[1,1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,6}
[2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,1,3] => [[4,2,2],[1,1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,6}
[2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,2,2] => [[4,3,2],[2,1]]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,6}
[2,3,1] => [[4,4,2],[3,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,4] => [[5,2],[1]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,6}
[3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,6}
[3,1,2] => [[4,3,3],[2,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,6}
[3,2,1] => [[4,4,3],[3,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,3] => [[5,3],[2]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[4,1,1] => [[4,4,4],[3,3]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,6}
[4,2] => [[5,4],[3]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,6}
[5,1] => [[5,5],[4]]
=> ([],1)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,6}
[1,1,1,2,1,1] => [[2,2,2,1,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,1,1,2,2] => [[3,2,1,1,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,1,2,1,1,1] => [[2,2,2,2,1,1],[1,1,1]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,1,2,3] => [[4,2,1,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,1,3,1,1] => [[3,3,3,1,1],[2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,1,3,2] => [[4,3,1,1],[2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,1,1,2] => [[3,2,2,2,1],[1,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,1,3] => [[4,2,2,1],[1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,4] => [[5,2,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,3,1,2] => [[4,3,3,1],[2,2]]
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
[1,4,2] => [[5,4,1],[3]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,1,1,2,1] => [[3,3,2,2,2],[2,1,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,1,3,1] => [[4,4,2,2],[3,1,1]]
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
[2,2,1,1,1] => [[3,3,3,3,2],[2,2,2,1]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,3,1,1] => [[4,4,4,2],[3,3,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,4,1] => [[5,5,2],[4,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,1,2,1] => [[4,4,3,3],[3,2,2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,1,3] => [[5,3,3],[2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,2,1,1] => [[4,4,4,3],[3,3,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,4] => [[6,3],[2]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[4,2,1] => [[5,5,4],[4,3]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[4,3] => [[6,4],[3]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,1,1,1,2,1,1] => [[2,2,2,1,1,1,1],[1,1]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,1,1,1,2,2] => [[3,2,1,1,1,1],[1]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,1,1,3,2] => [[4,3,1,1,1],[2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,1,2,1,1,1,1] => [[2,2,2,2,2,1,1],[1,1,1,1]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,2,1,1,1,2] => [[3,2,2,2,2,1],[1,1,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[1,3,1,1,2] => [[4,3,3,3,1],[2,2,2]]
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
[1,4,1,2] => [[5,4,4,1],[3,3]]
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
[2,1,1,1,2,1] => [[3,3,2,2,2,2],[2,1,1,1,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,1,1,3,1] => [[4,4,2,2,2],[3,1,1,1]]
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
[2,2,1,1,1,1] => [[3,3,3,3,3,2],[2,2,2,2,1]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,3,1,1,1] => [[4,4,4,4,2],[3,3,3,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,4,1,1] => [[5,5,5,2],[4,4,1]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,1,1,2,1] => [[4,4,3,3,3],[3,2,2,2]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,1,1,3] => [[5,3,3,3],[2,2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[3,2,1,1,1] => [[4,4,4,4,3],[3,3,3,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[4,1,2,1] => [[5,5,4,4],[4,3,3]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
Description
The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L.
Matching statistic: St001399
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00026: Dyck paths —to ordered tree⟶ Ordered trees
Mp00047: Ordered trees —to poset⟶ Posets
St001399: Posets ⟶ ℤResult quality: 10% ●values known / values provided: 10%●distinct values known / distinct values provided: 67%
Mp00026: Dyck paths —to ordered tree⟶ Ordered trees
Mp00047: Ordered trees —to poset⟶ Posets
St001399: Posets ⟶ ℤResult quality: 10% ●values known / values provided: 10%●distinct values known / distinct values provided: 67%
Values
[1] => [1,0]
=> [[]]
=> ([(0,1)],2)
=> 1
[1,1] => [1,0,1,0]
=> [[],[]]
=> ([(0,2),(1,2)],3)
=> 2
[2] => [1,1,0,0]
=> [[[]]]
=> ([(0,2),(2,1)],3)
=> 1
[1,1,1] => [1,0,1,0,1,0]
=> [[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> 3
[1,2] => [1,0,1,1,0,0]
=> [[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[2,1] => [1,1,0,0,1,0]
=> [[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[3] => [1,1,1,0,0,0]
=> [[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[1,2,1] => [1,0,1,1,0,0,1,0]
=> [[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[1,3] => [1,0,1,1,1,0,0,0]
=> [[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 1
[2,1,1] => [1,1,0,0,1,0,1,0]
=> [[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[2,2] => [1,1,0,0,1,1,0,0]
=> [[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 2
[3,1] => [1,1,1,0,0,0,1,0]
=> [[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 1
[4] => [1,1,1,1,0,0,0,0]
=> [[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 5
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 3
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 3
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 2
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 3
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 2
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 2
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 1
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 3
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 2
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 2
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> 1
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 2
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> 1
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [[[[[]]]],[]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 1
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[],[],[]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 6
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [[],[],[],[],[[]]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> 4
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [[],[],[],[[]],[]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> 4
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [[],[],[],[[[]]]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> 3
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [[],[],[[]],[],[]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> 4
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [[],[],[[]],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 2
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [[],[],[[[]]],[]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> 3
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [[],[],[[[[]]]]]
=> ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> 2
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [[],[[]],[],[],[]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> 4
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [[],[[]],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 2
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [[],[[]],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 2
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [[],[[]],[[[]]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,3}
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [[],[[[]]],[],[]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> 3
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [[],[[[]]],[[]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,3}
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [[],[[[[]]]],[]]
=> ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> 2
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [[],[[[[[]]]]]]
=> ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,3}
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [[[]],[],[],[],[]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> 4
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [[[]],[],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 2
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [[[]],[],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 2
[2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [[[]],[],[[[]]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,3}
[2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [[[]],[[]],[],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> 2
[2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [[[]],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,3}
[2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [[[]],[[[]]],[]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,3}
[2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [[[]],[[[[]]]]]
=> ([(0,5),(1,3),(2,6),(3,6),(4,2),(5,4)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,3}
[3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [[[[]]],[],[],[]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> 3
[3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [[[[]]],[],[[]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,3}
[3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [[[[]]],[[]],[]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,3}
[3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [[[[]]],[[[]]]]
=> ([(0,5),(1,4),(2,6),(3,6),(4,2),(5,3)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,3}
[4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [[[[[]]]],[],[]]
=> ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7)
=> 2
[4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [[[[[]]]],[[]]]
=> ([(0,5),(1,3),(2,6),(3,6),(4,2),(5,4)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,3}
[5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [[[[[[]]]]],[]]
=> ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,3}
[6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [[[[[[[]]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,3}
[1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[],[],[],[]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,7}
[1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [[],[],[],[],[],[[]]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(6,7)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,7}
[1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [[],[],[],[],[[]],[]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(6,7)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,7}
[1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [[],[],[],[],[[[]]]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,6),(6,7)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,7}
[1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [[],[],[],[[]],[],[]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(6,7)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,7}
[1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [[],[],[],[[]],[[]]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,7}
[1,1,1,3,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [[],[],[],[[[]]],[]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,6),(6,7)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,7}
[1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [[],[],[],[[[[]]]]]
=> ([(0,4),(1,7),(2,7),(3,7),(4,6),(5,7),(6,5)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,7}
[1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [[],[],[[]],[],[],[]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(6,7)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,7}
[1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [[],[],[[]],[],[[]]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,7}
[1,1,2,2,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [[],[],[[]],[[]],[]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,7}
[1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [[],[],[[]],[[[]]]]
=> ([(0,7),(1,7),(2,4),(3,5),(4,6),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,7}
[1,1,3,1,1] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [[],[],[[[]]],[],[]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,6),(6,7)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,7}
[1,1,3,2] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [[],[],[[[]]],[[]]]
=> ([(0,7),(1,7),(2,4),(3,5),(4,6),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,7}
[1,1,4,1] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [[],[],[[[[]]]],[]]
=> ([(0,4),(1,7),(2,7),(3,7),(4,6),(5,7),(6,5)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,7}
[1,1,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [[],[],[[[[[]]]]]]
=> ([(0,7),(1,7),(2,6),(3,7),(4,5),(5,3),(6,4)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,7}
[1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [[],[[]],[],[],[],[]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(6,7)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,7}
[1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [[],[[]],[],[],[[]]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,7}
[1,2,1,2,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [[],[[]],[],[[]],[]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,7}
[1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [[],[[]],[],[[[]]]]
=> ([(0,7),(1,7),(2,4),(3,5),(4,6),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,7}
[1,2,2,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [[],[[]],[[]],[],[]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,7}
[1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [[],[[]],[[]],[[]]]
=> ([(0,7),(1,6),(2,5),(3,4),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,7}
[1,2,3,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [[],[[]],[[[]]],[]]
=> ([(0,7),(1,7),(2,4),(3,5),(4,6),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,7}
[1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [[],[[]],[[[[]]]]]
=> ([(0,7),(1,6),(2,4),(3,7),(4,7),(5,3),(6,5)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,7}
[1,3,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [[],[[[]]],[],[],[]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,6),(6,7)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,7}
[1,3,1,2] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [[],[[[]]],[],[[]]]
=> ([(0,7),(1,7),(2,4),(3,5),(4,6),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,7}
[1,3,2,1] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [[],[[[]]],[[]],[]]
=> ([(0,7),(1,7),(2,4),(3,5),(4,6),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,7}
[1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [[],[[[]]],[[[]]]]
=> ([(0,7),(1,6),(2,5),(3,7),(4,7),(5,3),(6,4)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,7}
[1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [[],[[[[]]]],[],[]]
=> ([(0,4),(1,7),(2,7),(3,7),(4,6),(5,7),(6,5)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,7}
[1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [[],[[[[]]]],[[]]]
=> ([(0,7),(1,6),(2,4),(3,7),(4,7),(5,3),(6,5)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,7}
[1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [[],[[[[[]]]]],[]]
=> ([(0,7),(1,7),(2,6),(3,7),(4,5),(5,3),(6,4)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,7}
[1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [[],[[[[[[]]]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,7}
[2,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [[[]],[],[],[],[],[]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(6,7)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,7}
[2,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [[[]],[],[],[],[[]]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,7}
[2,1,1,2,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [[[]],[],[],[[]],[]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,7}
[2,1,1,3] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [[[]],[],[],[[[]]]]
=> ([(0,7),(1,7),(2,4),(3,5),(4,6),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,7}
[2,1,2,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [[[]],[],[[]],[],[]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,7}
Description
The distinguishing number of a poset.
This is the minimal number of colours needed to colour the vertices of a poset, such that only the trivial automorphism of the poset preserves the colouring.
See also [[St000469]], which is the same concept for graphs.
The following 8 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001875The number of simple modules with projective dimension at most 1. St000681The Grundy value of Chomp on Ferrers diagrams. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St001816Eigenvalues of the top-to-random operator acting on a simple module. St001118The acyclic chromatic index of a graph. St001597The Frobenius rank of a skew partition. St001235The global dimension of the corresponding Comp-Nakayama algebra.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!