searching the database
Your data matches 141 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000912
Values
([],1)
=> 1
([],2)
=> 1
([(0,1)],2)
=> 2
([],3)
=> 1
([(1,2)],3)
=> 2
([(0,1),(0,2)],3)
=> 2
([(0,2),(2,1)],3)
=> 3
([(0,2),(1,2)],3)
=> 2
([],4)
=> 1
([(2,3)],4)
=> 2
([(1,2),(1,3)],4)
=> 2
([(0,1),(0,2),(0,3)],4)
=> 2
([(0,2),(0,3),(3,1)],4)
=> 3
([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
([(1,2),(2,3)],4)
=> 3
([(0,3),(3,1),(3,2)],4)
=> 3
([(1,3),(2,3)],4)
=> 2
([(0,3),(1,3),(3,2)],4)
=> 3
([(0,3),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2)],4)
=> 4
([(0,3),(1,2),(1,3)],4)
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,3),(2,1),(3,2)],4)
=> 4
([(0,3),(1,2),(2,3)],4)
=> 3
([],5)
=> 1
([(3,4)],5)
=> 2
([(2,3),(2,4)],5)
=> 2
([(1,2),(1,3),(1,4)],5)
=> 2
([(0,1),(0,2),(0,3),(0,4)],5)
=> 2
([(0,2),(0,3),(0,4),(4,1)],5)
=> 3
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> 3
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 3
([(1,3),(1,4),(4,2)],5)
=> 3
([(0,3),(0,4),(4,1),(4,2)],5)
=> 3
([(1,2),(1,3),(2,4),(3,4)],5)
=> 3
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 4
([(0,3),(0,4),(3,2),(4,1)],5)
=> 5
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> 4
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 3
([(2,3),(3,4)],5)
=> 3
([(1,4),(4,2),(4,3)],5)
=> 3
([(0,4),(4,1),(4,2),(4,3)],5)
=> 3
([(2,4),(3,4)],5)
=> 2
([(1,4),(2,4),(4,3)],5)
=> 3
([(0,4),(1,4),(4,2),(4,3)],5)
=> 3
([(1,4),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> 3
([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(2,3)],5)
=> 4
([(0,4),(1,3),(2,3),(2,4)],5)
=> 4
Description
The number of maximal antichains in a poset.
Matching statistic: St001304
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([],1)
=> 1
([],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> 2
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> 1
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 2
([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 3
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> 4
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> 1
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(3,4)],5)
=> 2
([(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 2
([(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 2
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(1,3),(1,4),(4,2)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 5
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 3
([(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 3
([(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 2
([(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 3
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> 4
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4
Description
The number of maximally independent sets of vertices of a graph.
An '''independent set''' of vertices of a graph is a set of vertices no two of which are adjacent. If a set of vertices is independent then so is every subset. This statistic counts the number of maximally independent sets of vertices.
Matching statistic: St000228
Values
([],1)
=> ([],1)
=> ([],1)
=> [1]
=> 1
([],2)
=> ([],1)
=> ([],1)
=> [1]
=> 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 2
([],3)
=> ([],1)
=> ([],1)
=> [1]
=> 1
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 2
([(0,1),(0,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 2
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 2
([],4)
=> ([],1)
=> ([],1)
=> [1]
=> 1
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 2
([(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 2
([(0,1),(0,2),(0,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 2
([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
([(0,3),(3,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 2
([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 2
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 4
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
([],5)
=> ([],1)
=> ([],1)
=> [1]
=> 1
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 2
([(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 2
([(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 2
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 2
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
([(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> 5
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
([(1,4),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 2
([(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> [3]
=> 3
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 2
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 4
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 4
Description
The size of a partition.
This statistic is the constant statistic of the level sets.
Matching statistic: St000010
Mp00198: Posets —incomparability graph⟶ Graphs
Mp00251: Graphs —clique sizes⟶ Integer partitions
St000010: Integer partitions ⟶ ℤResult quality: 89% ●values known / values provided: 99%●distinct values known / distinct values provided: 89%
Mp00251: Graphs —clique sizes⟶ Integer partitions
St000010: Integer partitions ⟶ ℤResult quality: 89% ●values known / values provided: 99%●distinct values known / distinct values provided: 89%
Values
([],1)
=> ([],1)
=> [1]
=> 1
([],2)
=> ([(0,1)],2)
=> [2]
=> 1
([(0,1)],2)
=> ([],2)
=> [1,1]
=> 2
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [2,2]
=> 2
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> 2
([(0,2),(2,1)],3)
=> ([],3)
=> [1,1,1]
=> 3
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> 2
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,3]
=> 2
([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> 2
([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 2
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> 3
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> 3
([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> 3
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> 3
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> 2
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> 3
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 2
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> 4
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [2,2]
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> [1,1,1,1]
=> 4
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> 3
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,4]
=> 2
([(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,3]
=> 2
([(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,2]
=> 2
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 2
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,1]
=> 3
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,1]
=> 3
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 3
([(1,3),(1,4),(4,2)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> 3
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,1]
=> 3
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> 3
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> 4
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,1]
=> 5
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> 4
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> [2,2,1]
=> 3
([(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> 3
([(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> 3
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 3
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,3]
=> 2
([(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> 3
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> [2,2,1]
=> 3
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,2]
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 3
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 2
([(0,4),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,3,2,2]
=> 4
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2,2]
=> 4
([(1,3),(2,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,3,3]
=> ? ∊ {6,6,8,9}
([(0,5),(1,4),(4,2),(5,3)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [2,2,2,2,2,2,2,2,2]
=> ? ∊ {6,6,8,9}
([(0,5),(1,4),(2,3)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3,3,3,3,3]
=> ? ∊ {6,6,8,9}
([(0,5),(1,3),(2,4),(2,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3,3,3]
=> ? ∊ {6,6,8,9}
Description
The length of the partition.
Matching statistic: St000147
Mp00198: Posets —incomparability graph⟶ Graphs
Mp00251: Graphs —clique sizes⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000147: Integer partitions ⟶ ℤResult quality: 89% ●values known / values provided: 99%●distinct values known / distinct values provided: 89%
Mp00251: Graphs —clique sizes⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000147: Integer partitions ⟶ ℤResult quality: 89% ●values known / values provided: 99%●distinct values known / distinct values provided: 89%
Values
([],1)
=> ([],1)
=> [1]
=> [1]
=> 1
([],2)
=> ([(0,1)],2)
=> [2]
=> [1,1]
=> 1
([(0,1)],2)
=> ([],2)
=> [1,1]
=> [2]
=> 2
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [2,2]
=> [2,2]
=> 2
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> [2,1]
=> 2
([(0,2),(2,1)],3)
=> ([],3)
=> [1,1,1]
=> [3]
=> 3
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> [2,1]
=> 2
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 1
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,3]
=> [2,2,2]
=> 2
([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> [2,2,1]
=> 2
([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 2
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> [3,2]
=> 3
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> [3,1]
=> 3
([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> [3,3]
=> 3
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> [3,1]
=> 3
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> [2,2,1]
=> 2
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> [3,1]
=> 3
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 2
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> [4,4]
=> 4
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> [3,3]
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [2,2]
=> [2,2]
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> [1,1,1,1]
=> [4]
=> 4
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> [3,2]
=> 3
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 1
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,4]
=> [2,2,2,2]
=> 2
([(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,3]
=> [2,2,2,1]
=> 2
([(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,2]
=> [2,2,1,1]
=> 2
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 2
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,1]
=> [3,2,2]
=> 3
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,1]
=> [3,2,1]
=> 3
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 3
([(1,3),(1,4),(4,2)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [3,3,2]
=> 3
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,1]
=> [3,2,1]
=> 3
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [3,3,1]
=> 3
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> 4
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,1]
=> [5,4]
=> 5
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> [4,3]
=> 4
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> [2,2,1]
=> [3,2]
=> 3
([(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [3,3,3]
=> 3
([(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [3,3,1]
=> 3
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 3
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,3]
=> [2,2,2,1]
=> 2
([(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [3,3,1]
=> 3
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> [2,2,1]
=> [3,2]
=> 3
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,2]
=> [2,2,1,1]
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 3
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 2
([(0,4),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,3,2,2]
=> [4,4,2]
=> 4
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2,2]
=> [4,4,1]
=> 4
([(1,3),(2,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,3,3]
=> [6,6,6]
=> ? ∊ {6,6,8,9}
([(0,5),(1,4),(4,2),(5,3)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [2,2,2,2,2,2,2,2,2]
=> [9,9]
=> ? ∊ {6,6,8,9}
([(0,5),(1,4),(2,3)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3,3,3,3,3]
=> [8,8,8]
=> ? ∊ {6,6,8,9}
([(0,5),(1,3),(2,4),(2,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3,3,3]
=> [6,6,6]
=> ? ∊ {6,6,8,9}
Description
The largest part of an integer partition.
Matching statistic: St001342
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 2
([],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 2
([(0,1),(0,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 2
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 2
([],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 2
([(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 2
([(0,1),(0,2),(0,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 2
([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
([(0,3),(3,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 2
([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 2
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 4
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
([],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 2
([(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 2
([(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 2
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 2
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
([(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 5
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
([(1,4),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 2
([(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 2
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 4
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 4
([(0,3),(1,4),(1,5),(3,5),(4,2)],6)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(2,7),(3,6),(4,5),(5,7),(6,7)],8)
=> ? ∊ {8,8,8,9}
([(0,5),(1,4),(4,2),(5,3)],6)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,5),(2,8),(3,4),(3,8),(4,7),(5,7),(6,7),(6,8),(7,8)],9)
=> ? ∊ {8,8,8,9}
([(0,5),(1,4),(2,3)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6)],8)
=> ? ∊ {8,8,8,9}
([(0,5),(1,3),(4,2),(5,4)],6)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? ∊ {8,8,8,9}
Description
The number of vertices in the center of a graph.
The center of a graph is the set of vertices whose maximal distance to any other vertex is minimal. In particular, if the graph is disconnected, all vertices are in the certer.
Matching statistic: St001622
Values
([],1)
=> ([],1)
=> ([],1)
=> ([(0,1)],2)
=> 1
([],2)
=> ([],1)
=> ([],1)
=> ([(0,1)],2)
=> 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 2
([],3)
=> ([],1)
=> ([],1)
=> ([(0,1)],2)
=> 1
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 2
([(0,1),(0,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 2
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 2
([],4)
=> ([],1)
=> ([],1)
=> ([(0,1)],2)
=> 1
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 2
([(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 2
([(0,1),(0,2),(0,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 2
([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,3),(3,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 2
([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 2
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 4
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([],5)
=> ([],1)
=> ([],1)
=> ([(0,1)],2)
=> 1
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 2
([(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 2
([(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 2
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 2
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 5
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(1,4),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 2
([(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 3
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 2
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 4
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 4
([(0,3),(1,4),(1,5),(3,5),(4,2)],6)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,8),(2,13),(3,11),(4,9),(5,10),(6,3),(6,10),(7,4),(7,12),(8,5),(8,6),(9,13),(10,7),(10,11),(11,12),(12,2),(12,9),(13,1)],14)
=> ? ∊ {8,8,8,9}
([(0,5),(1,4),(4,2),(5,3)],6)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,9),(2,16),(2,17),(3,13),(4,12),(5,10),(6,11),(7,5),(7,15),(8,6),(8,15),(9,7),(9,8),(10,14),(10,16),(11,14),(11,17),(12,18),(13,18),(14,19),(15,2),(15,10),(15,11),(16,4),(16,19),(17,3),(17,19),(18,1),(19,12),(19,13)],20)
=> ? ∊ {8,8,8,9}
([(0,5),(1,4),(2,3)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,2),(2,6),(2,7),(2,8),(3,17),(4,16),(5,15),(6,12),(6,13),(7,12),(7,14),(8,13),(8,14),(9,19),(10,19),(11,19),(12,5),(12,18),(13,4),(13,18),(14,3),(14,18),(15,9),(15,10),(16,9),(16,11),(17,10),(17,11),(18,15),(18,16),(18,17),(19,1)],20)
=> ? ∊ {8,8,8,9}
([(0,5),(1,3),(4,2),(5,4)],6)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> ? ∊ {8,8,8,9}
Description
The number of join-irreducible elements of a lattice.
An element $j$ of a lattice $L$ is '''join irreducible''' if it is not the least element and if $j=x\vee y$, then $j\in\{x,y\}$ for all $x,y\in L$.
Matching statistic: St000987
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,1),(0,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,1),(0,2),(0,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 3 - 1
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,3),(3,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 3 - 1
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 3 = 4 - 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 4 - 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 3 - 1
([],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 3 - 1
([(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 3 - 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 4 - 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 4 - 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 3 - 1
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 3 - 1
([(1,4),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 3 - 1
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 3 - 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 3 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 3 = 4 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 3 = 4 - 1
([(0,3),(1,4),(1,5),(3,5),(4,2)],6)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,7),(1,2),(1,7),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? ∊ {8,8,8,9} - 1
([(0,5),(1,4),(4,2),(5,3)],6)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,6),(0,7),(1,4),(1,5),(2,5),(2,7),(3,4),(3,6),(4,8),(5,8),(6,8),(7,8)],9)
=> ? ∊ {8,8,8,9} - 1
([(0,5),(1,4),(2,3)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6)],8)
=> ? ∊ {8,8,8,9} - 1
([(0,5),(1,3),(4,2),(5,4)],6)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? ∊ {8,8,8,9} - 1
Description
The number of positive eigenvalues of the Laplacian matrix of the graph.
This is the number of vertices minus the number of connected components of the graph.
Matching statistic: St001717
Values
([],1)
=> ([],1)
=> ([],1)
=> 1
([],2)
=> ([],1)
=> ([],1)
=> 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([],3)
=> ([],1)
=> ([],1)
=> 1
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,1),(0,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([],4)
=> ([],1)
=> ([],1)
=> 1
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,1),(0,2),(0,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
([(0,3),(3,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
([],5)
=> ([],1)
=> ([],1)
=> 1
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
([(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 5
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
([(1,4),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
([(0,5),(1,4),(1,5),(4,2),(5,3)],6)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {7,7,7,7,7,7,8,8,8,9}
([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {7,7,7,7,7,7,8,8,8,9}
([(0,3),(1,4),(1,5),(3,5),(4,2)],6)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? ∊ {7,7,7,7,7,7,8,8,8,9}
([(0,5),(1,4),(4,2),(5,3)],6)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {7,7,7,7,7,7,8,8,8,9}
([(0,3),(1,4),(3,5),(4,2),(4,5)],6)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? ∊ {7,7,7,7,7,7,8,8,8,9}
([(0,5),(1,4),(2,3)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {7,7,7,7,7,7,8,8,8,9}
([(0,5),(1,4),(1,5),(3,2),(4,3)],6)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {7,7,7,7,7,7,8,8,8,9}
([(0,4),(1,3),(1,5),(2,5),(4,2)],6)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? ∊ {7,7,7,7,7,7,8,8,8,9}
([(0,5),(1,3),(4,2),(5,4)],6)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {7,7,7,7,7,7,8,8,8,9}
([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? ∊ {7,7,7,7,7,7,8,8,8,9}
Description
The largest size of an interval in a poset.
Matching statistic: St001300
Values
([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([],3)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,1),(0,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([],4)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,1),(0,2),(0,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,3),(3,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([],5)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 4 = 5 - 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(1,4),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
([(0,5),(1,4),(1,5),(4,2),(5,3)],6)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {7,7,7,7,7,7,8,8,8,9} - 1
([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {7,7,7,7,7,7,8,8,8,9} - 1
([(0,3),(1,4),(1,5),(3,5),(4,2)],6)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? ∊ {7,7,7,7,7,7,8,8,8,9} - 1
([(0,5),(1,4),(4,2),(5,3)],6)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? ∊ {7,7,7,7,7,7,8,8,8,9} - 1
([(0,3),(1,4),(3,5),(4,2),(4,5)],6)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? ∊ {7,7,7,7,7,7,8,8,8,9} - 1
([(0,5),(1,4),(2,3)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? ∊ {7,7,7,7,7,7,8,8,8,9} - 1
([(0,5),(1,4),(1,5),(3,2),(4,3)],6)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? ∊ {7,7,7,7,7,7,8,8,8,9} - 1
([(0,4),(1,3),(1,5),(2,5),(4,2)],6)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? ∊ {7,7,7,7,7,7,8,8,8,9} - 1
([(0,5),(1,3),(4,2),(5,4)],6)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {7,7,7,7,7,7,8,8,8,9} - 1
([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? ∊ {7,7,7,7,7,7,8,8,8,9} - 1
Description
The rank of the boundary operator in degree 1 of the chain complex of the order complex of the poset.
The following 131 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000189The number of elements in the poset. St000656The number of cuts of a poset. St001615The number of join prime elements of a lattice. St001617The dimension of the space of valuations of a lattice. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000264The girth of a graph, which is not a tree. St000643The size of the largest orbit of antichains under Panyushev complementation. St001875The number of simple modules with projective dimension at most 1. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001570The minimal number of edges to add to make a graph Hamiltonian. St000676The number of odd rises of a Dyck path. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001068Number of torsionless simple modules in the corresponding Nakayama algebra. St001471The magnitude of a Dyck path. St000053The number of valleys of the Dyck path. St001505The number of elements generated by the Dyck path as a map in the full transformation monoid. St001506Half the projective dimension of the unique simple module with even projective dimension in a magnitude 1 Nakayama algebra. St000998Number of indecomposable projective modules with injective dimension smaller than or equal to the dominant dimension in the Nakayama algebra corresponding to the Dyck path. St001873For a Nakayama algebra corresponding to a Dyck path, we define the matrix C with entries the Hom-spaces between $e_i J$ and $e_j J$ (the radical of the indecomposable projective modules). St000329The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1. St001508The degree of the standard monomial associated to a Dyck path relative to the diagonal boundary. St000015The number of peaks of a Dyck path. St001165Number of simple modules with even projective dimension in the corresponding Nakayama algebra. St000144The pyramid weight of the Dyck path. St000331The number of upper interactions of a Dyck path. St001142The projective dimension of the socle of the regular module as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001169Number of simple modules with projective dimension at least two in the corresponding Nakayama algebra. St001183The maximum of $projdim(S)+injdim(S)$ over all simple modules in the Nakayama algebra corresponding to the Dyck path. St001194The injective dimension of $A/AfA$ in the corresponding Nakayama algebra $A$ when $Af$ is the minimal faithful projective-injective left $A$-module St001212The number of simple modules in the corresponding Nakayama algebra that have non-zero second Ext-group with the regular module. St001215Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001227The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra. St001258Gives the maximum of injective plus projective dimension of an indecomposable module over the corresponding Nakayama algebra. St001507The sum of projective dimension of simple modules with even projective dimension divided by 2 in the LNakayama algebra corresponding to Dyck paths. St001509The degree of the standard monomial associated to a Dyck path relative to the trivial lower boundary. St001065Number of indecomposable reflexive modules in the corresponding Nakayama algebra. St001179Number of indecomposable injective modules with projective dimension at most 2 in the corresponding Nakayama algebra. St001237The number of simple modules with injective dimension at most one or dominant dimension at least one. St001240The number of indecomposable modules e_i J^2 that have injective dimension at most one in the corresponding Nakayama algebra St000454The largest eigenvalue of a graph if it is integral. St001515The vector space dimension of the socle of the first syzygy module of the regular module (as a bimodule). St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St001613The binary logarithm of the size of the center of a lattice. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001514The dimension of the top of the Auslander-Reiten translate of the regular modules as a bimodule. St001291The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001229The vector space dimension of the first extension group between the Jacobson radical J and J^2. St001480The number of simple summands of the module J^2/J^3. St000455The second largest eigenvalue of a graph if it is integral. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001820The size of the image of the pop stack sorting operator. St001720The minimal length of a chain of small intervals in a lattice. St001645The pebbling number of a connected graph. St000259The diameter of a connected graph. St000260The radius of a connected graph. St001060The distinguishing index of a graph. St001118The acyclic chromatic index of a graph. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St000271The chromatic index of a graph. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001624The breadth of a lattice. St001626The number of maximal proper sublattices of a lattice. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St000172The Grundy number of a graph. St000272The treewidth of a graph. St000362The size of a minimal vertex cover of a graph. St000363The number of minimal vertex covers of a graph. St000387The matching number of a graph. St000388The number of orbits of vertices of a graph under automorphisms. St000456The monochromatic index of a connected graph. St000482The (zero)-forcing number of a graph. St000536The pathwidth of a graph. St000537The cutwidth of a graph. St000544The cop number of a graph. St000553The number of blocks of a graph. St000778The metric dimension of a graph. St000785The number of distinct colouring schemes of a graph. St001029The size of the core of a graph. St001108The 2-dynamic chromatic number of a graph. St001110The 3-dynamic chromatic number of a graph. St001116The game chromatic number of a graph. St001261The Castelnuovo-Mumford regularity of a graph. St001270The bandwidth of a graph. St001271The competition number of a graph. St001277The degeneracy of a graph. St001352The number of internal nodes in the modular decomposition of a graph. St001358The largest degree of a regular subgraph of a graph. St001367The smallest number which does not occur as degree of a vertex in a graph. St001494The Alon-Tarsi number of a graph. St001580The acyclic chromatic number of a graph. St001670The connected partition number of a graph. St001674The number of vertices of the largest induced star graph in the graph. St001725The harmonious chromatic number of a graph. St001792The arboricity of a graph. St001829The common independence number of a graph. St001883The mutual visibility number of a graph. St001951The number of factors in the disjoint direct product decomposition of the automorphism group of a graph. St001962The proper pathwidth of a graph. St001963The tree-depth of a graph. St000171The degree of the graph. St000469The distinguishing number of a graph. St000535The rank-width of a graph. St000552The number of cut vertices of a graph. St000723The maximal cardinality of a set of vertices with the same neighbourhood in a graph. St000776The maximal multiplicity of an eigenvalue in a graph. St000985The number of positive eigenvalues of the adjacency matrix of the graph. St000986The multiplicity of the eigenvalue zero of the adjacency matrix of the graph. St001305The number of induced cycles on four vertices in a graph. St001311The cyclomatic number of a graph. St001317The minimal number of occurrences of the forest-pattern in a linear ordering of the vertices of the graph. St001323The independence gap of a graph. St001324The minimal number of occurrences of the chordal-pattern in a linear ordering of the vertices of the graph. St001326The minimal number of occurrences of the interval-pattern in a linear ordering of the vertices of the graph. St001331The size of the minimal feedback vertex set. St001333The cardinality of a minimal edge-isolating set of a graph. St001349The number of different graphs obtained from the given graph by removing an edge. St001366The maximal multiplicity of a degree of a vertex of a graph. St001393The induced matching number of a graph. St001592The maximal number of simple paths between any two different vertices of a graph. St001638The book thickness of a graph. St001644The dimension of a graph. St001689The number of celebrities in a graph. St001691The number of kings in a graph. St001704The size of the largest multi-subset-intersection of the deck of a graph with the deck of another graph. St001743The discrepancy of a graph. St001746The coalition number of a graph. St001826The maximal number of leaves on a vertex of a graph. St001844The maximal degree of a generator of the invariant ring of the automorphism group of a graph.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!