searching the database
Your data matches 4 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000915
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
([],1)
=> 0
([],2)
=> 0
([(0,1)],2)
=> 2
([],3)
=> 0
([(1,2)],3)
=> 2
([(0,2),(1,2)],3)
=> 3
([(0,1),(0,2),(1,2)],3)
=> 4
([],4)
=> 0
([(2,3)],4)
=> 2
([(1,3),(2,3)],4)
=> 3
([(0,3),(1,3),(2,3)],4)
=> 4
([(0,3),(1,2)],4)
=> 2
([(0,3),(1,2),(2,3)],4)
=> 4
([(1,2),(1,3),(2,3)],4)
=> 4
([(0,3),(1,2),(1,3),(2,3)],4)
=> 5
([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
([],5)
=> 0
([(3,4)],5)
=> 2
([(2,4),(3,4)],5)
=> 3
([(1,4),(2,4),(3,4)],5)
=> 4
([(0,4),(1,4),(2,4),(3,4)],5)
=> 5
([(1,4),(2,3)],5)
=> 2
([(1,4),(2,3),(3,4)],5)
=> 4
([(0,1),(2,4),(3,4)],5)
=> 3
([(2,3),(2,4),(3,4)],5)
=> 4
([(0,4),(1,4),(2,3),(3,4)],5)
=> 5
([(1,4),(2,3),(2,4),(3,4)],5)
=> 5
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
([(1,3),(1,4),(2,3),(2,4)],5)
=> 4
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 5
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 6
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 7
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 5
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 8
([(0,4),(1,3),(2,3),(2,4)],5)
=> 4
([(0,1),(2,3),(2,4),(3,4)],5)
=> 4
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 5
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 6
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 4
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 6
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 7
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 6
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 7
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 8
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 6
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 7
Description
The Ore degree of a graph.
This is the maximal Ore degree of an edge, which is the sum of the degrees of its two endpoints.
Matching statistic: St000422
(load all 10 compositions to match this statistic)
(load all 10 compositions to match this statistic)
Values
([],1)
=> 0
([],2)
=> 0
([(0,1)],2)
=> 2
([],3)
=> 0
([(1,2)],3)
=> 2
([(0,2),(1,2)],3)
=> ? = 3
([(0,1),(0,2),(1,2)],3)
=> 4
([],4)
=> 0
([(2,3)],4)
=> 2
([(1,3),(2,3)],4)
=> ? ∊ {2,3,4,5,6}
([(0,3),(1,3),(2,3)],4)
=> ? ∊ {2,3,4,5,6}
([(0,3),(1,2)],4)
=> 4
([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,3,4,5,6}
([(1,2),(1,3),(2,3)],4)
=> 4
([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,3,4,5,6}
([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,3,4,5,6}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
([],5)
=> 0
([(3,4)],5)
=> 2
([(2,4),(3,4)],5)
=> ? ∊ {2,3,3,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,7,7,8,8,8}
([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,3,3,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,7,7,8,8,8}
([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
([(1,4),(2,3)],5)
=> 4
([(1,4),(2,3),(3,4)],5)
=> ? ∊ {2,3,3,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,7,7,8,8,8}
([(0,1),(2,4),(3,4)],5)
=> ? ∊ {2,3,3,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,7,7,8,8,8}
([(2,3),(2,4),(3,4)],5)
=> 4
([(0,4),(1,4),(2,3),(3,4)],5)
=> ? ∊ {2,3,3,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,7,7,8,8,8}
([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,3,3,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,7,7,8,8,8}
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,3,3,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,7,7,8,8,8}
([(1,3),(1,4),(2,3),(2,4)],5)
=> 4
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? ∊ {2,3,3,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,7,7,8,8,8}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,3,3,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,7,7,8,8,8}
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,3,3,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,7,7,8,8,8}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,3,3,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,7,7,8,8,8}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {2,3,3,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,7,7,8,8,8}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {2,3,3,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,7,7,8,8,8}
([(0,1),(2,3),(2,4),(3,4)],5)
=> 6
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,3,3,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,7,7,8,8,8}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,3,3,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,7,7,8,8,8}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ? ∊ {2,3,3,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,7,7,8,8,8}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,3,3,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,7,7,8,8,8}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,3,3,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,7,7,8,8,8}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,3,3,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,7,7,8,8,8}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,3,3,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,7,7,8,8,8}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,3,3,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,7,7,8,8,8}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {2,3,3,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,7,7,8,8,8}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,3,3,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,7,7,8,8,8}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,3,3,4,4,4,5,5,5,5,5,5,6,6,6,6,6,7,7,7,7,8,8,8}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 8
([],6)
=> 0
([(4,5)],6)
=> 2
([(3,5),(4,5)],6)
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10}
([(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10}
([(1,5),(2,5),(3,5),(4,5)],6)
=> 4
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10}
([(2,5),(3,4)],6)
=> 4
([(2,5),(3,4),(4,5)],6)
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10}
([(1,2),(3,5),(4,5)],6)
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10}
([(3,4),(3,5),(4,5)],6)
=> 4
([(1,5),(2,5),(3,4),(4,5)],6)
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10}
([(0,1),(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10}
([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10}
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10}
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10}
([(2,4),(2,5),(3,4),(3,5)],6)
=> 4
([(0,5),(1,5),(2,4),(3,4)],6)
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10}
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10}
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10}
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10}
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10}
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
([(0,5),(1,4),(2,3)],6)
=> 6
([(1,2),(3,4),(3,5),(4,5)],6)
=> 6
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> 6
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> 8
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> 6
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> 8
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> 8
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 8
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 10
Description
The energy of a graph, if it is integral.
The energy of a graph is the sum of the absolute values of its eigenvalues. This statistic is only defined for graphs with integral energy. It is known, that the energy is never an odd integer [2]. In fact, it is never the square root of an odd integer [3].
The energy of a graph is the sum of the energies of the connected components of a graph. The energy of the complete graph $K_n$ equals $2n-2$. For this reason, we do not define the energy of the empty graph.
Matching statistic: St001232
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 60%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 60%
Values
([],1)
=> [1] => [1,0]
=> [1,1,0,0]
=> 0
([],2)
=> [2] => [1,1,0,0]
=> [1,1,1,0,0,0]
=> 0
([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> [1,1,0,1,0,0]
=> 2
([],3)
=> [3] => [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
([(1,2)],3)
=> [1,2] => [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 4
([(0,2),(1,2)],3)
=> [1,1,1] => [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> ? = 3
([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2
([],4)
=> [4] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
([(2,3)],4)
=> [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 6
([(1,3),(2,3)],4)
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> ? ∊ {2,3,4,4,5,6}
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> ? ∊ {2,3,4,4,5,6}
([(0,3),(1,2)],4)
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 4
([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> ? ∊ {2,3,4,4,5,6}
([(1,2),(1,3),(2,3)],4)
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 4
([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> ? ∊ {2,3,4,4,5,6}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> ? ∊ {2,3,4,4,5,6}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> ? ∊ {2,3,4,4,5,6}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
([],5)
=> [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
([(3,4)],5)
=> [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 8
([(2,4),(3,4)],5)
=> [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> ? ∊ {2,3,3,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,8,8}
([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> ? ∊ {2,3,3,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,8,8}
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 8
([(1,4),(2,3)],5)
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 6
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> ? ∊ {2,3,3,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,8,8}
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> ? ∊ {2,3,3,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,8,8}
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 6
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {2,3,3,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,8,8}
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> ? ∊ {2,3,3,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,8,8}
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> ? ∊ {2,3,3,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,8,8}
([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> ? ∊ {2,3,3,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,8,8}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {2,3,3,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,8,8}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> ? ∊ {2,3,3,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,8,8}
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {2,3,3,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,8,8}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {2,3,3,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,8,8}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> ? ∊ {2,3,3,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,8,8}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> ? ∊ {2,3,3,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,8,8}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {2,3,3,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,8,8}
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> ? ∊ {2,3,3,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,8,8}
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {2,3,3,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,8,8}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> ? ∊ {2,3,3,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,8,8}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> ? ∊ {2,3,3,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,8,8}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {2,3,3,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,8,8}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {2,3,3,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,8,8}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {2,3,3,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,8,8}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 4
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> ? ∊ {2,3,3,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,8,8}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> ? ∊ {2,3,3,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,8,8}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {2,3,3,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,8,8}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> ? ∊ {2,3,3,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,8,8}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> ? ∊ {2,3,3,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,8,8}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2
([],6)
=> [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 0
([(4,5)],6)
=> [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> 10
([(3,5),(4,5)],6)
=> [1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10}
([(2,5),(3,5),(4,5)],6)
=> [1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10}
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> 10
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> 10
([(2,5),(3,4)],6)
=> [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> 8
([(2,5),(3,4),(4,5)],6)
=> [1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10}
([(1,2),(3,5),(4,5)],6)
=> [1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10}
([(3,4),(3,5),(4,5)],6)
=> [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> 8
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10}
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10}
([(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10}
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10}
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10}
([(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10}
([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10}
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10}
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10}
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? ∊ {2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,0,0]
=> 8
([(0,5),(1,4),(2,3)],6)
=> [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> 6
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> 10
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> 6
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> 10
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> 4
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> 4
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,0,0]
=> 8
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> 2
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Matching statistic: St001330
Values
([],1)
=> ([(0,1)],2)
=> ([],1)
=> 1 = 0 + 1
([],2)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> 1 = 0 + 1
([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> 1 = 0 + 1
([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 4 + 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> 1 = 0 + 1
([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,4,4,4,5,6,6} + 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,4,4,4,5,6,6} + 1
([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,4,4,4,5,6,6} + 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,4,4,4,5,6,6} + 1
([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,4,4,4,5,6,6} + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,4,4,4,5,6,6} + 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,4,4,4,5,6,6} + 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> 1 = 0 + 1
([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,3,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,7,8,8,8,8} + 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,3,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,7,8,8,8,8} + 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,3,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,7,8,8,8,8} + 1
([(1,4),(2,3)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,3,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,7,8,8,8,8} + 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,3,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,7,8,8,8,8} + 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,3,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,7,8,8,8,8} + 1
([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,3,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,7,8,8,8,8} + 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,3,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,7,8,8,8,8} + 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,3,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,7,8,8,8,8} + 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,3,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,7,8,8,8,8} + 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,3,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,7,8,8,8,8} + 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,3,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,7,8,8,8,8} + 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,3,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,7,8,8,8,8} + 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,3,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,7,8,8,8,8} + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,3,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,7,8,8,8,8} + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,3,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,7,8,8,8,8} + 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,3,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,7,8,8,8,8} + 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,3,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,7,8,8,8,8} + 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,3,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,7,8,8,8,8} + 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,3,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,7,8,8,8,8} + 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,3,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,7,8,8,8,8} + 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,3,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,7,8,8,8,8} + 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,3,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,7,8,8,8,8} + 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,3,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,7,8,8,8,8} + 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,3,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,7,8,8,8,8} + 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,3,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,7,8,8,8,8} + 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,3,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,7,8,8,8,8} + 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,3,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,7,8,8,8,8} + 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,3,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,6,6,7,7,7,7,8,8,8,8} + 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([],1)
=> 1 = 0 + 1
([(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
([(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10} + 1
([(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10} + 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10} + 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10} + 1
([(2,5),(3,4)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10} + 1
([(2,5),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10} + 1
([(1,2),(3,5),(4,5)],6)
=> ([(0,6),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10} + 1
([(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10} + 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10} + 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10} + 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10} + 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10} + 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10} + 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
Description
The hat guessing number of a graph.
Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors.
Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!