searching the database
Your data matches 6 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000953
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
St000953: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> 2
[1,0,1,0]
=> 2
[1,1,0,0]
=> 2
[1,0,1,0,1,0]
=> 4
[1,0,1,1,0,0]
=> 4
[1,1,0,0,1,0]
=> 4
[1,1,0,1,0,0]
=> 2
[1,1,1,0,0,0]
=> 4
[1,0,1,0,1,0,1,0]
=> 2
[1,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0]
=> 4
[1,0,1,1,1,0,0,0]
=> 2
[1,1,0,0,1,0,1,0]
=> 2
[1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,0,1,0]
=> 4
[1,1,0,1,0,1,0,0]
=> 4
[1,1,0,1,1,0,0,0]
=> 4
[1,1,1,0,0,0,1,0]
=> 2
[1,1,1,0,0,1,0,0]
=> 4
[1,1,1,0,1,0,0,0]
=> 4
[1,1,1,1,0,0,0,0]
=> 2
[1,0,1,0,1,0,1,0,1,0]
=> 6
[1,0,1,0,1,0,1,1,0,0]
=> 6
[1,0,1,0,1,1,0,0,1,0]
=> 6
[1,0,1,0,1,1,0,1,0,0]
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> 6
[1,0,1,1,0,0,1,0,1,0]
=> 6
[1,0,1,1,0,0,1,1,0,0]
=> 6
[1,0,1,1,0,1,0,0,1,0]
=> 4
[1,0,1,1,0,1,0,1,0,0]
=> 4
[1,0,1,1,0,1,1,0,0,0]
=> 4
[1,0,1,1,1,0,0,0,1,0]
=> 6
[1,0,1,1,1,0,0,1,0,0]
=> 4
[1,0,1,1,1,0,1,0,0,0]
=> 4
[1,0,1,1,1,1,0,0,0,0]
=> 6
[1,1,0,0,1,0,1,0,1,0]
=> 6
[1,1,0,0,1,0,1,1,0,0]
=> 6
[1,1,0,0,1,1,0,0,1,0]
=> 6
[1,1,0,0,1,1,0,1,0,0]
=> 4
[1,1,0,0,1,1,1,0,0,0]
=> 6
[1,1,0,1,0,0,1,0,1,0]
=> 4
[1,1,0,1,0,0,1,1,0,0]
=> 4
[1,1,0,1,0,1,0,0,1,0]
=> 4
[1,1,0,1,0,1,0,1,0,0]
=> 4
[1,1,0,1,0,1,1,0,0,0]
=> 4
[1,1,0,1,1,0,0,0,1,0]
=> 4
[1,1,0,1,1,0,0,1,0,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> 4
[1,1,0,1,1,1,0,0,0,0]
=> 4
Description
The largest degree of an irreducible factor of the Coxeter polynomial of the Dyck path over the rational numbers.
Matching statistic: St000259
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00248: Permutations —DEX composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000259: Graphs ⟶ ℤResult quality: 35% ●values known / values provided: 35%●distinct values known / distinct values provided: 67%
Mp00248: Permutations —DEX composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000259: Graphs ⟶ ℤResult quality: 35% ●values known / values provided: 35%●distinct values known / distinct values provided: 67%
Values
[1,0]
=> [1] => [1] => ([],1)
=> 0 = 2 - 2
[1,0,1,0]
=> [1,2] => [2] => ([],2)
=> ? ∊ {2,2} - 2
[1,1,0,0]
=> [2,1] => [2] => ([],2)
=> ? ∊ {2,2} - 2
[1,0,1,0,1,0]
=> [1,2,3] => [3] => ([],3)
=> ? ∊ {2,4,4,4} - 2
[1,0,1,1,0,0]
=> [1,3,2] => [1,2] => ([(1,2)],3)
=> ? ∊ {2,4,4,4} - 2
[1,1,0,0,1,0]
=> [2,1,3] => [3] => ([],3)
=> ? ∊ {2,4,4,4} - 2
[1,1,0,1,0,0]
=> [2,3,1] => [3] => ([],3)
=> ? ∊ {2,4,4,4} - 2
[1,1,1,0,0,0]
=> [3,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 2 = 4 - 2
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [4] => ([],4)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4} - 2
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4} - 2
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3] => ([(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4} - 2
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,3] => ([(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4} - 2
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 4 - 2
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [4] => ([],4)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4} - 2
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4} - 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [4] => ([],4)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4} - 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4] => ([],4)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4} - 2
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 4 - 2
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4} - 2
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4} - 2
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 4 - 2
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 4 - 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 4 - 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,4] => ([(3,4)],5)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4] => ([(3,4)],5)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,4] => ([(3,4)],5)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 4 - 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 4 - 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 4 - 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [5] => ([],5)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 4 - 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [5] => ([],5)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [5] => ([],5)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5] => ([],5)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 4 - 2
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 4 - 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 4 - 2
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 4 - 2
[1,1,1,0,1,0,0,0,1,0]
=> [4,2,3,1,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,1,0,1,0,0,1,0,0]
=> [4,2,3,5,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,1,0,1,0,1,0,0,0]
=> [5,2,3,4,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 4 - 2
[1,1,1,0,1,1,0,0,0,0]
=> [5,2,4,3,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 4 - 2
[1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,1,1,0,0,1,0,0,0]
=> [5,3,2,4,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 4 - 2
[1,1,1,1,0,1,0,0,0,0]
=> [5,3,4,2,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 4 - 2
[1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 4 - 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => [6] => ([],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,5,4] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 4 - 2
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => [2,4] => ([(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,4,6,5,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 4 - 2
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,6,4,5,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 4 - 2
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,6,5,4,3] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 4 - 2
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,6,5,4] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 4 - 2
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,3,4,6,5,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 4 - 2
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,3,6,4,5,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 4 - 2
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,3,6,5,4,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 4 - 2
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,4,3,6,5,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 4 - 2
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,6,3,4,5,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 4 - 2
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,6,3,5,4,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 4 - 2
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,6,4,3,5,2] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 4 - 2
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,6,4,5,3,2] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 4 - 2
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,5,4,3,2] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 4 - 2
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,1,3,6,5,4] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 4 - 2
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,1,4,6,5,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 4 - 2
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [2,1,6,4,5,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 4 - 2
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,1,6,5,4,3] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 4 - 2
[1,1,0,1,0,0,1,1,1,0,0,0]
=> [2,3,1,6,5,4] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 4 - 2
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,6,5,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 4 - 2
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,6,4,5,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 4 - 2
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,6,5,4,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 4 - 2
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [2,4,3,6,5,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 4 - 2
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [2,6,3,4,5,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 4 - 2
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,6,3,5,4,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 4 - 2
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [2,6,4,3,5,1] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 4 - 2
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,6,4,5,3,1] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 4 - 2
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,6,5,4,3,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 4 - 2
[1,1,1,0,0,0,1,1,1,0,0,0]
=> [3,2,1,6,5,4] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 4 - 2
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,2,4,6,5,1] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 4 - 2
Description
The diameter of a connected graph.
This is the greatest distance between any pair of vertices.
Matching statistic: St000260
Mp00233: Dyck paths —skew partition⟶ Skew partitions
Mp00185: Skew partitions —cell poset⟶ Posets
Mp00198: Posets —incomparability graph⟶ Graphs
St000260: Graphs ⟶ ℤResult quality: 33% ●values known / values provided: 33%●distinct values known / distinct values provided: 67%
Mp00185: Skew partitions —cell poset⟶ Posets
Mp00198: Posets —incomparability graph⟶ Graphs
St000260: Graphs ⟶ ℤResult quality: 33% ●values known / values provided: 33%●distinct values known / distinct values provided: 67%
Values
[1,0]
=> [[1],[]]
=> ([],1)
=> ([],1)
=> 0 = 2 - 2
[1,0,1,0]
=> [[1,1],[]]
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2} - 2
[1,1,0,0]
=> [[2],[]]
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,2} - 2
[1,0,1,0,1,0]
=> [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? ∊ {2,4,4,4,4} - 2
[1,0,1,1,0,0]
=> [[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> ? ∊ {2,4,4,4,4} - 2
[1,1,0,0,1,0]
=> [[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {2,4,4,4,4} - 2
[1,1,0,1,0,0]
=> [[3],[]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? ∊ {2,4,4,4,4} - 2
[1,1,1,0,0,0]
=> [[2,2],[]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {2,4,4,4,4} - 2
[1,0,1,0,1,0,1,0]
=> [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4} - 2
[1,0,1,0,1,1,0,0]
=> [[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4} - 2
[1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 4 - 2
[1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4} - 2
[1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4} - 2
[1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4} - 2
[1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 4 - 2
[1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4} - 2
[1,1,0,1,0,1,0,0]
=> [[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4} - 2
[1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4} - 2
[1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4} - 2
[1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4} - 2
[1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4} - 2
[1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,4,4,4,4} - 2
[1,0,1,0,1,0,1,0,1,0]
=> [[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,0,1,0,1,1,0,0]
=> [[2,1,1,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2 = 4 - 2
[1,0,1,0,1,1,0,1,0,0]
=> [[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1],[1,1]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2 = 4 - 2
[1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1],[1]]
=> ([(0,3),(0,4),(1,2),(1,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 4 - 2
[1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1],[2]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 4 - 2
[1,0,1,1,0,1,0,1,0,0]
=> [[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> ([(0,2),(0,4),(1,3),(1,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 2 = 4 - 2
[1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1],[1]]
=> ([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 2 = 4 - 2
[1,0,1,1,1,0,0,1,0,0]
=> [[3,2,1],[]]
=> ([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(3,6),(4,3),(4,5),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> ([(0,3),(0,4),(2,6),(3,1),(3,5),(4,2),(4,5),(5,6)],7)
=> ([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2],[1,1,1]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2],[1,1]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 4 - 2
[1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2],[2,1]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 4 - 2
[1,1,0,0,1,1,0,1,0,0]
=> [[4,2],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2 = 4 - 2
[1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> ([(0,4),(1,2),(1,3),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 2 = 4 - 2
[1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,0,1,0,0,1,1,0,0]
=> [[4,3],[2]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2 = 4 - 2
[1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,0,1,1,0,0,1,0,0]
=> [[4,3],[1]]
=> ([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 2 = 4 - 2
[1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> ([(0,2),(0,3),(1,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7)
=> ([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> ([(0,6),(1,3),(1,6),(2,4),(3,2),(3,5),(5,4),(6,5)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,1,0,0,0,1,1,0,0]
=> [[3,2,2],[1]]
=> ([(0,2),(0,4),(1,3),(1,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 2 = 4 - 2
[1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> ([(0,4),(1,2),(1,3),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 2 = 4 - 2
[1,1,1,0,0,1,0,1,0,0]
=> [[4,2],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2],[1]]
=> ([(0,3),(0,6),(1,2),(1,6),(2,4),(3,5),(6,4),(6,5)],7)
=> ([(0,3),(0,6),(1,2),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7)
=> 2 = 4 - 2
[1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> ([(0,6),(1,3),(1,6),(2,4),(3,2),(3,5),(5,4),(6,5)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,1,0,1,0,0,1,0,0]
=> [[3,2,2],[]]
=> ([(0,3),(0,4),(2,6),(3,1),(3,5),(4,2),(4,5),(5,6)],7)
=> ([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,1,0,1,0,1,0,0,0]
=> [[2,2,2,2],[]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2],[]]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7)],8)
=> ([(1,4),(1,7),(2,3),(2,7),(3,6),(4,6),(5,6),(5,7),(6,7)],8)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> ([(0,2),(0,3),(1,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7)
=> ([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,1,1,0,0,0,1,0,0]
=> [[4,3],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(3,6),(4,3),(4,5),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,1,1,0,0,1,0,0,0]
=> [[3,3,3],[1]]
=> ([(0,3),(0,7),(1,2),(1,7),(2,5),(3,6),(5,4),(6,4),(7,5),(7,6)],8)
=> ([(1,4),(1,7),(2,3),(2,7),(3,6),(4,6),(5,6),(5,7),(6,7)],8)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,1,1,0,1,0,0,0,0]
=> [[4,4],[]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3],[]]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,5),(2,8),(3,4),(3,8),(4,7),(5,7),(6,7),(6,8),(7,8)],9)
=> ? ∊ {2,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [[1,1,1,1,1,1],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [[2,1,1,1,1],[]]
=> ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1,1],[1]]
=> ([(0,5),(1,4),(1,5),(3,2),(4,3)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2 = 4 - 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [[3,1,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1,1],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(4,1),(5,3),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1,1],[1,1]]
=> ([(0,3),(1,4),(1,5),(3,5),(4,2)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 2 = 4 - 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1,1],[1]]
=> ([(0,3),(0,5),(1,4),(1,5),(4,2)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2 = 4 - 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1,1],[2]]
=> ([(0,5),(1,3),(1,4),(3,5),(4,2)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 2 = 4 - 2
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1,1],[1]]
=> ([(0,3),(0,6),(1,4),(1,6),(3,5),(4,2),(6,5)],7)
=> ([(0,5),(0,6),(1,3),(1,4),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 2 = 4 - 2
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1,1],[1]]
=> ([(0,6),(1,4),(1,6),(3,2),(4,3),(4,5),(6,5)],7)
=> ([(0,6),(1,4),(1,5),(2,3),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 4 - 2
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2,1],[1,1,1]]
=> ([(0,4),(1,3),(1,5),(2,5),(4,2)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2 = 4 - 2
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2,1],[1,1]]
=> ([(0,4),(0,5),(1,2),(1,3),(3,5)],6)
=> ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 4 - 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2,1],[2,1]]
=> ([(0,4),(1,4),(1,5),(2,3),(2,5)],6)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 4 - 2
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [[4,2,1],[1]]
=> ([(0,3),(0,5),(1,4),(1,5),(4,2)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2 = 4 - 2
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2,1],[1,1]]
=> ([(0,4),(0,6),(1,2),(1,3),(2,5),(3,5),(3,6)],7)
=> ([(0,5),(0,6),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> 2 = 4 - 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3,1],[2,2]]
=> ([(0,4),(1,2),(1,3),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 2 = 4 - 2
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [[4,3,1],[2]]
=> ([(0,4),(0,5),(1,2),(1,3),(3,5)],6)
=> ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 4 - 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [[4,4,1],[3]]
=> ([(0,5),(1,2),(1,4),(3,5),(4,3)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 4 - 2
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [[4,4,1],[2]]
=> ([(0,4),(0,6),(1,2),(1,3),(3,6),(4,5),(6,5)],7)
=> ([(0,6),(1,5),(1,6),(2,3),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 4 - 2
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3,1],[2,1]]
=> ([(0,4),(1,4),(1,5),(2,3),(2,5),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 4 - 2
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [[4,3,1],[1]]
=> ([(0,3),(0,6),(1,4),(1,6),(4,2),(4,5),(6,5)],7)
=> ([(0,4),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7)
=> 2 = 4 - 2
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2,1],[1,1]]
=> ([(0,3),(1,4),(1,6),(3,6),(4,2),(4,5),(6,5)],7)
=> ([(0,6),(1,4),(1,5),(2,3),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> 2 = 4 - 2
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [[3,2,2,1],[1]]
=> ([(0,3),(0,6),(1,4),(1,6),(4,2),(4,5),(6,5)],7)
=> ([(0,4),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7)
=> 2 = 4 - 2
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2,1],[2]]
=> ([(0,6),(1,3),(1,4),(3,5),(3,6),(4,2),(4,5)],7)
=> ([(0,6),(1,2),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 4 - 2
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [[3,2,2,2],[1,1,1]]
=> ([(0,5),(1,2),(1,4),(3,5),(4,3)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 4 - 2
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [[3,3,2,2],[2,1,1]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 4 - 2
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [[4,2,2],[1,1]]
=> ([(0,5),(1,3),(1,4),(3,5),(4,2)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 2 = 4 - 2
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [[3,3,2,2],[1,1,1]]
=> ([(0,6),(1,3),(1,4),(2,6),(3,5),(4,2),(4,5)],7)
=> ([(0,6),(1,5),(1,6),(2,3),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 4 - 2
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [[3,3,3,2],[2,2,1]]
=> ([(0,4),(1,4),(1,5),(2,3),(3,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2 = 4 - 2
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [[4,3,2],[2,1]]
=> ([(0,4),(1,4),(1,5),(2,3),(2,5)],6)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 4 - 2
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [[4,4,2],[3,1]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 4 - 2
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [[5,2],[1]]
=> ([(0,5),(1,4),(1,5),(3,2),(4,3)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2 = 4 - 2
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [[4,4,2],[2,1]]
=> ([(0,4),(1,4),(1,5),(2,3),(2,5),(3,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> 2 = 4 - 2
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [[3,3,3,2],[2,1,1]]
=> ([(0,4),(1,5),(2,3),(2,4),(3,5),(3,6),(4,6)],7)
=> ([(0,4),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7)
=> 2 = 4 - 2
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [[4,3,2],[1,1]]
=> ([(0,6),(1,3),(1,4),(3,5),(3,6),(4,2),(4,5)],7)
=> ([(0,6),(1,2),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 4 - 2
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [[4,3,3],[2,2]]
=> ([(0,4),(1,2),(1,3),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 2 = 4 - 2
Description
The radius of a connected graph.
This is the minimum eccentricity of any vertex.
Matching statistic: St000264
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Values
[1,0]
=> ([],1)
=> ([],1)
=> ? = 2
[1,0,1,0]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {2,2}
[1,1,0,0]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {2,2}
[1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,4,4,4}
[1,0,1,1,0,0]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,4,4,4}
[1,1,0,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,4,4,4}
[1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,4,4,4}
[1,1,1,0,0,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
[1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2}
[1,0,1,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2}
[1,0,1,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2}
[1,0,1,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2}
[1,0,1,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,1,0,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2}
[1,1,0,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2}
[1,1,0,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2}
[1,1,0,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2}
[1,1,0,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,1,1,0,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[1,1,1,0,1,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 4
[1,1,1,1,0,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 4
[1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {2,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {2,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {2,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {2,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 4
[1,0,1,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {2,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {2,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {2,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {2,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 4
[1,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> 4
[1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> 4
[1,1,0,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {2,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {2,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,1,0,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {2,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,1,0,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {2,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 4
[1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {2,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,1,0,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {2,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,1,0,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {2,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,1,0,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {2,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,1,0,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 4
[1,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 4
[1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> 4
[1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> 4
[1,1,1,0,0,0,1,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 4
[1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 4
[1,1,1,0,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 4
[1,1,1,0,0,1,0,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 4
[1,1,1,0,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(3,6),(4,6),(5,6)],7)
=> 4
[1,1,1,0,1,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> 4
[1,1,1,0,1,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> 4
[1,1,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? ∊ {2,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,1,1,0,1,1,0,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,7),(1,2),(1,7),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? ∊ {2,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,1,1,1,0,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> 4
[1,1,1,1,0,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> 4
[1,1,1,1,0,0,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,7),(1,2),(1,7),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? ∊ {2,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,1,1,1,0,1,0,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? ∊ {2,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,1,1,1,1,0,0,0,0,0]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,6),(0,7),(1,4),(1,5),(2,5),(2,7),(3,4),(3,6),(4,8),(5,8),(6,8),(7,8)],9)
=> ? ∊ {2,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,0,1,0,1,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> 4
[1,0,1,0,1,1,0,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,0,1,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,0,1,1,0,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> 4
[1,0,1,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> 4
[1,0,1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> 4
[1,0,1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,4),(1,2),(1,5),(2,7),(3,5),(3,6),(4,6),(5,7),(6,7)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,4),(1,2),(1,5),(2,7),(3,5),(3,6),(4,6),(5,7),(6,7)],8)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,0,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,0,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,0,0,1,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,0,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,0,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> 4
[1,0,1,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> 4
[1,0,1,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> 4
[1,0,1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> 4
[1,0,1,1,1,0,0,0,1,0,1,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> 4
[1,0,1,1,1,0,0,0,1,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> 4
[1,0,1,1,1,0,0,1,0,0,1,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> 4
[1,0,1,1,1,0,0,1,0,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> 4
[1,1,0,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> 4
[1,1,0,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> 4
[1,1,0,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> 4
[1,1,0,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> 4
[1,1,0,1,0,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> 4
[1,1,0,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> 4
[1,1,0,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> 4
[1,1,0,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> 4
[1,1,0,1,1,0,0,0,1,0,1,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> 4
[1,1,0,1,1,0,0,0,1,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> 4
Description
The girth of a graph, which is not a tree.
This is the length of the shortest cycle in the graph.
Matching statistic: St000422
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00071: Permutations —descent composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000422: Graphs ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 100%
Mp00071: Permutations —descent composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000422: Graphs ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [2,1] => [1,1] => ([(0,1)],2)
=> 2
[1,0,1,0]
=> [3,1,2] => [1,2] => ([(1,2)],3)
=> 2
[1,1,0,0]
=> [2,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> ? = 2
[1,0,1,0,1,0]
=> [4,1,2,3] => [1,3] => ([(2,3)],4)
=> 2
[1,0,1,1,0,0]
=> [3,1,4,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {4,4,4}
[1,1,0,0,1,0]
=> [2,4,1,3] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {4,4,4}
[1,1,0,1,0,0]
=> [4,3,1,2] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 4
[1,1,1,0,0,0]
=> [2,3,4,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {4,4,4}
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [1,4] => ([(3,4)],5)
=> 2
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,4,4,4}
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,4,4,4}
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,4,4,4}
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,4,4,4}
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,4,4,4}
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,4,4,4}
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 4
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 4
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,4,4,4}
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,4,4,4}
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,4,4,4}
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,4,4,4}
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [1,5] => ([(4,5)],6)
=> 2
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [2,4] => ([(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 4
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 4
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [2,4] => ([(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,1,1,0,0,1,0,0,1,0]
=> [2,6,4,1,3,5] => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,1,1,0,1,0,1,0,0,0]
=> [6,5,4,1,2,3] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,1,1,0,1,1,0,0,0,0]
=> [5,3,4,1,6,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 4
[1,1,1,1,0,0,0,1,0,0]
=> [2,3,6,5,1,4] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,1,1,1,0,0,1,0,0,0]
=> [2,6,4,5,1,3] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,1,1,1,0,1,0,0,0,0]
=> [6,3,4,5,1,2] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,1,2,3,4,5,6] => [1,6] => ([(5,6)],7)
=> 2
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [7,3,1,2,4,5,6] => [1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> 4
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [7,4,1,2,3,5,6] => [1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> 4
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [7,6,1,2,3,4,5] => [1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> 4
[1,1,1,0,1,0,1,0,0,0,1,0]
=> [7,5,4,1,2,3,6] => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [2,3,4,7,1,5,6] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 4
[1,1,1,1,0,0,0,1,0,0,1,0]
=> [2,3,7,5,1,4,6] => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [2,3,7,6,1,4,5] => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6
Description
The energy of a graph, if it is integral.
The energy of a graph is the sum of the absolute values of its eigenvalues. This statistic is only defined for graphs with integral energy. It is known, that the energy is never an odd integer [2]. In fact, it is never the square root of an odd integer [3].
The energy of a graph is the sum of the energies of the connected components of a graph. The energy of the complete graph $K_n$ equals $2n-2$. For this reason, we do not define the energy of the empty graph.
Matching statistic: St001414
Mp00093: Dyck paths —to binary word⟶ Binary words
Mp00224: Binary words —runsort⟶ Binary words
Mp00136: Binary words —rotate back-to-front⟶ Binary words
St001414: Binary words ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 67%
Mp00224: Binary words —runsort⟶ Binary words
Mp00136: Binary words —rotate back-to-front⟶ Binary words
St001414: Binary words ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 67%
Values
[1,0]
=> 10 => 01 => 10 => 0 = 2 - 2
[1,0,1,0]
=> 1010 => 0011 => 1001 => 0 = 2 - 2
[1,1,0,0]
=> 1100 => 0011 => 1001 => 0 = 2 - 2
[1,0,1,0,1,0]
=> 101010 => 001011 => 100101 => 0 = 2 - 2
[1,0,1,1,0,0]
=> 101100 => 000111 => 100011 => 2 = 4 - 2
[1,1,0,0,1,0]
=> 110010 => 000111 => 100011 => 2 = 4 - 2
[1,1,0,1,0,0]
=> 110100 => 000111 => 100011 => 2 = 4 - 2
[1,1,1,0,0,0]
=> 111000 => 000111 => 100011 => 2 = 4 - 2
[1,0,1,0,1,0,1,0]
=> 10101010 => 00101011 => 10010101 => 0 = 2 - 2
[1,0,1,0,1,1,0,0]
=> 10101100 => 00010111 => 10001011 => 2 = 4 - 2
[1,0,1,1,0,0,1,0]
=> 10110010 => 00010111 => 10001011 => 2 = 4 - 2
[1,0,1,1,0,1,0,0]
=> 10110100 => 00010111 => 10001011 => 2 = 4 - 2
[1,0,1,1,1,0,0,0]
=> 10111000 => 00001111 => 10000111 => 0 = 2 - 2
[1,1,0,0,1,0,1,0]
=> 11001010 => 00010111 => 10001011 => 2 = 4 - 2
[1,1,0,0,1,1,0,0]
=> 11001100 => 00001111 => 10000111 => 0 = 2 - 2
[1,1,0,1,0,0,1,0]
=> 11010010 => 00010111 => 10001011 => 2 = 4 - 2
[1,1,0,1,0,1,0,0]
=> 11010100 => 00010111 => 10001011 => 2 = 4 - 2
[1,1,0,1,1,0,0,0]
=> 11011000 => 00001111 => 10000111 => 0 = 2 - 2
[1,1,1,0,0,0,1,0]
=> 11100010 => 00001111 => 10000111 => 0 = 2 - 2
[1,1,1,0,0,1,0,0]
=> 11100100 => 00001111 => 10000111 => 0 = 2 - 2
[1,1,1,0,1,0,0,0]
=> 11101000 => 00001111 => 10000111 => 0 = 2 - 2
[1,1,1,1,0,0,0,0]
=> 11110000 => 00001111 => 10000111 => 0 = 2 - 2
[1,0,1,0,1,0,1,0,1,0]
=> 1010101010 => 0010101011 => 1001010101 => ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,0,1,0,1,1,0,0]
=> 1010101100 => 0001010111 => 1000101011 => ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,0,1,1,0,0,1,0]
=> 1010110010 => 0001010111 => 1000101011 => ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,0,1,1,0,1,0,0]
=> 1010110100 => 0001010111 => 1000101011 => ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,0,1,1,1,0,0,0]
=> 1010111000 => 0000101111 => 1000010111 => ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,1,0,0,1,0,1,0]
=> 1011001010 => 0001010111 => 1000101011 => ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,1,0,0,1,1,0,0]
=> 1011001100 => 0000110111 => 1000011011 => ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,1,0,1,0,0,1,0]
=> 1011010010 => 0001010111 => 1000101011 => ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,1,0,1,0,1,0,0]
=> 1011010100 => 0001010111 => 1000101011 => ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,1,0,1,1,0,0,0]
=> 1011011000 => 0000110111 => 1000011011 => ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,1,1,0,0,0,1,0]
=> 1011100010 => 0000101111 => 1000010111 => ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,1,1,0,0,1,0,0]
=> 1011100100 => 0000101111 => 1000010111 => ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,1,1,0,1,0,0,0]
=> 1011101000 => 0000101111 => 1000010111 => ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,1,1,1,0,0,0,0]
=> 1011110000 => 0000011111 => 1000001111 => ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,0,0,1,0,1,0,1,0]
=> 1100101010 => 0001010111 => 1000101011 => ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,0,0,1,0,1,1,0,0]
=> 1100101100 => 0000101111 => 1000010111 => ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,0,0,1,1,0,0,1,0]
=> 1100110010 => 0001001111 => 1000100111 => ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,0,0,1,1,0,1,0,0]
=> 1100110100 => 0000110111 => 1000011011 => ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,0,0,1,1,1,0,0,0]
=> 1100111000 => 0000011111 => 1000001111 => ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,0,1,0,0,1,0,1,0]
=> 1101001010 => 0001010111 => 1000101011 => ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,0,1,0,0,1,1,0,0]
=> 1101001100 => 0000110111 => 1000011011 => ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,0,1,0,1,0,0,1,0]
=> 1101010010 => 0001010111 => 1000101011 => ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,0,1,0,1,0,1,0,0]
=> 1101010100 => 0001010111 => 1000101011 => ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,0,1,0,1,1,0,0,0]
=> 1101011000 => 0000101111 => 1000010111 => ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,0,1,1,0,0,0,1,0]
=> 1101100010 => 0000101111 => 1000010111 => ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,0,1,1,0,0,1,0,0]
=> 1101100100 => 0000101111 => 1000010111 => ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,0,1,1,0,1,0,0,0]
=> 1101101000 => 0000101111 => 1000010111 => ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,0,1,1,1,0,0,0,0]
=> 1101110000 => 0000011111 => 1000001111 => ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,1,0,0,0,1,0,1,0]
=> 1110001010 => 0000101111 => 1000010111 => ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,1,0,0,0,1,1,0,0]
=> 1110001100 => 0000011111 => 1000001111 => ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,1,0,0,1,0,0,1,0]
=> 1110010010 => 0001001111 => 1000100111 => ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,1,0,0,1,0,1,0,0]
=> 1110010100 => 0000101111 => 1000010111 => ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,1,0,0,1,1,0,0,0]
=> 1110011000 => 0000011111 => 1000001111 => ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => 0000101111 => 1000010111 => ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,1,0,1,0,0,1,0,0]
=> 1110100100 => 0000101111 => 1000010111 => ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,1,0,1,0,1,0,0,0]
=> 1110101000 => 0000101111 => 1000010111 => ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,1,0,1,1,0,0,0,0]
=> 1110110000 => 0000011111 => 1000001111 => ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,1,1,0,0,0,0,1,0]
=> 1111000010 => 0000011111 => 1000001111 => ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,1,1,0,0,0,1,0,0]
=> 1111000100 => 0000011111 => 1000001111 => ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,1,1,0,0,1,0,0,0]
=> 1111001000 => 0000011111 => 1000001111 => ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,1,1,0,1,0,0,0,0]
=> 1111010000 => 0000011111 => 1000001111 => ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,1,1,1,1,0,0,0,0,0]
=> 1111100000 => 0000011111 => 1000001111 => ? ∊ {2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> 101010101010 => 001010101011 => 100101010101 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,0,1,0,1,0,1,1,0,0]
=> 101010101100 => 000101010111 => 100010101011 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,0,1,0,1,1,0,0,1,0]
=> 101010110010 => 000101010111 => 100010101011 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> 101010110100 => 000101010111 => 100010101011 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,0,1,0,1,1,1,0,0,0]
=> 101010111000 => 000010101111 => 100001010111 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,0,1,1,0,0,1,0,1,0]
=> 101011001010 => 000101010111 => 100010101011 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> 101011001100 => 000011010111 => 100001101011 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> 101011010010 => 000101010111 => 100010101011 => ? ∊ {2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} - 2
Description
Half the length of the longest odd length palindromic prefix of a binary word.
More precisely, this statistic is the largest number $k$ such that the word has a palindromic prefix of length $2k+1$.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!