searching the database
Your data matches 73 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001014
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
St001014: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> 1
[1,0,1,0]
=> 1
[1,1,0,0]
=> 2
[1,0,1,0,1,0]
=> 1
[1,0,1,1,0,0]
=> 2
[1,1,0,0,1,0]
=> 2
[1,1,0,1,0,0]
=> 2
[1,1,1,0,0,0]
=> 3
[1,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0]
=> 1
[1,0,1,1,1,0,0,0]
=> 3
[1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,0,0]
=> 3
[1,1,0,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,0]
=> 2
[1,1,0,1,1,0,0,0]
=> 3
[1,1,1,0,0,0,1,0]
=> 3
[1,1,1,0,0,1,0,0]
=> 3
[1,1,1,0,1,0,0,0]
=> 3
[1,1,1,1,0,0,0,0]
=> 4
[1,0,1,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> 4
[1,1,0,0,1,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> 3
[1,1,0,0,1,1,0,1,0,0]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> 4
[1,1,0,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> 3
[1,1,0,1,1,0,0,0,1,0]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> 4
Description
Number of indecomposable injective modules with codominant dimension equal to the dominant dimension of the Nakayama algebra corresponding to the Dyck path.
Matching statistic: St000771
(load all 15 compositions to match this statistic)
(load all 15 compositions to match this statistic)
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00172: Integer compositions —rotate back to front⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000771: Graphs ⟶ ℤResult quality: 50% ●values known / values provided: 50%●distinct values known / distinct values provided: 83%
Mp00172: Integer compositions —rotate back to front⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000771: Graphs ⟶ ℤResult quality: 50% ●values known / values provided: 50%●distinct values known / distinct values provided: 83%
Values
[1,0]
=> [1] => [1] => ([],1)
=> 1
[1,0,1,0]
=> [1,1] => [1,1] => ([(0,1)],2)
=> 1
[1,1,0,0]
=> [2] => [2] => ([],2)
=> ? = 2
[1,0,1,0,1,0]
=> [1,1,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[1,0,1,1,0,0]
=> [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 1
[1,1,0,0,1,0]
=> [2,1] => [1,2] => ([(1,2)],3)
=> ? ∊ {2,2,3}
[1,1,0,1,0,0]
=> [2,1] => [1,2] => ([(1,2)],3)
=> ? ∊ {2,2,3}
[1,1,1,0,0,0]
=> [3] => [3] => ([],3)
=> ? ∊ {2,2,3}
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,3,3,3,3,3,4}
[1,0,1,1,0,1,0,0]
=> [1,2,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,3,3,3,3,3,4}
[1,0,1,1,1,0,0,0]
=> [1,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,0,0,1,1,0,0]
=> [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,3,3,3,3,3,4}
[1,1,0,1,0,0,1,0]
=> [2,1,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,0,1,0,1,0,0]
=> [2,1,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,0,1,1,0,0,0]
=> [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,3,3,3,3,3,4}
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,3] => ([(2,3)],4)
=> ? ∊ {1,1,3,3,3,3,3,4}
[1,1,1,0,0,1,0,0]
=> [3,1] => [1,3] => ([(2,3)],4)
=> ? ∊ {1,1,3,3,3,3,3,4}
[1,1,1,0,1,0,0,0]
=> [3,1] => [1,3] => ([(2,3)],4)
=> ? ∊ {1,1,3,3,3,3,3,4}
[1,1,1,1,0,0,0,0]
=> [4] => [4] => ([],4)
=> ? ∊ {1,1,3,3,3,3,3,4}
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,0,1,0,0,1,0]
=> [1,2,1,1] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,1,0,1,1,1,0,0,0,0]
=> [2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,0,0,1,1,0,0]
=> [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,1,1,0,0,1,0,0,1,0]
=> [3,1,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,0,1,0,1,0,0]
=> [3,1,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,0,1,1,0,0,0]
=> [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,1,1,0,1,0,0,0,1,0]
=> [3,1,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,1,0,0,1,0,0]
=> [3,1,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,1,0,1,0,0,0]
=> [3,1,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,1,1,0,0,0,0]
=> [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,1,1,1,0,0,0,0,1,0]
=> [4,1] => [1,4] => ([(3,4)],5)
=> ? ∊ {1,1,1,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,1,1,1,0,0,0,1,0,0]
=> [4,1] => [1,4] => ([(3,4)],5)
=> ? ∊ {1,1,1,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,1,1,1,0,0,1,0,0,0]
=> [4,1] => [1,4] => ([(3,4)],5)
=> ? ∊ {1,1,1,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,1,1,1,0,1,0,0,0,0]
=> [4,1] => [1,4] => ([(3,4)],5)
=> ? ∊ {1,1,1,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,1,1,1,1,0,0,0,0,0]
=> [5] => [5] => ([],5)
=> ? ∊ {1,1,1,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,2,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,3] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2] => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,2,1,1] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,2,1,1] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,2,2] => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,3,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,3,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,3,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,4] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,1,1,1] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,1,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,2,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,2,2,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,3] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,2,1,1,1] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,2,1,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,2,1,1,1] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,2,1,1,1] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,2,1,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,2,2,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,2,2,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,2,2,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,2,3] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,3,1,1] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,3,2] => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,3,1,1] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,3,1,1] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,3,2] => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,3,1,1] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,3,1,1] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,3,1,1] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$
\left(\begin{array}{rrrr}
4 & -1 & -2 & -1 \\
-1 & 4 & -1 & -2 \\
-2 & -1 & 4 & -1 \\
-1 & -2 & -1 & 4
\end{array}\right).
$$
Its eigenvalues are $0,4,4,6$, so the statistic is $2$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
Matching statistic: St001060
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
Mp00100: Dyck paths —touch composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00117: Graphs —Ore closure⟶ Graphs
St001060: Graphs ⟶ ℤResult quality: 43% ●values known / values provided: 43%●distinct values known / distinct values provided: 67%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00117: Graphs —Ore closure⟶ Graphs
St001060: Graphs ⟶ ℤResult quality: 43% ●values known / values provided: 43%●distinct values known / distinct values provided: 67%
Values
[1,0]
=> [1] => ([],1)
=> ([],1)
=> ? = 1
[1,0,1,0]
=> [1,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,2}
[1,1,0,0]
=> [2] => ([],2)
=> ([],2)
=> ? ∊ {1,2}
[1,0,1,0,1,0]
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,0,1,1,0,0]
=> [1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {1,2,2}
[1,1,0,0,1,0]
=> [2,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2
[1,1,0,1,0,0]
=> [3] => ([],3)
=> ([],3)
=> ? ∊ {1,2,2}
[1,1,1,0,0,0]
=> [3] => ([],3)
=> ([],3)
=> ? ∊ {1,2,2}
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,0,1,0,1,1,0,0]
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 3
[1,0,1,1,0,0,1,0]
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,0,1,1,0,1,0,0]
=> [1,3] => ([(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,3,4}
[1,0,1,1,1,0,0,0]
=> [1,3] => ([(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,3,4}
[1,1,0,0,1,0,1,0]
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,1,0,0,1,1,0,0]
=> [2,2] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[1,1,0,1,0,0,1,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
[1,1,0,1,0,1,0,0]
=> [4] => ([],4)
=> ([],4)
=> ? ∊ {1,1,1,1,1,3,4}
[1,1,0,1,1,0,0,0]
=> [4] => ([],4)
=> ([],4)
=> ? ∊ {1,1,1,1,1,3,4}
[1,1,1,0,0,0,1,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
[1,1,1,0,0,1,0,0]
=> [4] => ([],4)
=> ([],4)
=> ? ∊ {1,1,1,1,1,3,4}
[1,1,1,0,1,0,0,0]
=> [4] => ([],4)
=> ([],4)
=> ? ∊ {1,1,1,1,1,3,4}
[1,1,1,1,0,0,0,0]
=> [4] => ([],4)
=> ([],4)
=> ? ∊ {1,1,1,1,1,3,4}
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,5}
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,5}
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,5}
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,5}
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,5}
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,5}
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,5}
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,5}
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,5}
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,1,0,1,0,1,0,1,0,0]
=> [5] => ([],5)
=> ([],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,5}
[1,1,0,1,0,1,1,0,0,0]
=> [5] => ([],5)
=> ([],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,5}
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,1,0,1,1,0,0,1,0,0]
=> [5] => ([],5)
=> ([],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,5}
[1,1,0,1,1,0,1,0,0,0]
=> [5] => ([],5)
=> ([],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,5}
[1,1,0,1,1,1,0,0,0,0]
=> [5] => ([],5)
=> ([],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,5}
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,0,0,1,1,0,0]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 3
[1,1,1,0,0,1,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,1,1,0,0,1,0,1,0,0]
=> [5] => ([],5)
=> ([],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,5}
[1,1,1,0,0,1,1,0,0,0]
=> [5] => ([],5)
=> ([],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,5}
[1,1,1,0,1,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,1,1,0,1,0,0,1,0,0]
=> [5] => ([],5)
=> ([],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,5}
[1,1,1,0,1,0,1,0,0,0]
=> [5] => ([],5)
=> ([],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,5}
[1,1,1,0,1,1,0,0,0,0]
=> [5] => ([],5)
=> ([],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,5}
[1,1,1,1,0,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,1,1,1,0,0,0,1,0,0]
=> [5] => ([],5)
=> ([],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,5}
[1,1,1,1,0,0,1,0,0,0]
=> [5] => ([],5)
=> ([],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,5}
[1,1,1,1,0,1,0,0,0,0]
=> [5] => ([],5)
=> ([],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,5}
[1,1,1,1,1,0,0,0,0,0]
=> [5] => ([],5)
=> ([],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,5}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6}
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6}
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6}
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6}
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6}
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6}
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6}
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6}
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6}
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6}
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6}
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6}
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6}
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6}
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
Description
The distinguishing index of a graph.
This is the smallest number of colours such that there is a colouring of the edges which is not preserved by any automorphism.
If the graph has a connected component which is a single edge, or at least two isolated vertices, this statistic is undefined.
Matching statistic: St000259
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
Mp00062: Permutations —Lehmer-code to major-code bijection⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000259: Graphs ⟶ ℤResult quality: 37% ●values known / values provided: 37%●distinct values known / distinct values provided: 83%
Mp00062: Permutations —Lehmer-code to major-code bijection⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000259: Graphs ⟶ ℤResult quality: 37% ●values known / values provided: 37%●distinct values known / distinct values provided: 83%
Values
[1,0]
=> [1] => [1] => ([],1)
=> 0 = 1 - 1
[1,0,1,0]
=> [1,2] => [1,2] => ([],2)
=> ? = 1 - 1
[1,1,0,0]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1 = 2 - 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,2,2} - 1
[1,0,1,1,0,0]
=> [1,3,2] => [3,1,2] => ([(0,2),(1,2)],3)
=> 2 = 3 - 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {1,2,2} - 1
[1,1,0,1,0,0]
=> [2,3,1] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {1,2,2} - 1
[1,1,1,0,0,0]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 1 = 2 - 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {1,1,1,1,1,2,3,3,3} - 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,2,3,3,3} - 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 3 = 4 - 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,2,3,3,3} - 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,2,3,3,3} - 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,2,3,3,3} - 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,2,3,3,3} - 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,2,3,3,3} - 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? ∊ {1,1,1,1,1,2,3,3,3} - 1
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,2,3,3,3} - 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3 = 4 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3 = 4 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [5,2,4,1,3] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [5,1,4,2,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [1,3,2,4,5] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,2,3,5,4] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [5,1,2,4,3] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [4,1,3,2,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [3,1,2,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [5,4,1,3,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => [1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,1,1,0,1,0,0,0,1,0]
=> [3,4,2,1,5] => [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,1,1,0,1,0,0,1,0,0]
=> [3,4,2,5,1] => [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,1,1,0,1,0,1,0,0,0]
=> [3,4,5,2,1] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,1,1,0,1,1,0,0,0,0]
=> [3,5,4,2,1] => [5,1,4,3,2] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,1,1,1,0,0,1,0,0,0]
=> [4,3,5,2,1] => [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,1,1,1,0,1,0,0,0,0]
=> [4,5,3,2,1] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => [6,1,2,3,4,5] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => [5,1,2,3,4,6] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => [4,6,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 3 = 4 - 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,5,4] => [6,5,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => [4,1,2,3,5,6] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => [3,6,1,2,4,5] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,4,5,3,6] => [3,5,1,2,4,6] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,4,5,6,3] => [3,4,6,1,2,5] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,4,6,5,3] => [6,3,5,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,5,4,3,6] => [5,4,1,2,3,6] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,5,4,6,3] => [4,3,6,1,2,5] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,5,6,4,3] => [3,6,5,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,6,5,4,3] => [6,5,4,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6] => [3,1,2,4,5,6] => ([(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,4,6,5] => [2,6,1,3,4,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 3 = 4 - 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,6] => [2,5,1,3,4,6] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,3,2,5,6,4] => [2,4,6,1,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,6,5,4] => [6,2,5,1,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,3,4,2,5,6] => [2,4,1,3,5,6] => ([(2,5),(3,4),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,3,4,2,6,5] => [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 4 - 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,3,4,5,2,6] => [2,3,5,1,4,6] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,2] => [2,3,4,6,1,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 3 = 4 - 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,3,4,6,5,2] => [6,2,3,5,1,4] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,3,5,4,2,6] => [5,2,4,1,3,6] => ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,3,5,4,6,2] => [4,2,3,6,1,5] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,3,5,6,4,2] => [3,6,2,5,1,4] => ([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,3,6,5,4,2] => [6,5,2,4,1,3] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,4,3,2,6,5] => [3,2,6,1,4,5] => ([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,4,3,5,6,2] => [3,2,4,6,1,5] => ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,4,3,6,5,2] => [2,6,3,5,1,4] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,4,5,3,6,2] => [2,4,3,6,1,5] => ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,4,5,6,3,2] => [2,3,6,5,1,4] => ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,4,6,5,3,2] => [6,2,5,4,1,3] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,5,4,3,6,2] => [4,3,2,6,1,5] => ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,5,4,6,3,2] => [3,2,6,5,1,4] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
Description
The diameter of a connected graph.
This is the greatest distance between any pair of vertices.
Matching statistic: St001875
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
Mp00206: Posets —antichains of maximal size⟶ Lattices
St001875: Lattices ⟶ ℤResult quality: 34% ●values known / values provided: 34%●distinct values known / distinct values provided: 67%
Mp00065: Permutations —permutation poset⟶ Posets
Mp00206: Posets —antichains of maximal size⟶ Lattices
St001875: Lattices ⟶ ℤResult quality: 34% ●values known / values provided: 34%●distinct values known / distinct values provided: 67%
Values
[1,0]
=> [1] => ([],1)
=> ([],1)
=> ? = 1
[1,0,1,0]
=> [2,1] => ([],2)
=> ([],1)
=> ? ∊ {1,2}
[1,1,0,0]
=> [1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,2}
[1,0,1,0,1,0]
=> [3,2,1] => ([],3)
=> ([],1)
=> ? ∊ {1,2,2,2}
[1,0,1,1,0,0]
=> [2,3,1] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2}
[1,1,0,0,1,0]
=> [3,1,2] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {1,2,2,2}
[1,1,0,1,0,0]
=> [2,1,3] => ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {1,2,2,2}
[1,1,1,0,0,0]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => ([],4)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2,2,3,3,3}
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,2,2,3,3,3}
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,2,2,3,3,3}
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => ([(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2,2,3,3,3}
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,2,2,3,3,3}
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => ([(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2,2,3,3,3}
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2,2,3,3,3}
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,2,2,3,3,3}
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,2,2,3,3,3}
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2,2,3,3,3}
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => ([],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => ([(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => ([(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => ([(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => ([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => ([(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => ([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => ([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => ([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => ([(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => ([(0,3),(1,4),(4,2)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 4
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => ([(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => ([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => ([(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => ([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => ([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => ([(0,3),(1,4),(4,2)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 4
[1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,1,1,0,0,1,1,0,0,0]
=> [3,4,1,2,5] => ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => ([(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,3,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,4,5] => ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,1,1,0,1,1,0,0,0,0]
=> [2,3,1,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => ([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1] => ([],6)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [5,6,4,3,2,1] => ([(4,5)],6)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [6,4,5,3,2,1] => ([(4,5)],6)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [5,4,6,3,2,1] => ([(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [4,5,6,3,2,1] => ([(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [6,5,3,4,2,1] => ([(4,5)],6)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [5,6,3,4,2,1] => ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [6,3,4,5,2,1] => ([(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [3,4,5,6,2,1] => ([(2,3),(3,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [5,6,4,2,3,1] => ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [6,4,5,2,3,1] => ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [4,5,6,2,3,1] => ([(1,3),(2,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 4
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [3,4,5,2,6,1] => ([(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [6,5,2,3,4,1] => ([(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [5,6,2,3,4,1] => ([(1,3),(2,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 4
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [4,5,2,3,6,1] => ([(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [6,2,3,4,5,1] => ([(2,3),(3,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [5,2,3,4,6,1] => ([(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(1,5),(3,4),(4,2),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [5,6,4,3,1,2] => ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [6,4,5,3,1,2] => ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [4,5,6,3,1,2] => ([(1,3),(2,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 4
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [6,5,3,4,1,2] => ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [4,5,3,6,1,2] => ([(0,5),(1,3),(2,4),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [6,3,4,5,1,2] => ([(1,3),(2,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 4
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [5,3,4,6,1,2] => ([(0,5),(1,3),(2,4),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,1,0,1,0,0,1,1,1,0,0,0]
=> [4,5,6,2,1,3] => ([(0,5),(1,5),(2,3),(3,4)],6)
=> ([(0,2),(2,1)],3)
=> 3
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [3,4,5,2,1,6] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[1,1,0,1,1,0,0,0,1,1,0,0]
=> [5,6,2,3,1,4] => ([(0,5),(1,3),(2,4),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [4,5,2,3,1,6] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [6,2,3,4,1,5] => ([(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [5,2,3,4,1,6] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,1,6] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,1,1,0,0,0,1,0,1,0,1,0]
=> [6,5,4,1,2,3] => ([(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[1,1,1,0,0,0,1,0,1,1,0,0]
=> [5,6,4,1,2,3] => ([(1,3),(2,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 4
[1,1,1,0,0,0,1,1,0,0,1,0]
=> [6,4,5,1,2,3] => ([(1,3),(2,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 4
Description
The number of simple modules with projective dimension at most 1.
Matching statistic: St000772
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00100: Dyck paths —touch composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000772: Graphs ⟶ ℤResult quality: 33% ●values known / values provided: 33%●distinct values known / distinct values provided: 83%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000772: Graphs ⟶ ℤResult quality: 33% ●values known / values provided: 33%●distinct values known / distinct values provided: 83%
Values
[1,0]
=> [1] => ([],1)
=> 1
[1,0,1,0]
=> [1,1] => ([(0,1)],2)
=> 1
[1,1,0,0]
=> [2] => ([],2)
=> ? = 2
[1,0,1,0,1,0]
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[1,0,1,1,0,0]
=> [1,2] => ([(1,2)],3)
=> ? ∊ {2,2,3}
[1,1,0,0,1,0]
=> [2,1] => ([(0,2),(1,2)],3)
=> 1
[1,1,0,1,0,0]
=> [3] => ([],3)
=> ? ∊ {2,2,3}
[1,1,1,0,0,0]
=> [3] => ([],3)
=> ? ∊ {2,2,3}
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,0,1,0,1,1,0,0]
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,3,3,3,3,3,4}
[1,0,1,1,0,0,1,0]
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,0,1,1,0,1,0,0]
=> [1,3] => ([(2,3)],4)
=> ? ∊ {1,1,1,3,3,3,3,3,4}
[1,0,1,1,1,0,0,0]
=> [1,3] => ([(2,3)],4)
=> ? ∊ {1,1,1,3,3,3,3,3,4}
[1,1,0,0,1,0,1,0]
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,0,0,1,1,0,0]
=> [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,3,3,3,3,3,4}
[1,1,0,1,0,0,1,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[1,1,0,1,0,1,0,0]
=> [4] => ([],4)
=> ? ∊ {1,1,1,3,3,3,3,3,4}
[1,1,0,1,1,0,0,0]
=> [4] => ([],4)
=> ? ∊ {1,1,1,3,3,3,3,3,4}
[1,1,1,0,0,0,1,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[1,1,1,0,0,1,0,0]
=> [4] => ([],4)
=> ? ∊ {1,1,1,3,3,3,3,3,4}
[1,1,1,0,1,0,0,0]
=> [4] => ([],4)
=> ? ∊ {1,1,1,3,3,3,3,3,4}
[1,1,1,1,0,0,0,0]
=> [4] => ([],4)
=> ? ∊ {1,1,1,3,3,3,3,3,4}
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => ([(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => ([(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => ([(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => ([(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => ([(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [5] => ([],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,1,0,1,0,1,1,0,0,0]
=> [5] => ([],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [5] => ([],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,1,0,1,1,0,1,0,0,0]
=> [5] => ([],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,1,0,1,1,1,0,0,0,0]
=> [5] => ([],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,0,0,1,1,0,0]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,1,1,0,0,1,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,1,1,0,0,1,0,1,0,0]
=> [5] => ([],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,1,1,0,0,1,1,0,0,0]
=> [5] => ([],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,1,1,0,1,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,1,1,0,1,0,0,1,0,0]
=> [5] => ([],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,1,1,0,1,0,1,0,0,0]
=> [5] => ([],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,1,1,0,1,1,0,0,0,0]
=> [5] => ([],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,1,1,1,0,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,1,1,1,0,0,0,1,0,0]
=> [5] => ([],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,1,1,1,0,0,1,0,0,0]
=> [5] => ([],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,1,1,1,0,1,0,0,0,0]
=> [5] => ([],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,1,1,1,1,0,0,0,0,0]
=> [5] => ([],5)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
[1,1,0,1,1,0,0,0,1,0,1,0]
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$
\left(\begin{array}{rrrr}
4 & -1 & -2 & -1 \\
-1 & 4 & -1 & -2 \\
-2 & -1 & 4 & -1 \\
-1 & -2 & -1 & 4
\end{array}\right).
$$
Its eigenvalues are $0,4,4,6$, so the statistic is $1$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore also statistic $1$.
The graphs with statistic $n-1$, $n-2$ and $n-3$ have been characterised, see [1].
Matching statistic: St000777
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00100: Dyck paths —touch composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000777: Graphs ⟶ ℤResult quality: 33% ●values known / values provided: 33%●distinct values known / distinct values provided: 100%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000777: Graphs ⟶ ℤResult quality: 33% ●values known / values provided: 33%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => ([],1)
=> 1
[1,0,1,0]
=> [1,1] => ([(0,1)],2)
=> 2
[1,1,0,0]
=> [2] => ([],2)
=> ? = 1
[1,0,1,0,1,0]
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[1,0,1,1,0,0]
=> [1,2] => ([(1,2)],3)
=> ? ∊ {1,2,2}
[1,1,0,0,1,0]
=> [2,1] => ([(0,2),(1,2)],3)
=> 3
[1,1,0,1,0,0]
=> [3] => ([],3)
=> ? ∊ {1,2,2}
[1,1,1,0,0,0]
=> [3] => ([],3)
=> ? ∊ {1,2,2}
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,0,1,0,1,1,0,0]
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,2,3,3,3}
[1,0,1,1,0,0,1,0]
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,0,1,1,0,1,0,0]
=> [1,3] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,2,3,3,3}
[1,0,1,1,1,0,0,0]
=> [1,3] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,2,3,3,3}
[1,1,0,0,1,0,1,0]
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,1,0,0,1,1,0,0]
=> [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,2,3,3,3}
[1,1,0,1,0,0,1,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[1,1,0,1,0,1,0,0]
=> [4] => ([],4)
=> ? ∊ {1,1,1,1,1,2,3,3,3}
[1,1,0,1,1,0,0,0]
=> [4] => ([],4)
=> ? ∊ {1,1,1,1,1,2,3,3,3}
[1,1,1,0,0,0,1,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[1,1,1,0,0,1,0,0]
=> [4] => ([],4)
=> ? ∊ {1,1,1,1,1,2,3,3,3}
[1,1,1,0,1,0,0,0]
=> [4] => ([],4)
=> ? ∊ {1,1,1,1,1,2,3,3,3}
[1,1,1,1,0,0,0,0]
=> [4] => ([],4)
=> ? ∊ {1,1,1,1,1,2,3,3,3}
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [5] => ([],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,1,0,1,0,1,1,0,0,0]
=> [5] => ([],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [5] => ([],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,1,0,1,1,0,1,0,0,0]
=> [5] => ([],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,1,0,1,1,1,0,0,0,0]
=> [5] => ([],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,1,0,0,0,1,1,0,0]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,1,1,0,0,1,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,1,1,0,0,1,0,1,0,0]
=> [5] => ([],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,1,1,0,0,1,1,0,0,0]
=> [5] => ([],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,1,1,0,1,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,1,1,0,1,0,0,1,0,0]
=> [5] => ([],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,1,1,0,1,0,1,0,0,0]
=> [5] => ([],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,1,1,0,1,1,0,0,0,0]
=> [5] => ([],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,1,1,1,0,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,1,1,1,0,0,0,1,0,0]
=> [5] => ([],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,1,1,1,0,0,1,0,0,0]
=> [5] => ([],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,1,1,1,0,1,0,0,0,0]
=> [5] => ([],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,1,1,1,1,0,0,0,0,0]
=> [5] => ([],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5}
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5}
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5}
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5}
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5}
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5}
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5}
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5}
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5}
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 3
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 3
[1,1,0,1,1,0,0,0,1,0,1,0]
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 3
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 3
Description
The number of distinct eigenvalues of the distance Laplacian of a connected graph.
Matching statistic: St001200
Mp00233: Dyck paths —skew partition⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001200: Dyck paths ⟶ ℤResult quality: 31% ●values known / values provided: 31%●distinct values known / distinct values provided: 33%
Mp00183: Skew partitions —inner shape⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001200: Dyck paths ⟶ ℤResult quality: 31% ●values known / values provided: 31%●distinct values known / distinct values provided: 33%
Values
[1,0]
=> [[1],[]]
=> []
=> []
=> ? = 1
[1,0,1,0]
=> [[1,1],[]]
=> []
=> []
=> ? ∊ {1,2}
[1,1,0,0]
=> [[2],[]]
=> []
=> []
=> ? ∊ {1,2}
[1,0,1,0,1,0]
=> [[1,1,1],[]]
=> []
=> []
=> ? ∊ {1,2,2,2,3}
[1,0,1,1,0,0]
=> [[2,1],[]]
=> []
=> []
=> ? ∊ {1,2,2,2,3}
[1,1,0,0,1,0]
=> [[2,2],[1]]
=> [1]
=> [1,0]
=> ? ∊ {1,2,2,2,3}
[1,1,0,1,0,0]
=> [[3],[]]
=> []
=> []
=> ? ∊ {1,2,2,2,3}
[1,1,1,0,0,0]
=> [[2,2],[]]
=> []
=> []
=> ? ∊ {1,2,2,2,3}
[1,0,1,0,1,0,1,0]
=> [[1,1,1,1],[]]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,4}
[1,0,1,0,1,1,0,0]
=> [[2,1,1],[]]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,4}
[1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> [1]
=> [1,0]
=> ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,4}
[1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,4}
[1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,4}
[1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,4}
[1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> [1]
=> [1,0]
=> ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,4}
[1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> [2]
=> [1,0,1,0]
=> 2
[1,1,0,1,0,1,0,0]
=> [[4],[]]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,4}
[1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> [1,0]
=> ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,4}
[1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> [1,0]
=> ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,4}
[1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,4}
[1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,4}
[1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,4}
[1,0,1,0,1,0,1,0,1,0]
=> [[1,1,1,1,1],[]]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,0,1,0,1,1,0,0]
=> [[2,1,1,1],[]]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1],[1]]
=> [1]
=> [1,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,0,1,1,0,1,0,0]
=> [[3,1,1],[]]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1],[]]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1],[1]]
=> [1]
=> [1,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1],[2]]
=> [2]
=> [1,0,1,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [[4,1],[]]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> [1]
=> [1,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1],[1]]
=> [1]
=> [1,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,1,0,0,1,0,0]
=> [[3,2,1],[]]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1],[]]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [[4,2],[1]]
=> [1]
=> [1,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> [2,2]
=> [1,1,1,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,1,0,0,1,1,0,0]
=> [[4,3],[2]]
=> [2]
=> [1,0,1,0]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> [3]
=> [1,0,1,0,1,0]
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> [2]
=> [1,0,1,0]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [[4,3],[1]]
=> [1]
=> [1,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> [1]
=> [1,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> [1,1,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,1,0,0,0,1,1,0,0]
=> [[3,2,2],[1]]
=> [1]
=> [1,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> [2]
=> [1,0,1,0]
=> 2
[1,1,1,0,0,1,0,1,0,0]
=> [[4,2],[]]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2],[1]]
=> [1]
=> [1,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> [1]
=> [1,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,1,0,1,0,0,1,0,0]
=> [[3,2,2],[]]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,1,0,1,0,1,0,0,0]
=> [[2,2,2,2],[]]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2],[]]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> [1,0,1,0]
=> 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1,1],[2]]
=> [2]
=> [1,0,1,0]
=> 2
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [[4,3,1],[2]]
=> [2]
=> [1,0,1,0]
=> 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [[4,4,1],[3]]
=> [3]
=> [1,0,1,0,1,0]
=> 3
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [[4,4,1],[2]]
=> [2]
=> [1,0,1,0]
=> 2
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3,1],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2,1],[2]]
=> [2]
=> [1,0,1,0]
=> 2
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3,1],[2]]
=> [2]
=> [1,0,1,0]
=> 2
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [[2,2,2,2,2],[1,1,1,1]]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 3
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [[3,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [[3,3,2,2],[2,1,1]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 3
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [[3,3,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [[3,3,3,2],[2,2,1]]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [[4,3,2],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [[4,4,2],[3,1]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 3
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [[4,4,2],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [[3,3,3,2],[2,1,1]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 3
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [[3,3,3,2],[1,1,1]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [[4,4,3],[3,2]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [[5,3],[2]]
=> [2]
=> [1,0,1,0]
=> 2
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [[4,4,4],[3,3]]
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> 2
[1,1,0,1,0,1,0,0,1,1,0,0]
=> [[5,4],[3]]
=> [3]
=> [1,0,1,0,1,0]
=> 3
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [[5,5],[4]]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 3
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [[5,5],[3]]
=> [3]
=> [1,0,1,0,1,0]
=> 3
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [[4,4,4],[3,2]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [[5,4],[2]]
=> [2]
=> [1,0,1,0]
=> 2
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [[5,5],[2]]
=> [2]
=> [1,0,1,0]
=> 2
[1,1,0,1,1,0,0,0,1,0,1,0]
=> [[3,3,3,3],[2,2,1]]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2
[1,1,0,1,1,0,0,0,1,1,0,0]
=> [[4,3,3],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [[4,4,3],[3,1]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 3
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [[4,4,3],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [[3,3,3,3],[2,1,1]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 3
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [[3,3,3,3],[1,1,1]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [[4,4,4],[3,1]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 3
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [[4,4,4],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[1,1,1,0,0,0,1,0,1,0,1,0]
=> [[2,2,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,1,1,0,0,0,1,1,0,0,1,0]
=> [[3,3,2,2],[2,1]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[1,1,1,0,0,1,0,0,1,1,0,0]
=> [[4,3,2],[2]]
=> [2]
=> [1,0,1,0]
=> 2
[1,1,1,0,0,1,0,1,0,0,1,0]
=> [[4,4,2],[3]]
=> [3]
=> [1,0,1,0,1,0]
=> 3
Description
The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
Matching statistic: St001198
(load all 32 compositions to match this statistic)
(load all 32 compositions to match this statistic)
Mp00103: Dyck paths —peeling map⟶ Dyck paths
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
St001198: Dyck paths ⟶ ℤResult quality: 27% ●values known / values provided: 27%●distinct values known / distinct values provided: 33%
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
St001198: Dyck paths ⟶ ℤResult quality: 27% ●values known / values provided: 27%●distinct values known / distinct values provided: 33%
Values
[1,0]
=> [1,0]
=> [1,0]
=> ? = 1
[1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? ∊ {1,2}
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? ∊ {1,2}
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? ∊ {1,2,2,2,3}
[1,0,1,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? ∊ {1,2,2,2,3}
[1,1,0,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? ∊ {1,2,2,2,3}
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? ∊ {1,2,2,2,3}
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? ∊ {1,2,2,2,3}
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,4}
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,4}
[1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,4}
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,4}
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,4}
[1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,4}
[1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,4}
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,4}
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,4}
[1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,4}
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,4}
[1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,4}
[1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,4}
[1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2
[1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2
[1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2
[1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 2
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 2
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 2
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 2
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 3
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 2
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 2
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 2
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 2
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 2
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 2
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 3
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 2
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 2
[1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 2
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 2
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 2
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 3
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 2
[1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 2
[1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 2
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 2
[1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 2
[1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 2
[1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 2
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 2
[1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> 3
[1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 2
[1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 2
[1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 2
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 2
[1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 2
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 3
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 3
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 3
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 2
Description
The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
Matching statistic: St001206
(load all 32 compositions to match this statistic)
(load all 32 compositions to match this statistic)
Mp00103: Dyck paths —peeling map⟶ Dyck paths
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
St001206: Dyck paths ⟶ ℤResult quality: 27% ●values known / values provided: 27%●distinct values known / distinct values provided: 33%
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
St001206: Dyck paths ⟶ ℤResult quality: 27% ●values known / values provided: 27%●distinct values known / distinct values provided: 33%
Values
[1,0]
=> [1,0]
=> [1,0]
=> ? = 1
[1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? ∊ {1,2}
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? ∊ {1,2}
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? ∊ {1,2,2,2,3}
[1,0,1,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? ∊ {1,2,2,2,3}
[1,1,0,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? ∊ {1,2,2,2,3}
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? ∊ {1,2,2,2,3}
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? ∊ {1,2,2,2,3}
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,4}
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,4}
[1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,4}
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,4}
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,4}
[1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,4}
[1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,4}
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,4}
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,4}
[1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,4}
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,4}
[1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,4}
[1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,4}
[1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2
[1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2
[1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2
[1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 2
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 2
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 2
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 2
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 3
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 2
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 2
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 2
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 2
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 2
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 2
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 3
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 2
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 2
[1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 2
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 2
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 2
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 3
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 2
[1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 2
[1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 2
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 2
[1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 2
[1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 2
[1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 2
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 2
[1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> 3
[1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 2
[1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 2
[1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 2
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 2
[1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 2
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 3
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 3
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 3
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 2
Description
The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$.
The following 63 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000264The girth of a graph, which is not a tree. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000460The hook length of the last cell along the main diagonal of an integer partition. St000474Dyson's crank of a partition. St000667The greatest common divisor of the parts of the partition. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St000870The product of the hook lengths of the diagonal cells in an integer partition. St000993The multiplicity of the largest part of an integer partition. St001175The size of a partition minus the hook length of the base cell. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001280The number of parts of an integer partition that are at least two. St001384The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains. St001498The normalised height of a Nakayama algebra with magnitude 1. St001568The smallest positive integer that does not appear twice in the partition. St001571The Cartan determinant of the integer partition. St001914The size of the orbit of an integer partition in Bulgarian solitaire. St001933The largest multiplicity of a part in an integer partition. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St001432The order dimension of the partition. St000207Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000477The weight of a partition according to Alladi. St000668The least common multiple of the parts of the partition. St000708The product of the parts of an integer partition. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000933The number of multipartitions of sizes given by an integer partition. St000937The number of positive values of the symmetric group character corresponding to the partition. St001279The sum of the parts of an integer partition that are at least two. St001360The number of covering relations in Young's lattice below a partition. St001380The number of monomer-dimer tilings of a Ferrers diagram. St001389The number of partitions of the same length below the given integer partition. St001527The cyclic permutation representation number of an integer partition. St001600The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple graphs. St001606The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on set partitions. St001607The number of coloured graphs such that the multiplicities of colours are given by a partition. St001611The number of multiset partitions such that the multiplicities of elements are given by a partition. St000454The largest eigenvalue of a graph if it is integral. St000939The number of characters of the symmetric group whose value on the partition is positive. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000455The second largest eigenvalue of a graph if it is integral. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001720The minimal length of a chain of small intervals in a lattice. St000706The product of the factorials of the multiplicities of an integer partition. St000707The product of the factorials of the parts. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St000392The length of the longest run of ones in a binary word. St001372The length of a longest cyclic run of ones of a binary word. St001626The number of maximal proper sublattices of a lattice. St001820The size of the image of the pop stack sorting operator. St000153The number of adjacent cycles of a permutation. St000237The number of small exceedances. St000291The number of descents of a binary word. St000292The number of ascents of a binary word. St000374The number of exclusive right-to-left minima of a permutation. St000703The number of deficiencies of a permutation. St000994The number of cycle peaks and the number of cycle valleys of a permutation. St000390The number of runs of ones in a binary word.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!