Your data matches 65 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St001015: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> 1
[1,0,1,0]
=> 1
[1,1,0,0]
=> 2
[1,0,1,0,1,0]
=> 0
[1,0,1,1,0,0]
=> 2
[1,1,0,0,1,0]
=> 2
[1,1,0,1,0,0]
=> 2
[1,1,1,0,0,0]
=> 3
[1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0]
=> 1
[1,0,1,1,1,0,0,0]
=> 3
[1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,0,0]
=> 3
[1,1,0,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,0]
=> 2
[1,1,0,1,1,0,0,0]
=> 3
[1,1,1,0,0,0,1,0]
=> 3
[1,1,1,0,0,1,0,0]
=> 3
[1,1,1,0,1,0,0,0]
=> 3
[1,1,1,1,0,0,0,0]
=> 4
[1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> 4
[1,1,0,0,1,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> 3
[1,1,0,0,1,1,0,1,0,0]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> 4
[1,1,0,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> 3
[1,1,0,1,1,0,0,0,1,0]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> 4
Description
Number of indecomposable injective modules with codominant dimension equal to one in the Nakayama algebra corresponding to the Dyck path.
St001016: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> 1
[1,0,1,0]
=> 1
[1,1,0,0]
=> 2
[1,0,1,0,1,0]
=> 0
[1,0,1,1,0,0]
=> 2
[1,1,0,0,1,0]
=> 2
[1,1,0,1,0,0]
=> 2
[1,1,1,0,0,0]
=> 3
[1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0]
=> 1
[1,0,1,1,1,0,0,0]
=> 3
[1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,0,0]
=> 3
[1,1,0,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,0]
=> 2
[1,1,0,1,1,0,0,0]
=> 3
[1,1,1,0,0,0,1,0]
=> 3
[1,1,1,0,0,1,0,0]
=> 3
[1,1,1,0,1,0,0,0]
=> 3
[1,1,1,1,0,0,0,0]
=> 4
[1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> 4
[1,1,0,0,1,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> 3
[1,1,0,0,1,1,0,1,0,0]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> 4
[1,1,0,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> 3
[1,1,0,1,1,0,0,0,1,0]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> 4
Description
Number of indecomposable injective modules with codominant dimension at most 1 in the Nakayama algebra corresponding to the Dyck path.
Mp00100: Dyck paths touch compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
Mp00117: Graphs Ore closureGraphs
St001060: Graphs ⟶ ℤResult quality: 43% values known / values provided: 43%distinct values known / distinct values provided: 57%
Values
[1,0]
=> [1] => ([],1)
=> ([],1)
=> ? = 1
[1,0,1,0]
=> [1,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,2}
[1,1,0,0]
=> [2] => ([],2)
=> ([],2)
=> ? ∊ {1,2}
[1,0,1,0,1,0]
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,0,1,1,0,0]
=> [1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {0,2,2}
[1,1,0,0,1,0]
=> [2,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2
[1,1,0,1,0,0]
=> [3] => ([],3)
=> ([],3)
=> ? ∊ {0,2,2}
[1,1,1,0,0,0]
=> [3] => ([],3)
=> ([],3)
=> ? ∊ {0,2,2}
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,0,1,0,1,1,0,0]
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 3
[1,0,1,1,0,0,1,0]
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,0,1,1,0,1,0,0]
=> [1,3] => ([(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {0,1,1,1,1,3,4}
[1,0,1,1,1,0,0,0]
=> [1,3] => ([(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {0,1,1,1,1,3,4}
[1,1,0,0,1,0,1,0]
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,1,0,0,1,1,0,0]
=> [2,2] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2
[1,1,0,1,0,0,1,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
[1,1,0,1,0,1,0,0]
=> [4] => ([],4)
=> ([],4)
=> ? ∊ {0,1,1,1,1,3,4}
[1,1,0,1,1,0,0,0]
=> [4] => ([],4)
=> ([],4)
=> ? ∊ {0,1,1,1,1,3,4}
[1,1,1,0,0,0,1,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
[1,1,1,0,0,1,0,0]
=> [4] => ([],4)
=> ([],4)
=> ? ∊ {0,1,1,1,1,3,4}
[1,1,1,0,1,0,0,0]
=> [4] => ([],4)
=> ([],4)
=> ? ∊ {0,1,1,1,1,3,4}
[1,1,1,1,0,0,0,0]
=> [4] => ([],4)
=> ([],4)
=> ? ∊ {0,1,1,1,1,3,4}
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,4,4,4,4,4,5}
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,4,4,4,4,4,5}
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,4,4,4,4,4,5}
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,4,4,4,4,4,5}
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,4,4,4,4,4,5}
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,4,4,4,4,4,5}
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,4,4,4,4,4,5}
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,4,4,4,4,4,5}
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,4,4,4,4,4,5}
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,1,0,1,0,1,0,1,0,0]
=> [5] => ([],5)
=> ([],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,4,4,4,4,4,5}
[1,1,0,1,0,1,1,0,0,0]
=> [5] => ([],5)
=> ([],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,4,4,4,4,4,5}
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,1,0,1,1,0,0,1,0,0]
=> [5] => ([],5)
=> ([],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,4,4,4,4,4,5}
[1,1,0,1,1,0,1,0,0,0]
=> [5] => ([],5)
=> ([],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,4,4,4,4,4,5}
[1,1,0,1,1,1,0,0,0,0]
=> [5] => ([],5)
=> ([],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,4,4,4,4,4,5}
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,0,0,1,1,0,0]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 3
[1,1,1,0,0,1,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,1,1,0,0,1,0,1,0,0]
=> [5] => ([],5)
=> ([],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,4,4,4,4,4,5}
[1,1,1,0,0,1,1,0,0,0]
=> [5] => ([],5)
=> ([],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,4,4,4,4,4,5}
[1,1,1,0,1,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,1,1,0,1,0,0,1,0,0]
=> [5] => ([],5)
=> ([],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,4,4,4,4,4,5}
[1,1,1,0,1,0,1,0,0,0]
=> [5] => ([],5)
=> ([],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,4,4,4,4,4,5}
[1,1,1,0,1,1,0,0,0,0]
=> [5] => ([],5)
=> ([],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,4,4,4,4,4,5}
[1,1,1,1,0,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,1,1,1,0,0,0,1,0,0]
=> [5] => ([],5)
=> ([],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,4,4,4,4,4,5}
[1,1,1,1,0,0,1,0,0,0]
=> [5] => ([],5)
=> ([],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,4,4,4,4,4,5}
[1,1,1,1,0,1,0,0,0,0]
=> [5] => ([],5)
=> ([],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,4,4,4,4,4,5}
[1,1,1,1,1,0,0,0,0,0]
=> [5] => ([],5)
=> ([],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,4,4,4,4,4,5}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6}
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6}
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6}
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6}
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6}
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6}
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6}
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6}
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6}
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6}
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6}
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6}
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6}
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6}
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
Description
The distinguishing index of a graph. This is the smallest number of colours such that there is a colouring of the edges which is not preserved by any automorphism. If the graph has a connected component which is a single edge, or at least two isolated vertices, this statistic is undefined.
Matching statistic: St000681
Mp00100: Dyck paths touch compositionInteger compositions
Mp00180: Integer compositions to ribbonSkew partitions
Mp00183: Skew partitions inner shapeInteger partitions
St000681: Integer partitions ⟶ ℤResult quality: 39% values known / values provided: 39%distinct values known / distinct values provided: 71%
Values
[1,0]
=> [1] => [[1],[]]
=> []
=> ? = 1
[1,0,1,0]
=> [1,1] => [[1,1],[]]
=> []
=> ? ∊ {1,2}
[1,1,0,0]
=> [2] => [[2],[]]
=> []
=> ? ∊ {1,2}
[1,0,1,0,1,0]
=> [1,1,1] => [[1,1,1],[]]
=> []
=> ? ∊ {0,2,2,2,3}
[1,0,1,1,0,0]
=> [1,2] => [[2,1],[]]
=> []
=> ? ∊ {0,2,2,2,3}
[1,1,0,0,1,0]
=> [2,1] => [[2,2],[1]]
=> [1]
=> ? ∊ {0,2,2,2,3}
[1,1,0,1,0,0]
=> [3] => [[3],[]]
=> []
=> ? ∊ {0,2,2,2,3}
[1,1,1,0,0,0]
=> [3] => [[3],[]]
=> []
=> ? ∊ {0,2,2,2,3}
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [[1,1,1,1],[]]
=> []
=> ? ∊ {0,1,2,2,3,3,3,3,3,3,4}
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [[2,1,1],[]]
=> []
=> ? ∊ {0,1,2,2,3,3,3,3,3,3,4}
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [[2,2,1],[1]]
=> [1]
=> ? ∊ {0,1,2,2,3,3,3,3,3,3,4}
[1,0,1,1,0,1,0,0]
=> [1,3] => [[3,1],[]]
=> []
=> ? ∊ {0,1,2,2,3,3,3,3,3,3,4}
[1,0,1,1,1,0,0,0]
=> [1,3] => [[3,1],[]]
=> []
=> ? ∊ {0,1,2,2,3,3,3,3,3,3,4}
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,2] => [[3,2],[1]]
=> [1]
=> ? ∊ {0,1,2,2,3,3,3,3,3,3,4}
[1,1,0,1,0,0,1,0]
=> [3,1] => [[3,3],[2]]
=> [2]
=> 1
[1,1,0,1,0,1,0,0]
=> [4] => [[4],[]]
=> []
=> ? ∊ {0,1,2,2,3,3,3,3,3,3,4}
[1,1,0,1,1,0,0,0]
=> [4] => [[4],[]]
=> []
=> ? ∊ {0,1,2,2,3,3,3,3,3,3,4}
[1,1,1,0,0,0,1,0]
=> [3,1] => [[3,3],[2]]
=> [2]
=> 1
[1,1,1,0,0,1,0,0]
=> [4] => [[4],[]]
=> []
=> ? ∊ {0,1,2,2,3,3,3,3,3,3,4}
[1,1,1,0,1,0,0,0]
=> [4] => [[4],[]]
=> []
=> ? ∊ {0,1,2,2,3,3,3,3,3,3,4}
[1,1,1,1,0,0,0,0]
=> [4] => [[4],[]]
=> []
=> ? ∊ {0,1,2,2,3,3,3,3,3,3,4}
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => [[3,1,1],[]]
=> []
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [[3,1,1],[]]
=> []
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [[3,2,1],[1]]
=> [1]
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => [[3,3,1],[2]]
=> [2]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => [[4,1],[]]
=> []
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => [[4,1],[]]
=> []
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [[3,3,1],[2]]
=> [2]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => [[4,1],[]]
=> []
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => [[4,1],[]]
=> []
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [[4,1],[]]
=> []
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => [[4,2],[1]]
=> [1]
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [[4,2],[1]]
=> [1]
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => [[4,3],[2]]
=> [2]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => [[4,4],[3]]
=> [3]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,1,0,1,1,0,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => [[4,4],[3]]
=> [3]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,1,1,0,1,0,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,1,1,1,0,0,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 2
[1,1,1,0,0,0,1,1,0,0]
=> [3,2] => [[4,3],[2]]
=> [2]
=> 1
[1,1,1,0,0,1,0,0,1,0]
=> [4,1] => [[4,4],[3]]
=> [3]
=> 2
[1,1,1,0,0,1,0,1,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,1,0,0,1,1,0,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,1,0,1,0,0,0,1,0]
=> [4,1] => [[4,4],[3]]
=> [3]
=> 2
[1,1,1,0,1,0,0,1,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,1,0,1,0,1,0,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,1,0,1,1,0,0,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,1,1,0,0,0,0,1,0]
=> [4,1] => [[4,4],[3]]
=> [3]
=> 2
[1,1,1,1,0,0,0,1,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,1,1,0,0,1,0,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,1,1,0,1,0,0,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,1,1,1,0,0,0,0,0]
=> [5] => [[5],[]]
=> []
=> ? ∊ {0,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> [1]
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6}
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> 2
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> [2,1]
=> 0
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,3,1,1] => [[3,3,3,1],[2,2]]
=> [2,2]
=> 2
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,3,2] => [[4,3,1],[2]]
=> [2]
=> 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,4,1] => [[4,4,1],[3]]
=> [3]
=> 2
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,4,1] => [[4,4,1],[3]]
=> [3]
=> 2
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,3,1,1] => [[3,3,3,1],[2,2]]
=> [2,2]
=> 2
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,3,2] => [[4,3,1],[2]]
=> [2]
=> 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,4,1] => [[4,4,1],[3]]
=> [3]
=> 2
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,4,1] => [[4,4,1],[3]]
=> [3]
=> 2
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,4,1] => [[4,4,1],[3]]
=> [3]
=> 2
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]]
=> [1,1,1,1]
=> 3
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,1,2] => [[3,2,2,2],[1,1,1]]
=> [1,1,1]
=> 2
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> [2,1,1]
=> 3
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 1
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 1
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> [2,2,1]
=> 0
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 0
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,3,1] => [[4,4,2],[3,1]]
=> [3,1]
=> 3
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,3,1] => [[4,4,2],[3,1]]
=> [3,1]
=> 3
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> 4
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [3,1,2] => [[4,3,3],[2,2]]
=> [2,2]
=> 2
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [3,2,1] => [[4,4,3],[3,2]]
=> [3,2]
=> 0
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [3,3] => [[5,3],[2]]
=> [2]
=> 1
[1,1,0,1,0,0,1,1,1,0,0,0]
=> [3,3] => [[5,3],[2]]
=> [2]
=> 1
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> 4
[1,1,0,1,0,1,0,0,1,1,0,0]
=> [4,2] => [[5,4],[3]]
=> [3]
=> 2
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,1] => [[5,5],[4]]
=> [4]
=> 3
Description
The Grundy value of Chomp on Ferrers diagrams. Players take turns and choose a cell of the diagram, cutting off all cells below and to the right of this cell in English notation. The player who is left with the single cell partition looses. The traditional version is played on chocolate bars, see [1]. This statistic is the Grundy value of the partition, that is, the smallest non-negative integer which does not occur as value of a partition obtained by a single move.
Mp00031: Dyck paths to 312-avoiding permutationPermutations
Mp00062: Permutations Lehmer-code to major-code bijectionPermutations
Mp00160: Permutations graph of inversionsGraphs
St000259: Graphs ⟶ ℤResult quality: 37% values known / values provided: 37%distinct values known / distinct values provided: 71%
Values
[1,0]
=> [1] => [1] => ([],1)
=> 0 = 1 - 1
[1,0,1,0]
=> [1,2] => [1,2] => ([],2)
=> ? = 1 - 1
[1,1,0,0]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1 = 2 - 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {0,2,2} - 1
[1,0,1,1,0,0]
=> [1,3,2] => [3,1,2] => ([(0,2),(1,2)],3)
=> 2 = 3 - 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {0,2,2} - 1
[1,1,0,1,0,0]
=> [2,3,1] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {0,2,2} - 1
[1,1,1,0,0,0]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 1 = 2 - 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {0,1,1,1,1,2,3,3,3} - 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,1,2,3,3,3} - 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 3 = 4 - 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {0,1,1,1,1,2,3,3,3} - 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,1,2,3,3,3} - 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {0,1,1,1,1,2,3,3,3} - 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {0,1,1,1,1,2,3,3,3} - 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,1,2,3,3,3} - 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? ∊ {0,1,1,1,1,2,3,3,3} - 1
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,1,2,3,3,3} - 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3 = 4 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3 = 4 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [5,2,4,1,3] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [5,1,4,2,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [1,3,2,4,5] => ([(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,2,3,5,4] => ([(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [5,1,2,4,3] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [4,1,3,2,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [3,1,2,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [5,4,1,3,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => [1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,1,1,0,1,0,0,0,1,0]
=> [3,4,2,1,5] => [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,1,1,0,1,0,0,1,0,0]
=> [3,4,2,5,1] => [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,1,1,0,1,0,1,0,0,0]
=> [3,4,5,2,1] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,1,1,0,1,1,0,0,0,0]
=> [3,5,4,2,1] => [5,1,4,3,2] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,1,1,1,0,0,1,0,0,0]
=> [4,3,5,2,1] => [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,1,1,1,0,1,0,0,0,0]
=> [4,5,3,2,1] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5} - 1
[1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => [6,1,2,3,4,5] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => [5,1,2,3,4,6] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => [4,6,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 3 = 4 - 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,5,4] => [6,5,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => [4,1,2,3,5,6] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => [3,6,1,2,4,5] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,4,5,3,6] => [3,5,1,2,4,6] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,4,5,6,3] => [3,4,6,1,2,5] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,4,6,5,3] => [6,3,5,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,5,4,3,6] => [5,4,1,2,3,6] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,5,4,6,3] => [4,3,6,1,2,5] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,5,6,4,3] => [3,6,5,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,6,5,4,3] => [6,5,4,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6] => [3,1,2,4,5,6] => ([(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,4,6,5] => [2,6,1,3,4,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 3 = 4 - 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,6] => [2,5,1,3,4,6] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,3,2,5,6,4] => [2,4,6,1,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,6,5,4] => [6,2,5,1,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,3,4,2,5,6] => [2,4,1,3,5,6] => ([(2,5),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,3,4,2,6,5] => [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3 = 4 - 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,3,4,5,2,6] => [2,3,5,1,4,6] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,2] => [2,3,4,6,1,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 3 = 4 - 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,3,4,6,5,2] => [6,2,3,5,1,4] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,3,5,4,2,6] => [5,2,4,1,3,6] => ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,3,5,4,6,2] => [4,2,3,6,1,5] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,3,5,6,4,2] => [3,6,2,5,1,4] => ([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,3,6,5,4,2] => [6,5,2,4,1,3] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,4,3,2,6,5] => [3,2,6,1,4,5] => ([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,4,3,5,6,2] => [3,2,4,6,1,5] => ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,4,3,6,5,2] => [2,6,3,5,1,4] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,4,5,3,6,2] => [2,4,3,6,1,5] => ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,4,5,6,3,2] => [2,3,6,5,1,4] => ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,4,6,5,3,2] => [6,2,5,4,1,3] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,5,4,3,6,2] => [4,3,2,6,1,5] => ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,5,4,6,3,2] => [3,2,6,5,1,4] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
Description
The diameter of a connected graph. This is the greatest distance between any pair of vertices.
Mp00025: Dyck paths to 132-avoiding permutationPermutations
Mp00065: Permutations permutation posetPosets
Mp00206: Posets antichains of maximal sizeLattices
St001875: Lattices ⟶ ℤResult quality: 34% values known / values provided: 34%distinct values known / distinct values provided: 57%
Values
[1,0]
=> [1] => ([],1)
=> ([],1)
=> ? = 1
[1,0,1,0]
=> [2,1] => ([],2)
=> ([],1)
=> ? ∊ {1,2}
[1,1,0,0]
=> [1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {1,2}
[1,0,1,0,1,0]
=> [3,2,1] => ([],3)
=> ([],1)
=> ? ∊ {0,2,2,2}
[1,0,1,1,0,0]
=> [2,3,1] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,2,2,2}
[1,1,0,0,1,0]
=> [3,1,2] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,2,2,2}
[1,1,0,1,0,0]
=> [2,1,3] => ([(0,2),(1,2)],3)
=> ([],1)
=> ? ∊ {0,2,2,2}
[1,1,1,0,0,0]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => ([],4)
=> ([],1)
=> ? ∊ {0,1,1,1,1,2,2,3,3,3}
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,2,2,3,3,3}
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,2,2,3,3,3}
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => ([(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {0,1,1,1,1,2,2,3,3,3}
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,2,2,3,3,3}
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => ([(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {0,1,1,1,1,2,2,3,3,3}
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {0,1,1,1,1,2,2,3,3,3}
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,2,2,3,3,3}
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,1,1,1,1,2,2,3,3,3}
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> ? ∊ {0,1,1,1,1,2,2,3,3,3}
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => ([],5)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => ([(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => ([(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => ([(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => ([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => ([(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => ([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => ([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => ([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => ([(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => ([(0,3),(1,4),(4,2)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 4
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => ([(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => ([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => ([(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => ([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => ([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => ([(0,3),(1,4),(4,2)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 4
[1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,1,1,0,0,1,1,0,0,0]
=> [3,4,1,2,5] => ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => ([(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,3,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,4,5] => ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,1,1,0,1,1,0,0,0,0]
=> [2,3,1,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => ([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,4,4,4,4,4,4}
[1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1] => ([],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [5,6,4,3,2,1] => ([(4,5)],6)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [6,4,5,3,2,1] => ([(4,5)],6)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [5,4,6,3,2,1] => ([(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [4,5,6,3,2,1] => ([(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [6,5,3,4,2,1] => ([(4,5)],6)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5}
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [5,6,3,4,2,1] => ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [6,3,4,5,2,1] => ([(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [3,4,5,6,2,1] => ([(2,3),(3,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [5,6,4,2,3,1] => ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [6,4,5,2,3,1] => ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [4,5,6,2,3,1] => ([(1,3),(2,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 4
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [3,4,5,2,6,1] => ([(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [6,5,2,3,4,1] => ([(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [5,6,2,3,4,1] => ([(1,3),(2,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 4
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [4,5,2,3,6,1] => ([(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [6,2,3,4,5,1] => ([(2,3),(3,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [5,2,3,4,6,1] => ([(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(1,5),(3,4),(4,2),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [5,6,4,3,1,2] => ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [6,4,5,3,1,2] => ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [4,5,6,3,1,2] => ([(1,3),(2,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 4
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [6,5,3,4,1,2] => ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [4,5,3,6,1,2] => ([(0,5),(1,3),(2,4),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [6,3,4,5,1,2] => ([(1,3),(2,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 4
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [5,3,4,6,1,2] => ([(0,5),(1,3),(2,4),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,1,0,1,0,0,1,1,1,0,0,0]
=> [4,5,6,2,1,3] => ([(0,5),(1,5),(2,3),(3,4)],6)
=> ([(0,2),(2,1)],3)
=> 3
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [3,4,5,2,1,6] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[1,1,0,1,1,0,0,0,1,1,0,0]
=> [5,6,2,3,1,4] => ([(0,5),(1,3),(2,4),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [4,5,2,3,1,6] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [6,2,3,4,1,5] => ([(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [5,2,3,4,1,6] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,1,6] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,1,1,0,0,0,1,0,1,0,1,0]
=> [6,5,4,1,2,3] => ([(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 3
[1,1,1,0,0,0,1,0,1,1,0,0]
=> [5,6,4,1,2,3] => ([(1,3),(2,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 4
[1,1,1,0,0,0,1,1,0,0,1,0]
=> [6,4,5,1,2,3] => ([(1,3),(2,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 4
Description
The number of simple modules with projective dimension at most 1.
Mp00100: Dyck paths touch compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000777: Graphs ⟶ ℤResult quality: 33% values known / values provided: 33%distinct values known / distinct values provided: 86%
Values
[1,0]
=> [1] => ([],1)
=> 1
[1,0,1,0]
=> [1,1] => ([(0,1)],2)
=> 2
[1,1,0,0]
=> [2] => ([],2)
=> ? = 1
[1,0,1,0,1,0]
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[1,0,1,1,0,0]
=> [1,2] => ([(1,2)],3)
=> ? ∊ {0,2,2}
[1,1,0,0,1,0]
=> [2,1] => ([(0,2),(1,2)],3)
=> 3
[1,1,0,1,0,0]
=> [3] => ([],3)
=> ? ∊ {0,2,2}
[1,1,1,0,0,0]
=> [3] => ([],3)
=> ? ∊ {0,2,2}
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,0,1,0,1,1,0,0]
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,1,2,3,3,3}
[1,0,1,1,0,0,1,0]
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,0,1,1,0,1,0,0]
=> [1,3] => ([(2,3)],4)
=> ? ∊ {0,1,1,1,1,2,3,3,3}
[1,0,1,1,1,0,0,0]
=> [1,3] => ([(2,3)],4)
=> ? ∊ {0,1,1,1,1,2,3,3,3}
[1,1,0,0,1,0,1,0]
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,1,0,0,1,1,0,0]
=> [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,1,2,3,3,3}
[1,1,0,1,0,0,1,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[1,1,0,1,0,1,0,0]
=> [4] => ([],4)
=> ? ∊ {0,1,1,1,1,2,3,3,3}
[1,1,0,1,1,0,0,0]
=> [4] => ([],4)
=> ? ∊ {0,1,1,1,1,2,3,3,3}
[1,1,1,0,0,0,1,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[1,1,1,0,0,1,0,0]
=> [4] => ([],4)
=> ? ∊ {0,1,1,1,1,2,3,3,3}
[1,1,1,0,1,0,0,0]
=> [4] => ([],4)
=> ? ∊ {0,1,1,1,1,2,3,3,3}
[1,1,1,1,0,0,0,0]
=> [4] => ([],4)
=> ? ∊ {0,1,1,1,1,2,3,3,3}
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => ([(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => ([(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => ([(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => ([(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => ([(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [5] => ([],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,1,0,1,0,1,1,0,0,0]
=> [5] => ([],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [5] => ([],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,1,0,1,1,0,1,0,0,0]
=> [5] => ([],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,1,0,1,1,1,0,0,0,0]
=> [5] => ([],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,1,0,0,0,1,1,0,0]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,1,1,0,0,1,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,1,1,0,0,1,0,1,0,0]
=> [5] => ([],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,1,1,0,0,1,1,0,0,0]
=> [5] => ([],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,1,1,0,1,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,1,1,0,1,0,0,1,0,0]
=> [5] => ([],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,1,1,0,1,0,1,0,0,0]
=> [5] => ([],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,1,1,0,1,1,0,0,0,0]
=> [5] => ([],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,1,1,1,0,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,1,1,1,0,0,0,1,0,0]
=> [5] => ([],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,1,1,1,0,0,1,0,0,0]
=> [5] => ([],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,1,1,1,0,1,0,0,0,0]
=> [5] => ([],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,1,1,1,1,0,0,0,0,0]
=> [5] => ([],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,4,4}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5}
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5}
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5}
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5}
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5}
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5}
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5}
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5}
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5}
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 3
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 3
[1,1,0,1,1,0,0,0,1,0,1,0]
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 3
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 3
Description
The number of distinct eigenvalues of the distance Laplacian of a connected graph.
Mp00031: Dyck paths to 312-avoiding permutationPermutations
Mp00159: Permutations Demazure product with inversePermutations
Mp00160: Permutations graph of inversionsGraphs
St000771: Graphs ⟶ ℤResult quality: 33% values known / values provided: 33%distinct values known / distinct values provided: 71%
Values
[1,0]
=> [1] => [1] => ([],1)
=> 1
[1,0,1,0]
=> [1,2] => [1,2] => ([],2)
=> ? = 2
[1,1,0,0]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {0,2,3}
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => ([(1,2)],3)
=> ? ∊ {0,2,3}
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {0,2,3}
[1,1,0,1,0,0]
=> [2,3,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[1,1,1,0,0,0]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {0,1,1,1,1,3,3,3,4}
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {0,1,1,1,1,3,3,3,4}
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {0,1,1,1,1,3,3,3,4}
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,1,3,3,3,4}
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,1,3,3,3,4}
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {0,1,1,1,1,3,3,3,4}
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? ∊ {0,1,1,1,1,3,3,3,4}
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,1,3,3,3,4}
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,1,1,1,1,3,3,3,4}
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5}
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5}
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5}
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5}
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5}
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => ([(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5}
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5}
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5}
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5}
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5}
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5}
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5}
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5}
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5}
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5}
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5}
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5}
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5}
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5}
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5}
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5}
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5}
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5}
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5}
[1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5}
[1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => [4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5}
[1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,1,0,0,0,1,0]
=> [3,4,2,1,5] => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5}
[1,1,1,0,1,0,0,1,0,0]
=> [3,4,2,5,1] => [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,0,1,0,1,0,0,0]
=> [3,4,5,2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,1,1,0,1,1,0,0,0,0]
=> [3,5,4,2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5}
[1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,1,1,0,0,1,0,0,0]
=> [4,3,5,2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,1,1,1,0,1,0,0,0,0]
=> [4,5,3,2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => [1,2,3,4,6,5] => ([(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => [1,2,3,5,4,6] => ([(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => [1,2,3,6,5,4] => ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,5,4] => [1,2,3,6,5,4] => ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => [1,2,4,3,5,6] => ([(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => [1,2,4,3,6,5] => ([(2,5),(3,4)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,4,5,3,6] => [1,2,5,4,3,6] => ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,4,5,6,3] => [1,2,6,4,5,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => [6,2,3,4,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,6,5,1] => [6,2,3,5,4,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,5,4,6,1] => [6,2,4,3,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,5,6,4,1] => [6,2,5,4,3,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,6,5,4,1] => [6,2,5,4,3,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,4,3,5,6,1] => [6,3,2,4,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [2,4,3,6,5,1] => [6,3,2,5,4,1] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [2,4,5,3,6,1] => [6,4,3,2,5,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [2,4,5,6,3,1] => [6,5,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,4,6,5,3,1] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [2,5,4,3,6,1] => [6,4,3,2,5,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [2,5,4,6,3,1] => [6,5,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,5,6,4,3,1] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,6,5,4,3,1] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [3,2,4,5,6,1] => [6,2,3,4,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,2,4,6,5,1] => [6,2,3,5,4,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [3,2,5,4,6,1] => [6,2,4,3,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,2,5,6,4,1] => [6,2,5,4,3,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,2,6,5,4,1] => [6,2,5,4,3,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [3,4,2,5,6,1] => [6,3,2,4,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [3,4,2,6,5,1] => [6,3,2,5,4,1] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [3,4,5,2,6,1] => [6,4,3,2,5,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [3,4,5,6,2,1] => [6,5,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [3,4,6,5,2,1] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [3,5,4,2,6,1] => [6,4,3,2,5,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [3,5,4,6,2,1] => [6,5,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [3,5,6,4,2,1] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian $$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$ Its eigenvalues are $0,4,4,6$, so the statistic is $2$. The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00124: Dyck paths Adin-Bagno-Roichman transformationDyck paths
St001014: Dyck paths ⟶ ℤResult quality: 33% values known / values provided: 33%distinct values known / distinct values provided: 86%
Values
[1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> 2 = 1 + 1
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 4 = 3 + 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 4 = 3 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 4 = 3 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 5 = 4 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 3 = 2 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> 4 = 3 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> 4 = 3 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> 4 = 3 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 5 = 4 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> 4 = 3 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> 5 = 4 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> 4 = 3 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 5 = 4 + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,1,1,0,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,1,0,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,1,1,0,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,1,1,0,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,1,1,0,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,1,1,0,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6} + 1
Description
Number of indecomposable injective modules with codominant dimension equal to the dominant dimension of the Nakayama algebra corresponding to the Dyck path.
Mp00103: Dyck paths peeling mapDyck paths
Mp00032: Dyck paths inverse zeta mapDyck paths
St001198: Dyck paths ⟶ ℤResult quality: 27% values known / values provided: 27%distinct values known / distinct values provided: 29%
Values
[1,0]
=> [1,0]
=> [1,0]
=> ? = 1
[1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? ∊ {1,2}
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? ∊ {1,2}
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? ∊ {0,2,2,2,3}
[1,0,1,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? ∊ {0,2,2,2,3}
[1,1,0,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? ∊ {0,2,2,2,3}
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? ∊ {0,2,2,2,3}
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? ∊ {0,2,2,2,3}
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {0,1,1,1,1,2,3,3,3,3,3,3,4}
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {0,1,1,1,1,2,3,3,3,3,3,3,4}
[1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {0,1,1,1,1,2,3,3,3,3,3,3,4}
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {0,1,1,1,1,2,3,3,3,3,3,3,4}
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {0,1,1,1,1,2,3,3,3,3,3,3,4}
[1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {0,1,1,1,1,2,3,3,3,3,3,3,4}
[1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {0,1,1,1,1,2,3,3,3,3,3,3,4}
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {0,1,1,1,1,2,3,3,3,3,3,3,4}
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {0,1,1,1,1,2,3,3,3,3,3,3,4}
[1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {0,1,1,1,1,2,3,3,3,3,3,3,4}
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {0,1,1,1,1,2,3,3,3,3,3,3,4}
[1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {0,1,1,1,1,2,3,3,3,3,3,3,4}
[1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {0,1,1,1,1,2,3,3,3,3,3,3,4}
[1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2
[1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5}
[1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2
[1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2
[1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 2
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 2
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 2
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 2
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 3
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 2
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 2
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 2
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 2
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 2
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 2
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 3
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 2
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 2
[1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 2
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 2
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 2
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 3
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 2
[1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 2
[1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 2
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 2
[1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 2
[1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 2
[1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 2
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 2
[1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> 3
[1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 2
[1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 2
[1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 2
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 2
[1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 2
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 3
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 3
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 3
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 2
Description
The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
The following 55 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St000264The girth of a graph, which is not a tree. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000460The hook length of the last cell along the main diagonal of an integer partition. St000474Dyson's crank of a partition. St000667The greatest common divisor of the parts of the partition. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St000870The product of the hook lengths of the diagonal cells in an integer partition. St000993The multiplicity of the largest part of an integer partition. St001175The size of a partition minus the hook length of the base cell. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001247The number of parts of a partition that are not congruent 2 modulo 3. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001280The number of parts of an integer partition that are at least two. St001384The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains. St001498The normalised height of a Nakayama algebra with magnitude 1. St001568The smallest positive integer that does not appear twice in the partition. St001571The Cartan determinant of the integer partition. St001914The size of the orbit of an integer partition in Bulgarian solitaire. St001933The largest multiplicity of a part in an integer partition. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St001432The order dimension of the partition. St000207Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000477The weight of a partition according to Alladi. St000668The least common multiple of the parts of the partition. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000933The number of multipartitions of sizes given by an integer partition. St000937The number of positive values of the symmetric group character corresponding to the partition. St001279The sum of the parts of an integer partition that are at least two. St001360The number of covering relations in Young's lattice below a partition. St001380The number of monomer-dimer tilings of a Ferrers diagram. St001389The number of partitions of the same length below the given integer partition. St001527The cyclic permutation representation number of an integer partition. St001600The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple graphs. St001606The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on set partitions. St001607The number of coloured graphs such that the multiplicities of colours are given by a partition. St001611The number of multiset partitions such that the multiplicities of elements are given by a partition. St000454The largest eigenvalue of a graph if it is integral. St000939The number of characters of the symmetric group whose value on the partition is positive. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St000455The second largest eigenvalue of a graph if it is integral. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000706The product of the factorials of the multiplicities of an integer partition. St000707The product of the factorials of the parts. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St000488The number of cycles of a permutation of length at most 2. St001626The number of maximal proper sublattices of a lattice.