searching the database
Your data matches 25 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000097
Values
[1] => ([],1)
 => ([],1)
 => 1
[1,2] => ([],2)
 => ([],2)
 => 1
[2,1] => ([(0,1)],2)
 => ([(0,1)],2)
 => 2
[1,2,3] => ([],3)
 => ([],3)
 => 1
[1,3,2] => ([(1,2)],3)
 => ([(1,2)],3)
 => 2
[2,1,3] => ([(1,2)],3)
 => ([(1,2)],3)
 => 2
[2,3,1] => ([(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,2)],3)
 => 3
[3,1,2] => ([(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,2)],3)
 => 3
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,2)],3)
 => 3
[1,2,3,4] => ([],4)
 => ([],4)
 => 1
[1,2,4,3] => ([(2,3)],4)
 => ([(2,3)],4)
 => 2
[1,3,2,4] => ([(2,3)],4)
 => ([(2,3)],4)
 => 2
[1,3,4,2] => ([(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 3
[1,4,2,3] => ([(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 3
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 3
[2,1,3,4] => ([(2,3)],4)
 => ([(2,3)],4)
 => 2
[2,1,4,3] => ([(0,3),(1,2)],4)
 => ([(0,3),(1,2)],4)
 => 2
[2,3,1,4] => ([(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 3
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 3
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[3,1,2,4] => ([(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 3
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 3
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 3
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[1,2,3,4,5] => ([],5)
 => ([],5)
 => 1
[1,2,3,5,4] => ([(3,4)],5)
 => ([(3,4)],5)
 => 2
[1,2,4,3,5] => ([(3,4)],5)
 => ([(3,4)],5)
 => 2
[1,2,4,5,3] => ([(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 3
[1,2,5,3,4] => ([(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 3
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 3
[1,3,2,4,5] => ([(3,4)],5)
 => ([(3,4)],5)
 => 2
[1,3,2,5,4] => ([(1,4),(2,3)],5)
 => ([(1,4),(2,3)],5)
 => 2
[1,3,4,2,5] => ([(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 3
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
 => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4
[1,4,2,3,5] => ([(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 3
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
 => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 3
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4
Description
The order of the largest clique of the graph.
A clique in a graph $G$ is a subset $U \subseteq V(G)$ such that any pair of vertices in $U$ are adjacent. I.e. the subgraph induced by $U$ is a complete graph.
Matching statistic: St000098
Values
[1] => ([],1)
 => ([],1)
 => 1
[1,2] => ([],2)
 => ([],2)
 => 1
[2,1] => ([(0,1)],2)
 => ([(0,1)],2)
 => 2
[1,2,3] => ([],3)
 => ([],3)
 => 1
[1,3,2] => ([(1,2)],3)
 => ([(1,2)],3)
 => 2
[2,1,3] => ([(1,2)],3)
 => ([(1,2)],3)
 => 2
[2,3,1] => ([(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,2)],3)
 => 3
[3,1,2] => ([(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,2)],3)
 => 3
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,2)],3)
 => 3
[1,2,3,4] => ([],4)
 => ([],4)
 => 1
[1,2,4,3] => ([(2,3)],4)
 => ([(2,3)],4)
 => 2
[1,3,2,4] => ([(2,3)],4)
 => ([(2,3)],4)
 => 2
[1,3,4,2] => ([(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 3
[1,4,2,3] => ([(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 3
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 3
[2,1,3,4] => ([(2,3)],4)
 => ([(2,3)],4)
 => 2
[2,1,4,3] => ([(0,3),(1,2)],4)
 => ([(0,3),(1,2)],4)
 => 2
[2,3,1,4] => ([(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 3
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 3
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[3,1,2,4] => ([(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 3
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 3
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 3
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[1,2,3,4,5] => ([],5)
 => ([],5)
 => 1
[1,2,3,5,4] => ([(3,4)],5)
 => ([(3,4)],5)
 => 2
[1,2,4,3,5] => ([(3,4)],5)
 => ([(3,4)],5)
 => 2
[1,2,4,5,3] => ([(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 3
[1,2,5,3,4] => ([(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 3
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 3
[1,3,2,4,5] => ([(3,4)],5)
 => ([(3,4)],5)
 => 2
[1,3,2,5,4] => ([(1,4),(2,3)],5)
 => ([(1,4),(2,3)],5)
 => 2
[1,3,4,2,5] => ([(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 3
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
 => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4
[1,4,2,3,5] => ([(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 3
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
 => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 3
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4
Description
The chromatic number of a graph. 
The minimal number of colors needed to color the vertices of the graph such that no two vertices which share an edge have the same color.
Matching statistic: St001029
Values
[1] => ([],1)
 => ([],1)
 => 1
[1,2] => ([],2)
 => ([],2)
 => 1
[2,1] => ([(0,1)],2)
 => ([(0,1)],2)
 => 2
[1,2,3] => ([],3)
 => ([],3)
 => 1
[1,3,2] => ([(1,2)],3)
 => ([(1,2)],3)
 => 2
[2,1,3] => ([(1,2)],3)
 => ([(1,2)],3)
 => 2
[2,3,1] => ([(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,2)],3)
 => 3
[3,1,2] => ([(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,2)],3)
 => 3
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,2)],3)
 => 3
[1,2,3,4] => ([],4)
 => ([],4)
 => 1
[1,2,4,3] => ([(2,3)],4)
 => ([(2,3)],4)
 => 2
[1,3,2,4] => ([(2,3)],4)
 => ([(2,3)],4)
 => 2
[1,3,4,2] => ([(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 3
[1,4,2,3] => ([(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 3
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 3
[2,1,3,4] => ([(2,3)],4)
 => ([(2,3)],4)
 => 2
[2,1,4,3] => ([(0,3),(1,2)],4)
 => ([(0,3),(1,2)],4)
 => 2
[2,3,1,4] => ([(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 3
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 3
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[3,1,2,4] => ([(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 3
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 3
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 3
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[1,2,3,4,5] => ([],5)
 => ([],5)
 => 1
[1,2,3,5,4] => ([(3,4)],5)
 => ([(3,4)],5)
 => 2
[1,2,4,3,5] => ([(3,4)],5)
 => ([(3,4)],5)
 => 2
[1,2,4,5,3] => ([(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 3
[1,2,5,3,4] => ([(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 3
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 3
[1,3,2,4,5] => ([(3,4)],5)
 => ([(3,4)],5)
 => 2
[1,3,2,5,4] => ([(1,4),(2,3)],5)
 => ([(1,4),(2,3)],5)
 => 2
[1,3,4,2,5] => ([(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 3
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
 => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4
[1,4,2,3,5] => ([(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 3
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
 => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 3
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4
Description
The size of the core of a graph.
The core of the graph $G$ is the smallest graph $C$ such that there is a graph homomorphism from $G$ to $C$ and a graph homomorphism from $C$ to $G$.
Matching statistic: St001108
Values
[1] => ([],1)
 => ([],1)
 => 1
[1,2] => ([],2)
 => ([],2)
 => 1
[2,1] => ([(0,1)],2)
 => ([(0,1)],2)
 => 2
[1,2,3] => ([],3)
 => ([],3)
 => 1
[1,3,2] => ([(1,2)],3)
 => ([(1,2)],3)
 => 2
[2,1,3] => ([(1,2)],3)
 => ([(1,2)],3)
 => 2
[2,3,1] => ([(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,2)],3)
 => 3
[3,1,2] => ([(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,2)],3)
 => 3
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,2)],3)
 => 3
[1,2,3,4] => ([],4)
 => ([],4)
 => 1
[1,2,4,3] => ([(2,3)],4)
 => ([(2,3)],4)
 => 2
[1,3,2,4] => ([(2,3)],4)
 => ([(2,3)],4)
 => 2
[1,3,4,2] => ([(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 3
[1,4,2,3] => ([(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 3
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 3
[2,1,3,4] => ([(2,3)],4)
 => ([(2,3)],4)
 => 2
[2,1,4,3] => ([(0,3),(1,2)],4)
 => ([(0,3),(1,2)],4)
 => 2
[2,3,1,4] => ([(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 3
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 3
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[3,1,2,4] => ([(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 3
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 3
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 3
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[1,2,3,4,5] => ([],5)
 => ([],5)
 => 1
[1,2,3,5,4] => ([(3,4)],5)
 => ([(3,4)],5)
 => 2
[1,2,4,3,5] => ([(3,4)],5)
 => ([(3,4)],5)
 => 2
[1,2,4,5,3] => ([(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 3
[1,2,5,3,4] => ([(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 3
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 3
[1,3,2,4,5] => ([(3,4)],5)
 => ([(3,4)],5)
 => 2
[1,3,2,5,4] => ([(1,4),(2,3)],5)
 => ([(1,4),(2,3)],5)
 => 2
[1,3,4,2,5] => ([(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 3
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
 => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4
[1,4,2,3,5] => ([(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 3
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
 => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 3
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4
Description
The 2-dynamic chromatic number of a graph.
A $k$-dynamic coloring of a graph $G$ is a proper coloring of $G$ in such a way that each vertex $v$ sees at least $\min\{d(v), k\}$ colors in its neighborhood. The $k$-dynamic chromatic number of a graph is the smallest number of colors needed to find an $k$-dynamic coloring.
This statistic records the $2$-dynamic chromatic number of a graph.
Matching statistic: St001494
Values
[1] => ([],1)
 => ([],1)
 => 1
[1,2] => ([],2)
 => ([],2)
 => 1
[2,1] => ([(0,1)],2)
 => ([(0,1)],2)
 => 2
[1,2,3] => ([],3)
 => ([],3)
 => 1
[1,3,2] => ([(1,2)],3)
 => ([(1,2)],3)
 => 2
[2,1,3] => ([(1,2)],3)
 => ([(1,2)],3)
 => 2
[2,3,1] => ([(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,2)],3)
 => 3
[3,1,2] => ([(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,2)],3)
 => 3
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,2)],3)
 => 3
[1,2,3,4] => ([],4)
 => ([],4)
 => 1
[1,2,4,3] => ([(2,3)],4)
 => ([(2,3)],4)
 => 2
[1,3,2,4] => ([(2,3)],4)
 => ([(2,3)],4)
 => 2
[1,3,4,2] => ([(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 3
[1,4,2,3] => ([(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 3
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 3
[2,1,3,4] => ([(2,3)],4)
 => ([(2,3)],4)
 => 2
[2,1,4,3] => ([(0,3),(1,2)],4)
 => ([(0,3),(1,2)],4)
 => 2
[2,3,1,4] => ([(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 3
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 3
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[3,1,2,4] => ([(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 3
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 3
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 3
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 4
[1,2,3,4,5] => ([],5)
 => ([],5)
 => 1
[1,2,3,5,4] => ([(3,4)],5)
 => ([(3,4)],5)
 => 2
[1,2,4,3,5] => ([(3,4)],5)
 => ([(3,4)],5)
 => 2
[1,2,4,5,3] => ([(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 3
[1,2,5,3,4] => ([(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 3
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 3
[1,3,2,4,5] => ([(3,4)],5)
 => ([(3,4)],5)
 => 2
[1,3,2,5,4] => ([(1,4),(2,3)],5)
 => ([(1,4),(2,3)],5)
 => 2
[1,3,4,2,5] => ([(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 3
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
 => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4
[1,4,2,3,5] => ([(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 3
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
 => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 3
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 4
Description
The Alon-Tarsi number of a graph.
Let $G$ be a graph with vertices $\{1,\dots,n\}$ and edge set $E$.  Let $P_G=\prod_{i < j, (i,j)\in E} x_i-x_j$ be its graph polynomial.  Then the Alon-Tarsi number is the smallest number $k$ such that $P_G$ contains a monomial with exponents strictly less than $k$.
Matching statistic: St000093
Values
[1] => ([],1)
 => ([],1)
 => ([],1)
 => 1
[1,2] => ([],2)
 => ([],2)
 => ([(0,1)],2)
 => 1
[2,1] => ([(0,1)],2)
 => ([(0,1)],2)
 => ([],2)
 => 2
[1,2,3] => ([],3)
 => ([],3)
 => ([(0,1),(0,2),(1,2)],3)
 => 1
[1,3,2] => ([(1,2)],3)
 => ([(1,2)],3)
 => ([(0,2),(1,2)],3)
 => 2
[2,1,3] => ([(1,2)],3)
 => ([(1,2)],3)
 => ([(0,2),(1,2)],3)
 => 2
[2,3,1] => ([(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,2)],3)
 => ([],3)
 => 3
[3,1,2] => ([(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,2)],3)
 => ([],3)
 => 3
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,2)],3)
 => ([],3)
 => 3
[1,2,3,4] => ([],4)
 => ([],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 1
[1,2,4,3] => ([(2,3)],4)
 => ([(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 2
[1,3,2,4] => ([(2,3)],4)
 => ([(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 2
[1,3,4,2] => ([(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,3),(2,3)],4)
 => 3
[1,4,2,3] => ([(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,3),(2,3)],4)
 => 3
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,3),(2,3)],4)
 => 3
[2,1,3,4] => ([(2,3)],4)
 => ([(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 2
[2,1,4,3] => ([(0,3),(1,2)],4)
 => ([(0,3),(1,2)],4)
 => ([(0,2),(0,3),(1,2),(1,3)],4)
 => 2
[2,3,1,4] => ([(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,3),(2,3)],4)
 => 3
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 4
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(2,3)],4)
 => 3
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 4
[3,1,2,4] => ([(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,3),(2,3)],4)
 => 3
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(2,3)],4)
 => 3
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,3),(2,3)],4)
 => 3
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 4
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 4
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 4
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 4
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 4
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 4
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 4
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 4
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 4
[1,2,3,4,5] => ([],5)
 => ([],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 1
[1,2,3,5,4] => ([(3,4)],5)
 => ([(3,4)],5)
 => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 2
[1,2,4,3,5] => ([(3,4)],5)
 => ([(3,4)],5)
 => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 2
[1,2,4,5,3] => ([(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
[1,2,5,3,4] => ([(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
[1,3,2,4,5] => ([(3,4)],5)
 => ([(3,4)],5)
 => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 2
[1,3,2,5,4] => ([(1,4),(2,3)],5)
 => ([(1,4),(2,3)],5)
 => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
 => 2
[1,3,4,2,5] => ([(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,4),(3,4)],5)
 => 4
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
 => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,4),(3,4)],5)
 => 4
[1,4,2,3,5] => ([(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
 => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,4),(3,4)],5)
 => 4
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,4),(3,4)],5)
 => 4
Description
The cardinality of a maximal independent set of vertices of a graph. 
An independent set of a graph is a set of pairwise non-adjacent vertices. A maximum independent set is an independent set of maximum cardinality.  This statistic is also called the independence number or stability number $\alpha(G)$ of $G$.
Matching statistic: St000786
Values
[1] => ([],1)
 => ([],1)
 => ([],1)
 => 1
[1,2] => ([],2)
 => ([],2)
 => ([(0,1)],2)
 => 1
[2,1] => ([(0,1)],2)
 => ([(0,1)],2)
 => ([],2)
 => 2
[1,2,3] => ([],3)
 => ([],3)
 => ([(0,1),(0,2),(1,2)],3)
 => 1
[1,3,2] => ([(1,2)],3)
 => ([(1,2)],3)
 => ([(0,2),(1,2)],3)
 => 2
[2,1,3] => ([(1,2)],3)
 => ([(1,2)],3)
 => ([(0,2),(1,2)],3)
 => 2
[2,3,1] => ([(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,2)],3)
 => ([],3)
 => 3
[3,1,2] => ([(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,2)],3)
 => ([],3)
 => 3
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,2)],3)
 => ([],3)
 => 3
[1,2,3,4] => ([],4)
 => ([],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 1
[1,2,4,3] => ([(2,3)],4)
 => ([(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 2
[1,3,2,4] => ([(2,3)],4)
 => ([(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 2
[1,3,4,2] => ([(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,3),(2,3)],4)
 => 3
[1,4,2,3] => ([(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,3),(2,3)],4)
 => 3
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,3),(2,3)],4)
 => 3
[2,1,3,4] => ([(2,3)],4)
 => ([(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 2
[2,1,4,3] => ([(0,3),(1,2)],4)
 => ([(0,3),(1,2)],4)
 => ([(0,2),(0,3),(1,2),(1,3)],4)
 => 2
[2,3,1,4] => ([(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,3),(2,3)],4)
 => 3
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 4
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(2,3)],4)
 => 3
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 4
[3,1,2,4] => ([(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,3),(2,3)],4)
 => 3
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(2,3)],4)
 => 3
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,3),(2,3)],4)
 => 3
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 4
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 4
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 4
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 4
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 4
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 4
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 4
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 4
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 4
[1,2,3,4,5] => ([],5)
 => ([],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 1
[1,2,3,5,4] => ([(3,4)],5)
 => ([(3,4)],5)
 => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 2
[1,2,4,3,5] => ([(3,4)],5)
 => ([(3,4)],5)
 => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 2
[1,2,4,5,3] => ([(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
[1,2,5,3,4] => ([(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
[1,3,2,4,5] => ([(3,4)],5)
 => ([(3,4)],5)
 => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 2
[1,3,2,5,4] => ([(1,4),(2,3)],5)
 => ([(1,4),(2,3)],5)
 => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
 => 2
[1,3,4,2,5] => ([(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,4),(3,4)],5)
 => 4
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
 => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,4),(3,4)],5)
 => 4
[1,4,2,3,5] => ([(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
 => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,4),(3,4)],5)
 => 4
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,4),(3,4)],5)
 => 4
Description
The maximal number of occurrences of a colour in a proper colouring of a graph.
To any proper colouring with the minimal number of colours possible we associate the integer partition recording how often each colour is used.  This statistic records the largest part occurring in any of these partitions.
For example, the graph on six vertices consisting of a square together with two attached triangles - ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) in the list of values - is three-colourable and admits two colouring schemes, $[2,2,2]$ and $[3,2,1]$.  Therefore, the statistic on this graph is $3$.
Matching statistic: St001337
Values
[1] => ([],1)
 => ([],1)
 => ([],1)
 => 1
[1,2] => ([],2)
 => ([],2)
 => ([(0,1)],2)
 => 1
[2,1] => ([(0,1)],2)
 => ([(0,1)],2)
 => ([],2)
 => 2
[1,2,3] => ([],3)
 => ([],3)
 => ([(0,1),(0,2),(1,2)],3)
 => 1
[1,3,2] => ([(1,2)],3)
 => ([(1,2)],3)
 => ([(0,2),(1,2)],3)
 => 2
[2,1,3] => ([(1,2)],3)
 => ([(1,2)],3)
 => ([(0,2),(1,2)],3)
 => 2
[2,3,1] => ([(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,2)],3)
 => ([],3)
 => 3
[3,1,2] => ([(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,2)],3)
 => ([],3)
 => 3
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,2)],3)
 => ([],3)
 => 3
[1,2,3,4] => ([],4)
 => ([],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 1
[1,2,4,3] => ([(2,3)],4)
 => ([(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 2
[1,3,2,4] => ([(2,3)],4)
 => ([(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 2
[1,3,4,2] => ([(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,3),(2,3)],4)
 => 3
[1,4,2,3] => ([(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,3),(2,3)],4)
 => 3
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,3),(2,3)],4)
 => 3
[2,1,3,4] => ([(2,3)],4)
 => ([(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 2
[2,1,4,3] => ([(0,3),(1,2)],4)
 => ([(0,3),(1,2)],4)
 => ([(0,2),(0,3),(1,2),(1,3)],4)
 => 2
[2,3,1,4] => ([(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,3),(2,3)],4)
 => 3
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 4
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(2,3)],4)
 => 3
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 4
[3,1,2,4] => ([(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,3),(2,3)],4)
 => 3
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(2,3)],4)
 => 3
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,3),(2,3)],4)
 => 3
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 4
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 4
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 4
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 4
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 4
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 4
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 4
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 4
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 4
[1,2,3,4,5] => ([],5)
 => ([],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 1
[1,2,3,5,4] => ([(3,4)],5)
 => ([(3,4)],5)
 => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 2
[1,2,4,3,5] => ([(3,4)],5)
 => ([(3,4)],5)
 => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 2
[1,2,4,5,3] => ([(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
[1,2,5,3,4] => ([(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
[1,3,2,4,5] => ([(3,4)],5)
 => ([(3,4)],5)
 => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 2
[1,3,2,5,4] => ([(1,4),(2,3)],5)
 => ([(1,4),(2,3)],5)
 => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
 => 2
[1,3,4,2,5] => ([(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,4),(3,4)],5)
 => 4
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
 => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,4),(3,4)],5)
 => 4
[1,4,2,3,5] => ([(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
 => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,4),(3,4)],5)
 => 4
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,4),(3,4)],5)
 => 4
Description
The upper domination number of a graph.
This is the maximum cardinality of a minimal dominating set of $G$.
The smallest graph with different upper irredundance number and upper domination number has eight vertices.  It is obtained from the disjoint union of two copies of $K_4$ by joining three of the four vertices of the first with three of the four vertices of the second.  For bipartite graphs the two parameters always coincide [1].
Matching statistic: St001338
Values
[1] => ([],1)
 => ([],1)
 => ([],1)
 => 1
[1,2] => ([],2)
 => ([],2)
 => ([(0,1)],2)
 => 1
[2,1] => ([(0,1)],2)
 => ([(0,1)],2)
 => ([],2)
 => 2
[1,2,3] => ([],3)
 => ([],3)
 => ([(0,1),(0,2),(1,2)],3)
 => 1
[1,3,2] => ([(1,2)],3)
 => ([(1,2)],3)
 => ([(0,2),(1,2)],3)
 => 2
[2,1,3] => ([(1,2)],3)
 => ([(1,2)],3)
 => ([(0,2),(1,2)],3)
 => 2
[2,3,1] => ([(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,2)],3)
 => ([],3)
 => 3
[3,1,2] => ([(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,2)],3)
 => ([],3)
 => 3
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,2)],3)
 => ([],3)
 => 3
[1,2,3,4] => ([],4)
 => ([],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 1
[1,2,4,3] => ([(2,3)],4)
 => ([(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 2
[1,3,2,4] => ([(2,3)],4)
 => ([(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 2
[1,3,4,2] => ([(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,3),(2,3)],4)
 => 3
[1,4,2,3] => ([(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,3),(2,3)],4)
 => 3
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,3),(2,3)],4)
 => 3
[2,1,3,4] => ([(2,3)],4)
 => ([(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 2
[2,1,4,3] => ([(0,3),(1,2)],4)
 => ([(0,3),(1,2)],4)
 => ([(0,2),(0,3),(1,2),(1,3)],4)
 => 2
[2,3,1,4] => ([(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,3),(2,3)],4)
 => 3
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 4
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(2,3)],4)
 => 3
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 4
[3,1,2,4] => ([(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,3),(2,3)],4)
 => 3
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(2,3)],4)
 => 3
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => ([(0,3),(1,3),(2,3)],4)
 => 3
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 4
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 4
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 4
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 4
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 4
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 4
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 4
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 4
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([],4)
 => 4
[1,2,3,4,5] => ([],5)
 => ([],5)
 => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 1
[1,2,3,5,4] => ([(3,4)],5)
 => ([(3,4)],5)
 => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 2
[1,2,4,3,5] => ([(3,4)],5)
 => ([(3,4)],5)
 => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 2
[1,2,4,5,3] => ([(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
[1,2,5,3,4] => ([(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
[1,3,2,4,5] => ([(3,4)],5)
 => ([(3,4)],5)
 => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 2
[1,3,2,5,4] => ([(1,4),(2,3)],5)
 => ([(1,4),(2,3)],5)
 => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
 => 2
[1,3,4,2,5] => ([(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,4),(3,4)],5)
 => 4
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
 => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,4),(3,4)],5)
 => 4
[1,4,2,3,5] => ([(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
 => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,4),(3,4)],5)
 => 4
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,4),(1,4),(2,4),(3,4)],5)
 => 4
Description
The upper irredundance number of a graph.
A set $S$ of vertices is irredundant, if there is no vertex in $S$, whose closed neighbourhood is contained in the union of the closed neighbourhoods of the other vertices of $S$.
The upper irredundance number is the largest size of a maximal irredundant set.
The smallest graph with different upper irredundance number and upper domination number [[St001337]] has eight vertices. It is obtained from the disjoint union of two copies of $K_4$ by joining three of the four vertices of the first with three of the four vertices of the second. For bipartite graphs the two parameters always coincide [2].
Matching statistic: St001644
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
[1] => ([],1)
 => ([],1)
 => ([],1)
 => 0 = 1 - 1
[1,2] => ([],2)
 => ([],2)
 => ([],2)
 => 0 = 1 - 1
[2,1] => ([(0,1)],2)
 => ([(0,1)],2)
 => ([(0,1)],2)
 => 1 = 2 - 1
[1,2,3] => ([],3)
 => ([],3)
 => ([],3)
 => 0 = 1 - 1
[1,3,2] => ([(1,2)],3)
 => ([(1,2)],3)
 => ([(1,2)],3)
 => 1 = 2 - 1
[2,1,3] => ([(1,2)],3)
 => ([(1,2)],3)
 => ([(1,2)],3)
 => 1 = 2 - 1
[2,3,1] => ([(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,2)],3)
 => 2 = 3 - 1
[3,1,2] => ([(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,2)],3)
 => 2 = 3 - 1
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,2)],3)
 => ([(0,1),(0,2),(1,2)],3)
 => 2 = 3 - 1
[1,2,3,4] => ([],4)
 => ([],4)
 => ([],4)
 => 0 = 1 - 1
[1,2,4,3] => ([(2,3)],4)
 => ([(2,3)],4)
 => ([(2,3)],4)
 => 1 = 2 - 1
[1,3,2,4] => ([(2,3)],4)
 => ([(2,3)],4)
 => ([(2,3)],4)
 => 1 = 2 - 1
[1,3,4,2] => ([(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 2 = 3 - 1
[1,4,2,3] => ([(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 2 = 3 - 1
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 2 = 3 - 1
[2,1,3,4] => ([(2,3)],4)
 => ([(2,3)],4)
 => ([(2,3)],4)
 => 1 = 2 - 1
[2,1,4,3] => ([(0,3),(1,2)],4)
 => ([(0,3),(1,2)],4)
 => ([(0,3),(1,2)],4)
 => 1 = 2 - 1
[2,3,1,4] => ([(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 2 = 3 - 1
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 2 = 3 - 1
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
[3,1,2,4] => ([(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 2 = 3 - 1
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 2 = 3 - 1
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => ([(1,2),(1,3),(2,3)],4)
 => 2 = 3 - 1
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
 => 3 = 4 - 1
[1,2,3,4,5] => ([],5)
 => ([],5)
 => ([],5)
 => 0 = 1 - 1
[1,2,3,5,4] => ([(3,4)],5)
 => ([(3,4)],5)
 => ([(3,4)],5)
 => 1 = 2 - 1
[1,2,4,3,5] => ([(3,4)],5)
 => ([(3,4)],5)
 => ([(3,4)],5)
 => 1 = 2 - 1
[1,2,4,5,3] => ([(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 2 = 3 - 1
[1,2,5,3,4] => ([(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 2 = 3 - 1
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 2 = 3 - 1
[1,3,2,4,5] => ([(3,4)],5)
 => ([(3,4)],5)
 => ([(3,4)],5)
 => 1 = 2 - 1
[1,3,2,5,4] => ([(1,4),(2,3)],5)
 => ([(1,4),(2,3)],5)
 => ([(1,4),(2,3)],5)
 => 1 = 2 - 1
[1,3,4,2,5] => ([(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 2 = 3 - 1
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
 => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 2 = 3 - 1
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
[1,4,2,3,5] => ([(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 2 = 3 - 1
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
 => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 2 = 3 - 1
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => ([(2,3),(2,4),(3,4)],5)
 => 2 = 3 - 1
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => 3 = 4 - 1
[2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {3,3,4,4,4,4,4,4,4,4} - 1
[2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {3,3,4,4,4,4,4,4,4,4} - 1
[2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {3,3,4,4,4,4,4,4,4,4} - 1
[2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {3,3,4,4,4,4,4,4,4,4} - 1
[3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {3,3,4,4,4,4,4,4,4,4} - 1
[3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {3,3,4,4,4,4,4,4,4,4} - 1
[3,1,5,4,2] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {3,3,4,4,4,4,4,4,4,4} - 1
[3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {3,3,4,4,4,4,4,4,4,4} - 1
[4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {3,3,4,4,4,4,4,4,4,4} - 1
[4,2,1,5,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
 => ? ∊ {3,3,4,4,4,4,4,4,4,4} - 1
[1,3,4,6,2,5] => ([(1,5),(2,5),(3,4),(4,5)],6)
 => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[1,3,5,2,6,4] => ([(1,5),(2,4),(3,4),(3,5)],6)
 => ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[1,3,6,2,4,5] => ([(1,5),(2,5),(3,4),(4,5)],6)
 => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[1,3,6,2,5,4] => ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
 => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[1,4,2,5,6,3] => ([(1,5),(2,5),(3,4),(4,5)],6)
 => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[1,4,2,6,3,5] => ([(1,5),(2,4),(3,4),(3,5)],6)
 => ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[1,4,2,6,5,3] => ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
 => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[1,4,3,6,2,5] => ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
 => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[1,5,2,3,6,4] => ([(1,5),(2,5),(3,4),(4,5)],6)
 => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[1,5,3,2,6,4] => ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
 => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,3,4,6,1,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
 => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,3,5,1,4,6] => ([(1,5),(2,5),(3,4),(4,5)],6)
 => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,3,5,1,6,4] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
 => ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,3,5,6,1,4] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
 => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
 => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,3,6,1,5,4] => ([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
 => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,3,6,4,1,5] => ([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
 => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,3,6,5,1,4] => ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
 => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,4,1,5,3,6] => ([(1,5),(2,4),(3,4),(3,5)],6)
 => ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,4,1,5,6,3] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
 => ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,4,1,6,5,3] => ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
 => ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,4,3,6,1,5] => ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
 => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,4,5,1,6,3] => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
 => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,4,6,1,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
 => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,4,6,1,5,3] => ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
 => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,4,6,3,1,5] => ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,5,1,3,4,6] => ([(1,5),(2,5),(3,4),(4,5)],6)
 => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,5,1,3,6,4] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
 => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,5,1,4,3,6] => ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
 => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,5,1,4,6,3] => ([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,5,1,6,3,4] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
 => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,5,1,6,4,3] => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
 => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,5,3,1,6,4] => ([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,5,4,1,6,3] => ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
 => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,5,6,1,3,4] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
 => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,5,6,1,4,3] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
 => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,6,1,3,4,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
 => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,6,1,3,5,4] => ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
 => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,6,1,4,3,5] => ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
 => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
[2,6,1,4,5,3] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
 => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
 => ? ∊ {3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5} - 1
Description
The dimension of a graph.
The dimension of a graph is the least integer $n$ such that there exists a representation of the graph in the Euclidean space of dimension $n$ with all vertices distinct and all edges having unit length.  Edges are allowed to intersect, however.
The following 15 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001330The hat guessing number of a graph. St000454The largest eigenvalue of a graph if it is integral. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001645The pebbling number of a connected graph. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St000259The diameter of a connected graph. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St000264The girth of a graph, which is not a tree. St000455The second largest eigenvalue of a graph if it is integral. St001875The number of simple modules with projective dimension at most 1. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001596The number of two-by-two squares inside a skew partition. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St001877Number of indecomposable injective modules with projective dimension 2.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!