Your data matches 79 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00147: Graphs squareGraphs
St001093: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> 1
([],2)
=> ([],2)
=> 1
([(0,1)],2)
=> ([(0,1)],2)
=> 2
([],3)
=> ([],3)
=> 1
([(1,2)],3)
=> ([(1,2)],3)
=> 2
([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([],4)
=> ([],4)
=> 1
([(2,3)],4)
=> ([(2,3)],4)
=> 2
([(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([],5)
=> ([],5)
=> 1
([(3,4)],5)
=> ([(3,4)],5)
=> 2
([(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 2
([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> 2
([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2
([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
Description
The detour number of a graph. This is the number of vertices in a longest induced path in a graph. Note that [1] defines the detour number as the number of edges in a longest induced path, which is unsuitable for the empty graph.
Mp00243: Graphs weak duplicate orderPosets
Mp00074: Posets to graphGraphs
Mp00111: Graphs complementGraphs
St000260: Graphs ⟶ ℤResult quality: 75% values known / values provided: 86%distinct values known / distinct values provided: 75%
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(0,1)],2)
=> ([],2)
=> ([],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? = 2 - 1
([(0,2),(1,2)],3)
=> ([],2)
=> ([],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1 = 2 - 1
([],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {2,2,2} - 1
([(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {2,2,2} - 1
([(0,3),(1,3),(2,3)],4)
=> ([],2)
=> ([],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,3),(1,2)],4)
=> ([],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 3 - 1
([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2} - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],2)
=> ([],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
([],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,4} - 1
([(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,4} - 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,4} - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],2)
=> ([],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(1,4),(2,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,4} - 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(0,1),(2,4),(3,4)],5)
=> ([],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,4} - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 3 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,4} - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 3 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,4} - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> ([],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1 = 2 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(2,3),(2,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(3,4)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 2 = 3 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,4} - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4} - 1
([(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4} - 1
([(2,5),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4} - 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4} - 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([],2)
=> ([],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([(2,5),(3,4)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4} - 1
([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(1,2),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4} - 1
([(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4} - 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 3 - 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4} - 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4} - 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4} - 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4} - 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4} - 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4} - 1
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4} - 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4} - 1
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4} - 1
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4} - 1
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4} - 1
Description
The radius of a connected graph. This is the minimum eccentricity of any vertex.
Mp00250: Graphs clique graphGraphs
Mp00247: Graphs de-duplicateGraphs
St001704: Graphs ⟶ ℤResult quality: 75% values known / values provided: 85%distinct values known / distinct values provided: 75%
Values
([],1)
=> ([],1)
=> ([],1)
=> ? = 1
([],2)
=> ([],2)
=> ([],1)
=> ? ∊ {1,2}
([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2}
([],3)
=> ([],3)
=> ([],1)
=> ? ∊ {1,2,2}
([(1,2)],3)
=> ([],2)
=> ([],1)
=> ? ∊ {1,2,2}
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2}
([],4)
=> ([],4)
=> ([],1)
=> ? ∊ {1,2,2,2,3}
([(2,3)],4)
=> ([],3)
=> ([],1)
=> ? ∊ {1,2,2,2,3}
([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,3),(1,2)],4)
=> ([],2)
=> ([],1)
=> ? ∊ {1,2,2,2,3}
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2
([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ([],1)
=> ? ∊ {1,2,2,2,3}
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,3}
([],5)
=> ([],5)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,4}
([(3,4)],5)
=> ([],4)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,4}
([(2,4),(3,4)],5)
=> ([(2,3)],4)
=> ([(1,2)],3)
=> 2
([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 3
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(1,4),(2,3)],5)
=> ([],3)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,4}
([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> 2
([(0,1),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2
([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,4}
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,4}
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,4}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,3,3,4}
([],6)
=> ([],6)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,3,3,3,4}
([(4,5)],6)
=> ([],5)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,3,3,3,4}
([(3,5),(4,5)],6)
=> ([(3,4)],5)
=> ([(1,2)],3)
=> 2
([(2,5),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 3
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(2,5),(3,4)],6)
=> ([],4)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,3,3,3,4}
([(2,5),(3,4),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 2
([(1,2),(3,5),(4,5)],6)
=> ([(2,3)],4)
=> ([(1,2)],3)
=> 2
([(3,4),(3,5),(4,5)],6)
=> ([],4)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,3,3,3,4}
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 3
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3)],4)
=> ([(1,2)],3)
=> 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 3
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2)],3)
=> 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 3
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 3
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 4
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,6),(1,7),(2,3),(2,5),(2,7),(3,4),(3,7),(4,5),(4,6),(5,6)],8)
=> ([(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,6),(1,7),(2,3),(2,5),(2,7),(3,4),(3,7),(4,5),(4,6),(5,6)],8)
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,3,3,3,4}
([(0,5),(1,4),(2,3)],6)
=> ([],3)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,3,3,3,4}
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,3,3,3,4}
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,3,3,3,4}
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,6),(0,7),(1,2),(1,5),(1,7),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,6),(0,7),(1,2),(1,5),(1,7),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,7),(6,7)],8)
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,3,3,3,4}
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(3,6),(3,8),(4,5),(4,7),(5,8),(6,7)],9)
=> ([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(3,6),(3,8),(4,5),(4,7),(5,8),(6,7)],9)
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,3,3,3,4}
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([],2)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,3,3,3,4}
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,3,3,3,4}
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,3,3,3,4}
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {1,2,2,2,2,2,2,3,3,3,3,3,3,4}
Description
The size of the largest multi-subset-intersection of the deck of a graph with the deck of another graph. The deck of a graph is the multiset of induced subgraphs obtained by deleting a single vertex. The graph reconstruction conjecture states that the deck of a graph with at least three vertices determines the graph. This statistic is only defined for graphs with at least two vertices, because there is only a single graph of the given size otherwise.
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
Mp00095: Integer partitions to binary wordBinary words
Mp00104: Binary words reverseBinary words
St000983: Binary words ⟶ ℤResult quality: 75% values known / values provided: 78%distinct values known / distinct values provided: 75%
Values
([],1)
=> []
=> => => ? = 1
([],2)
=> []
=> => => ? = 1
([(0,1)],2)
=> [1]
=> 10 => 01 => 2
([],3)
=> []
=> => => ? = 1
([(1,2)],3)
=> [1]
=> 10 => 01 => 2
([(0,2),(1,2)],3)
=> [1,1]
=> 110 => 011 => 2
([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1000 => 0001 => 2
([],4)
=> []
=> => => ? = 1
([(2,3)],4)
=> [1]
=> 10 => 01 => 2
([(1,3),(2,3)],4)
=> [1,1]
=> 110 => 011 => 2
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> 1110 => 0111 => 2
([(0,3),(1,2)],4)
=> [1,1]
=> 110 => 011 => 2
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 1110 => 0111 => 2
([(1,2),(1,3),(2,3)],4)
=> [3]
=> 1000 => 0001 => 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 10010 => 01001 => 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> 10000 => 00001 => 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> 100000 => 000001 => 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> 1000000 => 0000001 => 2
([],5)
=> []
=> => => ? ∊ {1,4}
([(3,4)],5)
=> [1]
=> 10 => 01 => 2
([(2,4),(3,4)],5)
=> [1,1]
=> 110 => 011 => 2
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> 1110 => 0111 => 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> 11110 => 01111 => 2
([(1,4),(2,3)],5)
=> [1,1]
=> 110 => 011 => 2
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> 1110 => 0111 => 2
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> 1110 => 0111 => 2
([(2,3),(2,4),(3,4)],5)
=> [3]
=> 1000 => 0001 => 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> 11110 => 01111 => 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> 10010 => 01001 => 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 100110 => 011001 => 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> 10000 => 00001 => 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> 100010 => 010001 => 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 100000 => 000001 => 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 100110 => 011001 => 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> 1000010 => 0100001 => 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> 1000000 => 0000001 => 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> 10000000 => 00000001 => 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> 11110 => 01111 => 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> 10010 => 01001 => 3
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> 100110 => 011001 => 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> 11000 => 00011 => 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> 100000 => 000001 => 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> 1000000 => 0000001 => 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> 10000000 => 00000001 => 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> 1000010 => 0100001 => 3
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> 1000000 => 0000001 => 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> 10000010 => 01000001 => 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> 100000000 => 000000001 => 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> 10000000 => 00000001 => 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> 100000000 => 000000001 => 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> 1000000000 => 0000000001 => 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> 10000000000 => 00000000001 => ? ∊ {1,4}
([],6)
=> []
=> => => ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(4,5)],6)
=> [1]
=> 10 => 01 => 2
([(3,5),(4,5)],6)
=> [1,1]
=> 110 => 011 => 2
([(2,5),(3,5),(4,5)],6)
=> [1,1,1]
=> 1110 => 0111 => 2
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> 11110 => 01111 => 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8,1]
=> 1000000010 => 0100000001 => ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> 10000000000 => 00000000001 => ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [8,1]
=> 1000000010 => 0100000001 => ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> 10000000000 => 00000000001 => ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8,1]
=> 1000000010 => 0100000001 => ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8,1]
=> 1000000010 => 0100000001 => ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9,1]
=> 10000000010 => 01000000001 => ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> 10000000000 => 00000000001 => ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> 100000000000 => 000000000001 => ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> 10000000000 => 00000000001 => ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [10]
=> 10000000000 => 00000000001 => ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [11]
=> 100000000000 => 000000000001 => ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [12]
=> 1000000000000 => 0000000000001 => ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8,1]
=> 1000000010 => 0100000001 => ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> 10000000000 => 00000000001 => ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [10]
=> 10000000000 => 00000000001 => ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> 100000000000 => 000000000001 => ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [10]
=> 10000000000 => 00000000001 => ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> 10000000000 => 00000000001 => ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [10]
=> 10000000000 => 00000000001 => ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> 100000000000 => 000000000001 => ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [12]
=> 1000000000000 => 0000000000001 => ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [10]
=> 10000000000 => 00000000001 => ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> 10000000000 => 00000000001 => ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> 100000000000 => 000000000001 => ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9,1]
=> 10000000010 => 01000000001 => ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> 10000000000 => 00000000001 => ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10,1]
=> 100000000010 => 010000000001 => ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [12]
=> 1000000000000 => 0000000000001 => ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [13]
=> 10000000000000 => 00000000000001 => ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [11]
=> 100000000000 => 000000000001 => ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [11]
=> 100000000000 => 000000000001 => ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> 100000000000 => 000000000001 => ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [12]
=> 1000000000000 => 0000000000001 => ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [12]
=> 1000000000000 => 0000000000001 => ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [13]
=> 10000000000000 => 00000000000001 => ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [14]
=> 100000000000000 => 000000000000001 => ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [15]
=> 1000000000000000 => 0000000000000001 => ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
Description
The length of the longest alternating subword. This is the length of the longest consecutive subword of the form $010...$ or of the form $101...$.
Matching statistic: St001194
Mp00251: Graphs clique sizesInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
St001194: Dyck paths ⟶ ℤResult quality: 72% values known / values provided: 72%distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> [1,0]
=> 0 = 1 - 1
([],2)
=> [1,1]
=> [1,1,0,0]
=> 1 = 2 - 1
([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 0 = 1 - 1
([],3)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1 = 2 - 1
([(1,2)],3)
=> [2,1]
=> [1,0,1,1,0,0]
=> 1 = 2 - 1
([(0,2),(1,2)],3)
=> [2,2]
=> [1,1,1,0,0,0]
=> 1 = 2 - 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> 0 = 1 - 1
([],4)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 1 = 2 - 1
([(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 1 = 2 - 1
([(1,3),(2,3)],4)
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> 1 = 2 - 1
([(0,3),(1,2)],4)
=> [2,2]
=> [1,1,1,0,0,0]
=> 1 = 2 - 1
([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> 1 = 2 - 1
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
([],5)
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1 = 2 - 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 1 = 2 - 1
([(2,4),(3,4)],5)
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> 3 = 4 - 1
([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2 = 3 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1 = 2 - 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2 = 3 - 1
([(0,1),(2,4),(3,4)],5)
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> 1 = 2 - 1
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1 = 2 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1 = 2 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1 = 2 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,1]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> 2 = 3 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 1 = 2 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 2 = 3 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1 = 2 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1 = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1 = 2 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1 = 2 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 1 = 2 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2,2]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1 = 2 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,3,2,2]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [3,3,3,3]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,4]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1 = 2 - 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,1,1]
=> [1,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [2,2,2,2,2,1]
=> [1,1,1,1,0,1,0,1,0,0,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,1]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [2,2,2,2,2,1]
=> [1,1,1,1,0,1,0,1,0,0,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,2,2,2,1]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,2,2,2,2]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> [3,2,2,2,2]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> [3,2,2,2,2,2]
=> [1,0,1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,2,2,2]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,2,2,2]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,2,2,2,2]
=> [1,1,1,0,1,1,0,1,0,1,0,1,0,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [2,2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,2,2,1]
=> [1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,2,2,2]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,1]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,2]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> [2,2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> [3,2,2,2,2]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,2,2,2,2]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,2,2,2,2]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,2,2,2]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,3,2,2,2]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,2,2,2,2]
=> [1,1,1,0,1,1,0,1,0,1,0,1,0,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,2,2]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,2]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,2,2]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [2,2,2,2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,2,2,2]
=> [1,1,1,1,1,0,0,1,0,1,0,1,0,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3,2,2]
=> [1,1,1,1,1,1,0,0,0,1,0,1,0,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2,2,2]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6)
=> [3,2,2,2,2,2]
=> [1,0,1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,2,2,2]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,3,3,2,2]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [3,3,2,2,2]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,2]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4} - 1
Description
The injective dimension of $A/AfA$ in the corresponding Nakayama algebra $A$ when $Af$ is the minimal faithful projective-injective left $A$-module
Matching statistic: St001192
Mp00251: Graphs clique sizesInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00032: Dyck paths inverse zeta mapDyck paths
St001192: Dyck paths ⟶ ℤResult quality: 72% values known / values provided: 72%distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> [1,0]
=> [1,0]
=> 0 = 1 - 1
([],2)
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1 = 2 - 1
([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0 = 1 - 1
([],3)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 1 = 2 - 1
([(1,2)],3)
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1 = 2 - 1
([(0,2),(1,2)],3)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 1 = 2 - 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0 = 1 - 1
([],4)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
([(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
([(1,3),(2,3)],4)
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2 = 3 - 1
([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 1 = 2 - 1
([(0,3),(1,2)],4)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 1 = 2 - 1
([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 1 = 2 - 1
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
([],5)
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1 = 2 - 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1 = 2 - 1
([(2,4),(3,4)],5)
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1 = 2 - 1
([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2 = 3 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1 = 2 - 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2 = 3 - 1
([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2 = 3 - 1
([(0,1),(2,4),(3,4)],5)
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 1 = 2 - 1
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1 = 2 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 2 = 3 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,1]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> 2 = 3 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 2 = 3 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 4 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1 = 2 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1 = 2 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,2,2,2]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,3,2,2]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [3,3,3,3]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,4]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1 = 2 - 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,1,1]
=> [1,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [2,2,2,2,2,1]
=> [1,1,1,1,0,1,0,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,1]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0,1,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [2,2,2,2,2,1]
=> [1,1,1,1,0,1,0,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,2,2,2,1]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,1,0,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,2,2,2,2]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> [3,2,2,2,2]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> [3,2,2,2,2,2]
=> [1,0,1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,2,2,2]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,2,2,2]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,2,2,2,2]
=> [1,1,1,0,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [2,2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,2,2,1]
=> [1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,2,2,2]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,1]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,2]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> [2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> [2,2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> [3,2,2,2,2]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,2,2,2,2]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,2,2,2,2]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,2,2,2]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [2,2,2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,3,2,2,2]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,2,2,2,2]
=> [1,1,1,0,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,2,2]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,2]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,2,2]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [2,2,2,2,2,2,2,2,2]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,2,2,2]
=> [1,1,1,1,1,0,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,3,3,2,2]
=> [1,1,1,1,1,1,0,0,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2,2,2]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6)
=> [3,2,2,2,2,2]
=> [1,0,1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,3,2,2,2]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,3,3,2,2]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [3,3,2,2,2]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,2]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
Description
The maximal dimension of $Ext_A^2(S,A)$ for a simple module $S$ over the corresponding Nakayama algebra $A$.
Mp00147: Graphs squareGraphs
Mp00247: Graphs de-duplicateGraphs
St000259: Graphs ⟶ ℤResult quality: 71% values known / values provided: 71%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
([],2)
=> ([],2)
=> ([],1)
=> 0 = 1 - 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
([],3)
=> ([],3)
=> ([],1)
=> 0 = 1 - 1
([(1,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 2 - 1
([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1 = 2 - 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1 = 2 - 1
([],4)
=> ([],4)
=> ([],1)
=> 0 = 1 - 1
([(2,3)],4)
=> ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,3} - 1
([(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,3} - 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ? ∊ {2,2,2,3} - 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 1 = 2 - 1
([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,3} - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
([],5)
=> ([],5)
=> ([],1)
=> 0 = 1 - 1
([(3,4)],5)
=> ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,4} - 1
([(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,4} - 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,4} - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,4} - 1
([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,4} - 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,4} - 1
([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,4} - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,4} - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,4} - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,4} - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,4} - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,4} - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([],6)
=> ([],6)
=> ([],1)
=> 0 = 1 - 1
([(4,5)],6)
=> ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(2,5),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
([(2,5),(3,4)],6)
=> ([(2,5),(3,4)],6)
=> ([(1,4),(2,3)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(2,5),(3,4),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(1,2),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4} - 1
Description
The diameter of a connected graph. This is the greatest distance between any pair of vertices.
Matching statistic: St000741
Mp00154: Graphs coreGraphs
Mp00259: Graphs vertex additionGraphs
St000741: Graphs ⟶ ℤResult quality: 71% values known / values provided: 71%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> ([],2)
=> 1
([],2)
=> ([],1)
=> ([],2)
=> 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> ? = 2
([],3)
=> ([],1)
=> ([],2)
=> 1
([(1,2)],3)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> ? ∊ {2,2}
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> ? ∊ {2,2}
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([],4)
=> ([],1)
=> ([],2)
=> 1
([(2,3)],4)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2}
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2}
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2}
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2}
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2}
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([],5)
=> ([],1)
=> ([],2)
=> 1
([(3,4)],5)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3}
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3}
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3}
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3}
([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3}
([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3}
([(0,1),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3}
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3}
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3}
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,3,3}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([],6)
=> ([],1)
=> ([],2)
=> 1
([(4,5)],6)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4}
([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4}
([(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4}
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4}
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4}
([(2,5),(3,4)],6)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4}
([(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4}
([(1,2),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4}
([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4}
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4}
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4}
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4}
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4}
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4}
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,5),(1,4),(2,3)],6)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4}
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4}
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4}
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4}
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4}
Description
The Colin de Verdière graph invariant.
Matching statistic: St000982
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
Mp00095: Integer partitions to binary wordBinary words
Mp00158: Binary words alternating inverseBinary words
St000982: Binary words ⟶ ℤResult quality: 71% values known / values provided: 71%distinct values known / distinct values provided: 75%
Values
([],1)
=> []
=> => => ? = 1
([],2)
=> []
=> => => ? = 1
([(0,1)],2)
=> [1]
=> 10 => 11 => 2
([],3)
=> []
=> => => ? = 1
([(1,2)],3)
=> [1]
=> 10 => 11 => 2
([(0,2),(1,2)],3)
=> [1,1]
=> 110 => 100 => 2
([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1000 => 1101 => 2
([],4)
=> []
=> => => ? = 1
([(2,3)],4)
=> [1]
=> 10 => 11 => 2
([(1,3),(2,3)],4)
=> [1,1]
=> 110 => 100 => 2
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> 1110 => 1011 => 2
([(0,3),(1,2)],4)
=> [1,1]
=> 110 => 100 => 2
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> 1110 => 1011 => 2
([(1,2),(1,3),(2,3)],4)
=> [3]
=> 1000 => 1101 => 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 10010 => 11000 => 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> 10000 => 11010 => 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> 100000 => 110101 => 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> 1000000 => 1101010 => 2
([],5)
=> []
=> => => ? ∊ {1,2,4}
([(3,4)],5)
=> [1]
=> 10 => 11 => 2
([(2,4),(3,4)],5)
=> [1,1]
=> 110 => 100 => 2
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> 1110 => 1011 => 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> 11110 => 10100 => 2
([(1,4),(2,3)],5)
=> [1,1]
=> 110 => 100 => 2
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> 1110 => 1011 => 2
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> 1110 => 1011 => 2
([(2,3),(2,4),(3,4)],5)
=> [3]
=> 1000 => 1101 => 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> 11110 => 10100 => 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> 10010 => 11000 => 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 100110 => 110011 => 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> 10000 => 11010 => 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> 100010 => 110111 => 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 100000 => 110101 => 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 100110 => 110011 => 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> 1000010 => 1101000 => 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> 1000000 => 1101010 => 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> 10000000 => 11010101 => 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> 11110 => 10100 => 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> 10010 => 11000 => 3
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> 100110 => 110011 => 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> 11000 => 10010 => 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> 100000 => 110101 => 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> 1000000 => 1101010 => 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> 10000000 => 11010101 => 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> 1000010 => 1101000 => 3
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> 1000000 => 1101010 => 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> 10000010 => 11010111 => 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> 100000000 => 110101010 => 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> 10000000 => 11010101 => 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> 100000000 => 110101010 => 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> 1000000000 => 1101010101 => ? ∊ {1,2,4}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> 10000000000 => 11010101010 => ? ∊ {1,2,4}
([],6)
=> []
=> => => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(4,5)],6)
=> [1]
=> 10 => 11 => 2
([(3,5),(4,5)],6)
=> [1,1]
=> 110 => 100 => 2
([(2,5),(3,5),(4,5)],6)
=> [1,1,1]
=> 1110 => 1011 => 2
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> 11110 => 10100 => 2
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> 111110 => 101011 => 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> 1000000000 => 1101010101 => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> 1000000000 => 1101010101 => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8,1]
=> 1000000010 => 1101010111 => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [9]
=> 1000000000 => 1101010101 => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> 10000000000 => 11010101010 => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [8,1]
=> 1000000010 => 1101010111 => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [9]
=> 1000000000 => 1101010101 => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [9]
=> 1000000000 => 1101010101 => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> 1000000000 => 1101010101 => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> 10000000000 => 11010101010 => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8,1]
=> 1000000010 => 1101010111 => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> 1000000000 => 1101010101 => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8,1]
=> 1000000010 => 1101010111 => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9,1]
=> 10000000010 => 11010101000 => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> 1000000000 => 1101010101 => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [9]
=> 1000000000 => 1101010101 => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> 10000000000 => 11010101010 => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> 100000000000 => 110101010101 => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [9]
=> 1000000000 => 1101010101 => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> 10000000000 => 11010101010 => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [10]
=> 10000000000 => 11010101010 => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [11]
=> 100000000000 => 110101010101 => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [12]
=> 1000000000000 => 1101010101010 => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [9]
=> 1000000000 => 1101010101 => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [8,1]
=> 1000000010 => 1101010111 => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> 1000000000 => 1101010101 => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> 1000000000 => 1101010101 => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> 10000000000 => 11010101010 => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [10]
=> 10000000000 => 11010101010 => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> 100000000000 => 110101010101 => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [9]
=> 1000000000 => 1101010101 => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [10]
=> 10000000000 => 11010101010 => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [9]
=> 1000000000 => 1101010101 => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> 10000000000 => 11010101010 => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [10]
=> 10000000000 => 11010101010 => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> 100000000000 => 110101010101 => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [12]
=> 1000000000000 => 1101010101010 => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [10]
=> 10000000000 => 11010101010 => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> 10000000000 => 11010101010 => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [11]
=> 100000000000 => 110101010101 => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9,1]
=> 10000000010 => 11010101000 => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [10]
=> 10000000000 => 11010101010 => ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
Description
The length of the longest constant subword.
Mp00117: Graphs Ore closureGraphs
Mp00157: Graphs connected complementGraphs
Mp00147: Graphs squareGraphs
St000777: Graphs ⟶ ℤResult quality: 69% values known / values provided: 69%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([],2)
=> ([],2)
=> ([],2)
=> ([],2)
=> ? = 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
([],3)
=> ([],3)
=> ([],3)
=> ([],3)
=> ? ∊ {1,2}
([(1,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ? ∊ {1,2}
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([],4)
=> ([],4)
=> ([],4)
=> ([],4)
=> ? ∊ {1,2,2,2,2}
([(2,3)],4)
=> ([(2,3)],4)
=> ([(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {1,2,2,2,2}
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,2}
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ? ∊ {1,2,2,2,2}
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,2,2,2,2}
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([],5)
=> ([],5)
=> ([],5)
=> ([],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,4}
([(3,4)],5)
=> ([(3,4)],5)
=> ([(3,4)],5)
=> ([(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,4}
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,4}
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,4}
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,4}
([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,4}
([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,4}
([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,4}
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,4}
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,4}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,4}
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,4}
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,2,2,2,2,2,2,2,2,3,3,3,4}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([],6)
=> ([],6)
=> ([],6)
=> ([],6)
=> ? ∊ {1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4}
([(4,5)],6)
=> ([(4,5)],6)
=> ([(4,5)],6)
=> ([(4,5)],6)
=> ? ∊ {1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4}
([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4}
([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4}
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4}
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(2,5),(3,4)],6)
=> ([(2,5),(3,4)],6)
=> ([(2,5),(3,4)],6)
=> ([(2,5),(3,4)],6)
=> ? ∊ {1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4}
([(2,5),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4}
([(1,2),(3,5),(4,5)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4}
([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4}
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4}
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4}
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4}
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4}
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4}
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ? ∊ {1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4}
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4}
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4}
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4}
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4}
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4}
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4}
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ? ∊ {1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4}
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4}
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4}
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4}
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4}
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4}
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4}
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4}
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
Description
The number of distinct eigenvalues of the distance Laplacian of a connected graph.
The following 69 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St000444The length of the maximal rise of a Dyck path. St000025The number of initial rises of a Dyck path. St000676The number of odd rises of a Dyck path. St000918The 2-limited packing number of a graph. St000969We make a CNakayama algebra out of the LNakayama algebra (corresponding to the Dyck path) $[c_0,c_1,...,c_{n-1}]$ by adding $c_0$ to $c_{n-1}$. St001028Number of simple modules with injective dimension equal to the dominant dimension in the Nakayama algebra corresponding to the Dyck path. St001504The sum of all indegrees of vertices with indegree at least two in the resolution quiver of a Nakayama algebra corresponding to the Dyck path. St001505The number of elements generated by the Dyck path as a map in the full transformation monoid. St000258The burning number of a graph. St000684The global dimension of the LNakayama algebra associated to a Dyck path. St000686The finitistic dominant dimension of a Dyck path. St001203We associate to a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n-1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a Dyck path as follows: St001471The magnitude of a Dyck path. St001060The distinguishing index of a graph. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000955Number of times one has $Ext^i(D(A),A)>0$ for $i>0$ for the corresponding LNakayama algebra. St001165Number of simple modules with even projective dimension in the corresponding Nakayama algebra. St001530The depth of a Dyck path. St000015The number of peaks of a Dyck path. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001201The grade of the simple module $S_0$ in the special CNakayama algebra corresponding to the Dyck path. St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001239The largest vector space dimension of the double dual of a simple module in the corresponding Nakayama algebra. St000455The second largest eigenvalue of a graph if it is integral. St001514The dimension of the top of the Auslander-Reiten translate of the regular modules as a bimodule. St000026The position of the first return of a Dyck path. St001226The number of integers i such that the radical of the i-th indecomposable projective module has vanishing first extension group with the Jacobson radical J in the corresponding Nakayama algebra. St001183The maximum of $projdim(S)+injdim(S)$ over all simple modules in the Nakayama algebra corresponding to the Dyck path. St001258Gives the maximum of injective plus projective dimension of an indecomposable module over the corresponding Nakayama algebra. St001290The first natural number n such that the tensor product of n copies of D(A) is zero for the corresponding Nakayama algebra A. St001118The acyclic chromatic index of a graph. St000464The Schultz index of a connected graph. St001545The second Elser number of a connected graph. St001738The minimal order of a graph which is not an induced subgraph of the given graph. St001261The Castelnuovo-Mumford regularity of a graph. St001333The cardinality of a minimal edge-isolating set of a graph. St001340The cardinality of a minimal non-edge isolating set of a graph. St001354The number of series nodes in the modular decomposition of a graph. St001393The induced matching number of a graph. St001271The competition number of a graph. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St000454The largest eigenvalue of a graph if it is integral. St000335The difference of lower and upper interactions. St000443The number of long tunnels of a Dyck path. St001187The number of simple modules with grade at least one in the corresponding Nakayama algebra. St001202Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001224Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001291The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001297The number of indecomposable non-injective projective modules minus the number of indecomposable non-injective projective modules that have reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St000318The number of addable cells of the Ferrers diagram of an integer partition. St000439The position of the first down step of a Dyck path. St000630The length of the shortest palindromic decomposition of a binary word. St000930The k-Gorenstein degree of the corresponding Nakayama algebra with linear quiver. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St001068Number of torsionless simple modules in the corresponding Nakayama algebra. St001500The global dimension of magnitude 1 Nakayama algebras. St001488The number of corners of a skew partition. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001875The number of simple modules with projective dimension at most 1. St000422The energy of a graph, if it is integral. St000264The girth of a graph, which is not a tree. St001621The number of atoms of a lattice. St001624The breadth of a lattice. St000907The number of maximal antichains of minimal length in a poset. St001942The number of loops of the quiver corresponding to the reduced incidence algebra of a poset.