Processing math: 100%

Your data matches 2 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001101
St001101: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[2]
=> 0
[1,1]
=> 1
[3]
=> 0
[2,1]
=> 1
[1,1,1]
=> 2
[4]
=> 0
[3,1]
=> 1
[2,2]
=> 3
[2,1,1]
=> 4
[1,1,1,1]
=> 6
[5]
=> 0
[4,1]
=> 1
[3,2]
=> 7
[3,1,1]
=> 8
[2,2,1]
=> 14
[2,1,1,1]
=> 18
[1,1,1,1,1]
=> 24
[6]
=> 0
[5,1]
=> 1
[4,2]
=> 15
[4,1,1]
=> 16
[3,3]
=> 31
[3,2,1]
=> 46
[3,1,1,1]
=> 54
[2,2,2]
=> 64
[2,2,1,1]
=> 78
[2,1,1,1,1]
=> 96
[1,1,1,1,1,1]
=> 120
[7]
=> 0
[6,1]
=> 1
[5,2]
=> 31
[5,1,1]
=> 32
[4,3]
=> 115
[4,2,1]
=> 146
[4,1,1,1]
=> 162
[3,3,1]
=> 230
[3,2,2]
=> 284
[3,2,1,1]
=> 330
[3,1,1,1,1]
=> 384
[2,2,2,1]
=> 426
[2,2,1,1,1]
=> 504
[2,1,1,1,1,1]
=> 600
[1,1,1,1,1,1,1]
=> 720
[8]
=> 0
[7,1]
=> 1
[6,2]
=> 63
[6,1,1]
=> 64
[5,3]
=> 391
[5,2,1]
=> 454
[5,1,1,1]
=> 486
Description
The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. For a generating function f the associated formal group law is the symmetric function f(f(1)(x1)+f(1)(x2),), see [1]. This statistic records the coefficient of the monomial symmetric function mλ times the product of the factorials of the parts of λ in the formal group law for increasing trees, whose generating function is f(x)=log(1x), see [1, sec. 9.1] Fix a coloring of {1,2,,n} so that λi are colored with the ith color. This statistic gives the number of increasing trees on this colored set of vertices so that no leaf has the same color as its parent. (An increasing tree is a rooted tree on the vertex set {1,2,,n} with the property that any child of i is greater than i.)
Matching statistic: St000948
Mp00042: Integer partitions initial tableauStandard tableaux
Mp00081: Standard tableaux reading word permutationPermutations
Mp00160: Permutations graph of inversionsGraphs
St000948: Graphs ⟶ ℤResult quality: 13% values known / values provided: 16%distinct values known / distinct values provided: 13%
Values
[2]
=> [[1,2]]
=> [1,2] => ([],2)
=> 0
[1,1]
=> [[1],[2]]
=> [2,1] => ([(0,1)],2)
=> 1
[3]
=> [[1,2,3]]
=> [1,2,3] => ([],3)
=> 0
[2,1]
=> [[1,2],[3]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[1,1,1]
=> [[1],[2],[3]]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[4]
=> [[1,2,3,4]]
=> [1,2,3,4] => ([],4)
=> 0
[3,1]
=> [[1,2,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[2,2]
=> [[1,2],[3,4]]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 3
[2,1,1]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[5]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => ([],5)
=> 0
[4,1]
=> [[1,2,3,4],[5]]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[3,2]
=> [[1,2,3],[4,5]]
=> [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 7
[3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 8
[2,2,1]
=> [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 14
[2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18
[1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 24
[6]
=> [[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => ([],6)
=> 0
[5,1]
=> [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[4,2]
=> [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 15
[4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 16
[3,3]
=> [[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> 31
[3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 46
[3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 54
[2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 64
[2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 78
[2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 96
[1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 120
[7]
=> [[1,2,3,4,5,6,7]]
=> [1,2,3,4,5,6,7] => ([],7)
=> 0
[6,1]
=> [[1,2,3,4,5,6],[7]]
=> [7,1,2,3,4,5,6] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 1
[5,2]
=> [[1,2,3,4,5],[6,7]]
=> [6,7,1,2,3,4,5] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 31
[5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 32
[4,3]
=> [[1,2,3,4],[5,6,7]]
=> [5,6,7,1,2,3,4] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 115
[4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> 146
[4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 162
[3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> [7,4,5,6,1,2,3] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7)
=> 230
[3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 284
[3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 330
[3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 384
[2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> 426
[2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 504
[2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 600
[1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 720
[8]
=> [[1,2,3,4,5,6,7,8]]
=> [1,2,3,4,5,6,7,8] => ([],8)
=> ? ∊ {0,1,63,64,391,454,486,675,1066,1228,1374,1536,1672,1902,2286,2616,2790,3000,3216,3720,4320,5040}
[7,1]
=> [[1,2,3,4,5,6,7],[8]]
=> [8,1,2,3,4,5,6,7] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? ∊ {0,1,63,64,391,454,486,675,1066,1228,1374,1536,1672,1902,2286,2616,2790,3000,3216,3720,4320,5040}
[6,2]
=> [[1,2,3,4,5,6],[7,8]]
=> [7,8,1,2,3,4,5,6] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? ∊ {0,1,63,64,391,454,486,675,1066,1228,1374,1536,1672,1902,2286,2616,2790,3000,3216,3720,4320,5040}
[6,1,1]
=> [[1,2,3,4,5,6],[7],[8]]
=> [8,7,1,2,3,4,5,6] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {0,1,63,64,391,454,486,675,1066,1228,1374,1536,1672,1902,2286,2616,2790,3000,3216,3720,4320,5040}
[5,3]
=> [[1,2,3,4,5],[6,7,8]]
=> [6,7,8,1,2,3,4,5] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? ∊ {0,1,63,64,391,454,486,675,1066,1228,1374,1536,1672,1902,2286,2616,2790,3000,3216,3720,4320,5040}
[5,2,1]
=> [[1,2,3,4,5],[6,7],[8]]
=> [8,6,7,1,2,3,4,5] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8)
=> ? ∊ {0,1,63,64,391,454,486,675,1066,1228,1374,1536,1672,1902,2286,2616,2790,3000,3216,3720,4320,5040}
[5,1,1,1]
=> [[1,2,3,4,5],[6],[7],[8]]
=> [8,7,6,1,2,3,4,5] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {0,1,63,64,391,454,486,675,1066,1228,1374,1536,1672,1902,2286,2616,2790,3000,3216,3720,4320,5040}
[4,4]
=> [[1,2,3,4],[5,6,7,8]]
=> [5,6,7,8,1,2,3,4] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7)],8)
=> ? ∊ {0,1,63,64,391,454,486,675,1066,1228,1374,1536,1672,1902,2286,2616,2790,3000,3216,3720,4320,5040}
[4,3,1]
=> [[1,2,3,4],[5,6,7],[8]]
=> [8,5,6,7,1,2,3,4] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,7),(5,7),(6,7)],8)
=> ? ∊ {0,1,63,64,391,454,486,675,1066,1228,1374,1536,1672,1902,2286,2616,2790,3000,3216,3720,4320,5040}
[4,2,2]
=> [[1,2,3,4],[5,6],[7,8]]
=> [7,8,5,6,1,2,3,4] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? ∊ {0,1,63,64,391,454,486,675,1066,1228,1374,1536,1672,1902,2286,2616,2790,3000,3216,3720,4320,5040}
[4,2,1,1]
=> [[1,2,3,4],[5,6],[7],[8]]
=> [8,7,5,6,1,2,3,4] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {0,1,63,64,391,454,486,675,1066,1228,1374,1536,1672,1902,2286,2616,2790,3000,3216,3720,4320,5040}
[4,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8]]
=> [8,7,6,5,1,2,3,4] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {0,1,63,64,391,454,486,675,1066,1228,1374,1536,1672,1902,2286,2616,2790,3000,3216,3720,4320,5040}
[3,3,2]
=> [[1,2,3],[4,5,6],[7,8]]
=> [7,8,4,5,6,1,2,3] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? ∊ {0,1,63,64,391,454,486,675,1066,1228,1374,1536,1672,1902,2286,2616,2790,3000,3216,3720,4320,5040}
[3,3,1,1]
=> [[1,2,3],[4,5,6],[7],[8]]
=> [8,7,4,5,6,1,2,3] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {0,1,63,64,391,454,486,675,1066,1228,1374,1536,1672,1902,2286,2616,2790,3000,3216,3720,4320,5040}
[3,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8]]
=> [8,6,7,4,5,1,2,3] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8)
=> ? ∊ {0,1,63,64,391,454,486,675,1066,1228,1374,1536,1672,1902,2286,2616,2790,3000,3216,3720,4320,5040}
[3,2,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8]]
=> [8,7,6,4,5,1,2,3] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {0,1,63,64,391,454,486,675,1066,1228,1374,1536,1672,1902,2286,2616,2790,3000,3216,3720,4320,5040}
[3,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,1,2,3] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {0,1,63,64,391,454,486,675,1066,1228,1374,1536,1672,1902,2286,2616,2790,3000,3216,3720,4320,5040}
[2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [7,8,5,6,3,4,1,2] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? ∊ {0,1,63,64,391,454,486,675,1066,1228,1374,1536,1672,1902,2286,2616,2790,3000,3216,3720,4320,5040}
[2,2,2,1,1]
=> [[1,2],[3,4],[5,6],[7],[8]]
=> [8,7,5,6,3,4,1,2] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {0,1,63,64,391,454,486,675,1066,1228,1374,1536,1672,1902,2286,2616,2790,3000,3216,3720,4320,5040}
[2,2,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8]]
=> [8,7,6,5,3,4,1,2] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {0,1,63,64,391,454,486,675,1066,1228,1374,1536,1672,1902,2286,2616,2790,3000,3216,3720,4320,5040}
[2,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,1,2] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {0,1,63,64,391,454,486,675,1066,1228,1374,1536,1672,1902,2286,2616,2790,3000,3216,3720,4320,5040}
[1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? ∊ {0,1,63,64,391,454,486,675,1066,1228,1374,1536,1672,1902,2286,2616,2790,3000,3216,3720,4320,5040}
[9]
=> [[1,2,3,4,5,6,7,8,9]]
=> [1,2,3,4,5,6,7,8,9] => ([],9)
=> ? ∊ {0,1,127,128,1267,1394,1458,3451,4718,5204,5658,6144,6902,9488,10554,11828,12090,13464,15000,15402,17304,18018,20304,22920,24024,25920,27240,30960,35280,40320}
[8,1]
=> [[1,2,3,4,5,6,7,8],[9]]
=> [9,1,2,3,4,5,6,7,8] => ([(0,8),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> ? ∊ {0,1,127,128,1267,1394,1458,3451,4718,5204,5658,6144,6902,9488,10554,11828,12090,13464,15000,15402,17304,18018,20304,22920,24024,25920,27240,30960,35280,40320}
[7,2]
=> [[1,2,3,4,5,6,7],[8,9]]
=> [8,9,1,2,3,4,5,6,7] => ([(0,7),(0,8),(1,7),(1,8),(2,7),(2,8),(3,7),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8)],9)
=> ? ∊ {0,1,127,128,1267,1394,1458,3451,4718,5204,5658,6144,6902,9488,10554,11828,12090,13464,15000,15402,17304,18018,20304,22920,24024,25920,27240,30960,35280,40320}
[7,1,1]
=> [[1,2,3,4,5,6,7],[8],[9]]
=> [9,8,1,2,3,4,5,6,7] => ([(0,7),(0,8),(1,7),(1,8),(2,7),(2,8),(3,7),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {0,1,127,128,1267,1394,1458,3451,4718,5204,5658,6144,6902,9488,10554,11828,12090,13464,15000,15402,17304,18018,20304,22920,24024,25920,27240,30960,35280,40320}
[6,3]
=> [[1,2,3,4,5,6],[7,8,9]]
=> [7,8,9,1,2,3,4,5,6] => ([(0,6),(0,7),(0,8),(1,6),(1,7),(1,8),(2,6),(2,7),(2,8),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8)],9)
=> ? ∊ {0,1,127,128,1267,1394,1458,3451,4718,5204,5658,6144,6902,9488,10554,11828,12090,13464,15000,15402,17304,18018,20304,22920,24024,25920,27240,30960,35280,40320}
[6,2,1]
=> [[1,2,3,4,5,6],[7,8],[9]]
=> [9,7,8,1,2,3,4,5,6] => ([(0,6),(0,7),(0,8),(1,6),(1,7),(1,8),(2,6),(2,7),(2,8),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,8),(7,8)],9)
=> ? ∊ {0,1,127,128,1267,1394,1458,3451,4718,5204,5658,6144,6902,9488,10554,11828,12090,13464,15000,15402,17304,18018,20304,22920,24024,25920,27240,30960,35280,40320}
[6,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9]]
=> [9,8,7,1,2,3,4,5,6] => ([(0,6),(0,7),(0,8),(1,6),(1,7),(1,8),(2,6),(2,7),(2,8),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {0,1,127,128,1267,1394,1458,3451,4718,5204,5658,6144,6902,9488,10554,11828,12090,13464,15000,15402,17304,18018,20304,22920,24024,25920,27240,30960,35280,40320}
[5,4]
=> [[1,2,3,4,5],[6,7,8,9]]
=> [6,7,8,9,1,2,3,4,5] => ([(0,5),(0,6),(0,7),(0,8),(1,5),(1,6),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8)],9)
=> ? ∊ {0,1,127,128,1267,1394,1458,3451,4718,5204,5658,6144,6902,9488,10554,11828,12090,13464,15000,15402,17304,18018,20304,22920,24024,25920,27240,30960,35280,40320}
[5,3,1]
=> [[1,2,3,4,5],[6,7,8],[9]]
=> [9,6,7,8,1,2,3,4,5] => ([(0,5),(0,6),(0,7),(0,8),(1,5),(1,6),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,8),(6,8),(7,8)],9)
=> ? ∊ {0,1,127,128,1267,1394,1458,3451,4718,5204,5658,6144,6902,9488,10554,11828,12090,13464,15000,15402,17304,18018,20304,22920,24024,25920,27240,30960,35280,40320}
[5,2,2]
=> [[1,2,3,4,5],[6,7],[8,9]]
=> [8,9,6,7,1,2,3,4,5] => ([(0,5),(0,6),(0,7),(0,8),(1,5),(1,6),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8)],9)
=> ? ∊ {0,1,127,128,1267,1394,1458,3451,4718,5204,5658,6144,6902,9488,10554,11828,12090,13464,15000,15402,17304,18018,20304,22920,24024,25920,27240,30960,35280,40320}
[5,2,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9]]
=> [9,8,6,7,1,2,3,4,5] => ([(0,5),(0,6),(0,7),(0,8),(1,5),(1,6),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {0,1,127,128,1267,1394,1458,3451,4718,5204,5658,6144,6902,9488,10554,11828,12090,13464,15000,15402,17304,18018,20304,22920,24024,25920,27240,30960,35280,40320}
[5,1,1,1,1]
=> [[1,2,3,4,5],[6],[7],[8],[9]]
=> [9,8,7,6,1,2,3,4,5] => ([(0,5),(0,6),(0,7),(0,8),(1,5),(1,6),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {0,1,127,128,1267,1394,1458,3451,4718,5204,5658,6144,6902,9488,10554,11828,12090,13464,15000,15402,17304,18018,20304,22920,24024,25920,27240,30960,35280,40320}
[4,4,1]
=> [[1,2,3,4],[5,6,7,8],[9]]
=> [9,5,6,7,8,1,2,3,4] => ([(0,4),(0,5),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(1,8),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> ? ∊ {0,1,127,128,1267,1394,1458,3451,4718,5204,5658,6144,6902,9488,10554,11828,12090,13464,15000,15402,17304,18018,20304,22920,24024,25920,27240,30960,35280,40320}
[4,3,2]
=> [[1,2,3,4],[5,6,7],[8,9]]
=> [8,9,5,6,7,1,2,3,4] => ([(0,4),(0,5),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(1,8),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8)],9)
=> ? ∊ {0,1,127,128,1267,1394,1458,3451,4718,5204,5658,6144,6902,9488,10554,11828,12090,13464,15000,15402,17304,18018,20304,22920,24024,25920,27240,30960,35280,40320}
[4,3,1,1]
=> [[1,2,3,4],[5,6,7],[8],[9]]
=> [9,8,5,6,7,1,2,3,4] => ([(0,4),(0,5),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(1,8),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {0,1,127,128,1267,1394,1458,3451,4718,5204,5658,6144,6902,9488,10554,11828,12090,13464,15000,15402,17304,18018,20304,22920,24024,25920,27240,30960,35280,40320}
[4,2,2,1]
=> [[1,2,3,4],[5,6],[7,8],[9]]
=> [9,7,8,5,6,1,2,3,4] => ([(0,4),(0,5),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(1,8),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,8),(7,8)],9)
=> ? ∊ {0,1,127,128,1267,1394,1458,3451,4718,5204,5658,6144,6902,9488,10554,11828,12090,13464,15000,15402,17304,18018,20304,22920,24024,25920,27240,30960,35280,40320}
[4,2,1,1,1]
=> [[1,2,3,4],[5,6],[7],[8],[9]]
=> [9,8,7,5,6,1,2,3,4] => ([(0,4),(0,5),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(1,8),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {0,1,127,128,1267,1394,1458,3451,4718,5204,5658,6144,6902,9488,10554,11828,12090,13464,15000,15402,17304,18018,20304,22920,24024,25920,27240,30960,35280,40320}
[4,1,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8],[9]]
=> [9,8,7,6,5,1,2,3,4] => ([(0,4),(0,5),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(1,8),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {0,1,127,128,1267,1394,1458,3451,4718,5204,5658,6144,6902,9488,10554,11828,12090,13464,15000,15402,17304,18018,20304,22920,24024,25920,27240,30960,35280,40320}
[3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9]]
=> [7,8,9,4,5,6,1,2,3] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8)],9)
=> ? ∊ {0,1,127,128,1267,1394,1458,3451,4718,5204,5658,6144,6902,9488,10554,11828,12090,13464,15000,15402,17304,18018,20304,22920,24024,25920,27240,30960,35280,40320}
[3,3,2,1]
=> [[1,2,3],[4,5,6],[7,8],[9]]
=> [9,7,8,4,5,6,1,2,3] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,8),(7,8)],9)
=> ? ∊ {0,1,127,128,1267,1394,1458,3451,4718,5204,5658,6144,6902,9488,10554,11828,12090,13464,15000,15402,17304,18018,20304,22920,24024,25920,27240,30960,35280,40320}
[3,3,1,1,1]
=> [[1,2,3],[4,5,6],[7],[8],[9]]
=> [9,8,7,4,5,6,1,2,3] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {0,1,127,128,1267,1394,1458,3451,4718,5204,5658,6144,6902,9488,10554,11828,12090,13464,15000,15402,17304,18018,20304,22920,24024,25920,27240,30960,35280,40320}
[3,2,2,2]
=> [[1,2,3],[4,5],[6,7],[8,9]]
=> [8,9,6,7,4,5,1,2,3] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8)],9)
=> ? ∊ {0,1,127,128,1267,1394,1458,3451,4718,5204,5658,6144,6902,9488,10554,11828,12090,13464,15000,15402,17304,18018,20304,22920,24024,25920,27240,30960,35280,40320}
[3,2,2,1,1]
=> [[1,2,3],[4,5],[6,7],[8],[9]]
=> [9,8,6,7,4,5,1,2,3] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {0,1,127,128,1267,1394,1458,3451,4718,5204,5658,6144,6902,9488,10554,11828,12090,13464,15000,15402,17304,18018,20304,22920,24024,25920,27240,30960,35280,40320}
[3,2,1,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8],[9]]
=> [9,8,7,6,4,5,1,2,3] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {0,1,127,128,1267,1394,1458,3451,4718,5204,5658,6144,6902,9488,10554,11828,12090,13464,15000,15402,17304,18018,20304,22920,24024,25920,27240,30960,35280,40320}
[3,1,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8],[9]]
=> [9,8,7,6,5,4,1,2,3] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {0,1,127,128,1267,1394,1458,3451,4718,5204,5658,6144,6902,9488,10554,11828,12090,13464,15000,15402,17304,18018,20304,22920,24024,25920,27240,30960,35280,40320}
[2,2,2,2,1]
=> [[1,2],[3,4],[5,6],[7,8],[9]]
=> [9,7,8,5,6,3,4,1,2] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,8),(7,8)],9)
=> ? ∊ {0,1,127,128,1267,1394,1458,3451,4718,5204,5658,6144,6902,9488,10554,11828,12090,13464,15000,15402,17304,18018,20304,22920,24024,25920,27240,30960,35280,40320}
[2,2,2,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9]]
=> [9,8,7,5,6,3,4,1,2] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {0,1,127,128,1267,1394,1458,3451,4718,5204,5658,6144,6902,9488,10554,11828,12090,13464,15000,15402,17304,18018,20304,22920,24024,25920,27240,30960,35280,40320}
[2,2,1,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8],[9]]
=> [9,8,7,6,5,3,4,1,2] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? ∊ {0,1,127,128,1267,1394,1458,3451,4718,5204,5658,6144,6902,9488,10554,11828,12090,13464,15000,15402,17304,18018,20304,22920,24024,25920,27240,30960,35280,40320}
Description
The chromatic discriminant of a graph. The chromatic discriminant α(G) is the coefficient of the linear term of the chromatic polynomial χ(G,q). According to [1], it equals the cardinality of any of the following sets: (1) Acyclic orientations of G with unique sink at q, (2) Maximum G-parking functions relative to q, (3) Minimal q-critical states, (4) Spanning trees of G without broken circuits, (5) Conjugacy classes of Coxeter elements in the Coxeter group associated to G, (6) Multilinear Lyndon heaps on G. In addition, α(G) is also equal to the the dimension of the root space corresponding to the sum of all simple roots in the Kac-Moody Lie algebra associated to the graph.